Пример #1
0
/**
 *  Here, we'll take the alternate approach of using the strides to access the array's memory directly.
 *  This can be much faster for large arrays.
 */
static void copy_ndarray_to_mv2(bn::ndarray const & array, matrix2 & mat) {
    // Unfortunately, get_strides() can't be inlined, so it's best to call it once up-front.
    Py_intptr_t const * strides = array.get_strides();
    for (int i = 0; i < 2; ++i) {
        for (int j = 0; j < 2; ++j) {
            mat(i, j) = *reinterpret_cast<double const *>(array.get_data() + i * strides[0] + j * strides[1]);
        }
    }
}
Пример #2
0
    NumPyArrayData<T>(const np::ndarray &arr){
        np::dtype dtype = arr.get_dtype();
        np::dtype dtype_expected = np::dtype::get_builtin<T>();
        if(dtype != dtype_expected) {
            std::stringstream ss;
            ss << "NumPyArrayData: Unexpected data type (" << bp::extract<const char*>(dtype.attr("__str__")()) << ") received";
            ss << "Expected " << bp::extract<const char*>(dtype_expected.attr("__str__")());
            throw std::runtime_error(ss.str().c_str());
        }
        data_ = arr.get_data();
		strides_ = arr.get_strides();


    }