u32 VideoBackendHardware::Video_AccessEFB(EFBAccessType type, u32 x, u32 y, u32 InputData) { if (s_BackendInitialized && g_ActiveConfig.bEFBAccessEnable) { s_accessEFBArgs.type = type; s_accessEFBArgs.x = x; s_accessEFBArgs.y = y; s_accessEFBArgs.Data = InputData; s_efbAccessRequested.Set(); if (SConfig::GetInstance().m_LocalCoreStartupParameter.bCPUThread) { s_efbAccessReadyEvent.Reset(); if (s_FifoShuttingDown.IsSet()) return 0; s_efbAccessRequested.Set(); s_efbAccessReadyEvent.Wait(); } else VideoFifo_CheckEFBAccess(); return s_AccessEFBResult; } return 0; }
static void DVDThread() { Common::SetCurrentThreadName("DVD thread"); while (true) { s_request_queue_expanded.Wait(); if (s_dvd_thread_exiting.IsSet()) return; ReadRequest request; while (s_request_queue.Pop(request)) { FileMonitor::Log(*s_disc, request.partition, request.dvd_offset); std::vector<u8> buffer(request.length); if (!s_disc->Read(request.dvd_offset, request.length, buffer.data(), request.partition)) buffer.resize(0); request.realtime_done_us = Common::Timer::GetTimeUs(); s_result_queue.Push(ReadResult(std::move(request), std::move(buffer))); s_result_queue_expanded.Set(); if (s_dvd_thread_exiting.IsSet()) return; } } }
static void VideoFifo_CheckPerfQueryRequest() { if (s_perfQueryRequested.IsSet()) { g_perf_query->FlushResults(); s_perfQueryRequested.Clear(); s_perfQueryReadyEvent.Set(); } }
void VideoFifo_CheckEFBAccess() { if (s_efbAccessRequested.IsSet()) { s_AccessEFBResult = g_renderer->AccessEFB(s_accessEFBArgs.type, s_accessEFBArgs.x, s_accessEFBArgs.y, s_accessEFBArgs.Data); s_efbAccessRequested.Clear(); s_efbAccessReadyEvent.Set(); } }
// Run from the graphics thread (from Fifo.cpp) static void VideoFifo_CheckSwapRequest() { if (g_ActiveConfig.bUseXFB) { if (s_swapRequested.IsSet()) { EFBRectangle rc; Renderer::Swap(s_beginFieldArgs.xfbAddr, s_beginFieldArgs.fbWidth, s_beginFieldArgs.fbHeight,rc); s_swapRequested.Clear(); } } }
void VideoBackendHardware::InitializeShared() { VideoCommon_Init(); s_swapRequested.Clear(); s_efbAccessRequested.Clear(); s_perfQueryRequested.Clear(); s_FifoShuttingDown.Clear(); memset((void*)&s_beginFieldArgs, 0, sizeof(s_beginFieldArgs)); memset(&s_accessEFBArgs, 0, sizeof(s_accessEFBArgs)); s_AccessEFBResult = 0; m_invalid = false; }
void VideoBackendHardware::Video_ExitLoop() { ExitGpuLoop(); s_FifoShuttingDown.Set(); s_efbAccessReadyEvent.Set(); s_perfQueryReadyEvent.Set(); }
// Run from the CPU thread (from VideoInterface.cpp) void VideoBackendHardware::Video_EndField() { if (s_BackendInitialized) { s_swapRequested.Set(); } }
void Host_Message(int Id) { if (Id == WM_USER_STOP) { s_running.Clear(); updateMainFrameEvent.Set(); } }
virtual void MainLoop() { while (s_running.IsSet()) { Core::HostDispatchJobs(); std::this_thread::sleep_for(std::chrono::milliseconds(100)); } }
void VideoBackendHardware::InitializeShared() { VideoCommon_Init(); s_FifoShuttingDown.Clear(); memset((void*)&s_beginFieldArgs, 0, sizeof(s_beginFieldArgs)); m_invalid = false; }
static void signal_handler(int) { const char message[] = "A signal was received. A second signal will force Dolphin to stop.\n"; if (write(STDERR_FILENO, message, sizeof(message)) < 0) { } s_shutdown_requested.Set(); }
void EmulatorState(bool running) { s_emu_running_state.Set(running); if (running) s_gpu_mainloop.Wakeup(); else s_gpu_mainloop.AllowSleep(); }
// May be executed from any thread, even the graphics thread. // Created to allow for self shutdown. void ExitGpuLoop() { // This should break the wait loop in CPU thread CommandProcessor::fifo.bFF_GPReadEnable = false; FlushGpu(); // Terminate GPU thread loop s_emu_running_state.Set(); s_gpu_mainloop.Stop(false); }
void HiresTexture::Shutdown() { if (s_prefetcher.joinable()) { s_textureCacheAbortLoading.Set(); s_prefetcher.join(); } s_textureMap.clear(); s_textureCache.clear(); }
static void StopDVDThread() { ASSERT(s_dvd_thread.joinable()); // By setting s_DVD_thread_exiting, we ask the DVD thread to cleanly exit. // In case the request queue is empty, we need to set s_request_queue_expanded // so that the DVD thread will wake up and check s_DVD_thread_exiting. s_dvd_thread_exiting.Set(); s_request_queue_expanded.Set(); s_dvd_thread.join(); }
u32 VideoBackendHardware::Video_GetQueryResult(PerfQueryType type) { if (!g_perf_query->ShouldEmulate()) { return 0; } // TODO: Is this check sane? if (!g_perf_query->IsFlushed()) { if (SConfig::GetInstance().m_LocalCoreStartupParameter.bCPUThread) { s_perfQueryReadyEvent.Reset(); if (s_FifoShuttingDown.IsSet()) return 0; s_perfQueryRequested.Set(); s_perfQueryReadyEvent.Wait(); } else g_perf_query->FlushResults(); } return g_perf_query->GetQueryResult(type); }
// Run from the graphics thread (from Fifo.cpp) void VideoFifo_CheckSwapRequestAt(u32 xfbAddr, u32 fbWidth, u32 fbHeight) { if (g_ActiveConfig.bUseXFB) { if (s_swapRequested.IsSet()) { u32 aLower = xfbAddr; u32 aUpper = xfbAddr + 2 * fbWidth * fbHeight; u32 bLower = s_beginFieldArgs.xfbAddr; u32 bUpper = s_beginFieldArgs.xfbAddr + 2 * s_beginFieldArgs.fbWidth * s_beginFieldArgs.fbHeight; if (addrRangesOverlap(aLower, aUpper, bLower, bUpper)) VideoFifo_CheckSwapRequest(); } } }
void HiresTexture::Prefetch() { Common::SetCurrentThreadName("Prefetcher"); u32 starttime = Common::Timer::GetTimeMs(); for (const auto& entry : s_textureMap) { const std::string& base_filename = entry.first; std::unique_lock<std::mutex> lk(s_textureCacheMutex); auto iter = s_textureCache.find(base_filename); if (iter == s_textureCache.end()) { lk.unlock(); HiresTexture* ptr = Load(base_filename, [](size_t requested_size) { return new u8[requested_size]; }, true); lk.lock(); if (ptr != nullptr) { size_sum.fetch_add(ptr->m_cached_data_size); iter = s_textureCache.insert(iter, std::make_pair(base_filename, std::shared_ptr<HiresTexture>(ptr))); } } if (s_textureCacheAbortLoading.IsSet()) { return; } if (size_sum.load() > max_mem) { g_Config.bCacheHiresTextures = false; OSD::AddMessage(StringFromFormat("Custom Textures prefetching after %.1f MB aborted, not enough RAM available", size_sum / (1024.0 * 1024.0)), 10000); return; } } u32 stoptime = Common::Timer::GetTimeMs(); OSD::AddMessage(StringFromFormat("Custom Textures loaded, %.1f MB in %.1f s", size_sum / (1024.0 * 1024.0), (stoptime - starttime) / 1000.0), 10000); }
void VideoBackendBase::InitializeShared() { memset(&g_main_cp_state, 0, sizeof(g_main_cp_state)); memset(&g_preprocess_cp_state, 0, sizeof(g_preprocess_cp_state)); memset(texMem, 0, TMEM_SIZE); // Do our OSD callbacks OSD::DoCallbacks(OSD::CallbackType::Initialization); // do not initialize again for the config window m_initialized = true; s_FifoShuttingDown.Clear(); memset((void*)&s_beginFieldArgs, 0, sizeof(s_beginFieldArgs)); m_invalid = false; frameCount = 0; CommandProcessor::Init(); Fifo::Init(); OpcodeDecoder::Init(); PixelEngine::Init(); BPInit(); VertexLoaderManager::Init(); IndexGenerator::Init(); VertexShaderManager::Init(); GeometryShaderManager::Init(); PixelShaderManager::Init(); g_Config.Load(File::GetUserPath(D_CONFIG_IDX) + "GFX.ini"); g_Config.GameIniLoad(); g_Config.UpdateProjectionHack(); g_Config.VerifyValidity(); UpdateActiveConfig(); // Notify the core that the video backend is ready Host_Message(WM_USER_CREATE); }
void HostDispatchJobs() { // WARNING: This should only run on the Host Thread. // NOTE: This function is potentially re-entrant. If a job calls // Core::Stop for instance then we'll enter this a second time. std::unique_lock<std::mutex> guard(s_host_jobs_lock); while (!s_host_jobs_queue.empty()) { HostJob job = std::move(s_host_jobs_queue.front()); s_host_jobs_queue.pop(); // NOTE: Memory ordering is important. The booting flag needs to be // checked first because the state transition is: // CORE_UNINITIALIZED: s_is_booting -> s_hardware_initialized // We need to check variables in the same order as the state // transition, otherwise we race and get transient failures. if (!job.run_after_stop && !s_is_booting.IsSet() && !IsRunning()) continue; guard.unlock(); job.job(); guard.lock(); } }
void HiresTexture::Update() { bool BuildMaterialMaps = g_ActiveConfig.bHiresMaterialMapsBuild; if (s_prefetcher.joinable()) { s_textureCacheAbortLoading.Set(); s_prefetcher.join(); } if (!g_ActiveConfig.bHiresTextures) { s_textureMap.clear(); s_textureCache.clear(); size_sum.store(0); return; } if (!g_ActiveConfig.bCacheHiresTextures) { s_textureCache.clear(); size_sum.store(0); } s_textureMap.clear(); const std::string& game_id = SConfig::GetInstance().GetGameID(); const std::string texture_directory = GetTextureDirectory(game_id); std::string ddscode(".dds"); std::string cddscode(".DDS"); std::vector<std::string> Extensions; Extensions.push_back(".png"); if (!BuildMaterialMaps) { Extensions.push_back(".dds"); } std::vector<std::string> filenames = Common::DoFileSearch({texture_directory}, Extensions, /*recursive*/ true); const std::string miptag = "mip"; for (const std::string& fileitem : filenames) { std::string filename; std::string Extension; SplitPath(fileitem, nullptr, &filename, &Extension); if (filename.substr(0, s_format_prefix.length()) != s_format_prefix) { // Discard wrong files continue; } size_t map_index = 0; size_t max_type = BuildMaterialMaps ? MapType::specular : MapType::normal; bool arbitrary_mips = false; for (size_t tag = 1; tag <= MapType::specular; tag++) { if (StringEndsWith(filename, s_maps_tags[tag])) { map_index = tag; filename = filename.substr(0, filename.size() - s_maps_tags[tag].size()); break; } } if (map_index > max_type) { continue; } if (BuildMaterialMaps && map_index == MapType::material) { continue; } else if (!BuildMaterialMaps && map_index == MapType::color) { const size_t arb_index = filename.rfind("_arb"); arbitrary_mips = arb_index != std::string::npos; if (arbitrary_mips) filename.erase(arb_index, 4); } const bool is_compressed = Extension.compare(ddscode) == 0 || Extension.compare(cddscode) == 0; hires_mip_level mip_level_detail(fileitem, Extension, is_compressed); u32 level = 0; size_t idx = filename.find_last_of('_'); std::string miplevel = filename.substr(idx + 1, std::string::npos); if (miplevel.substr(0, miptag.length()) == miptag) { sscanf(miplevel.substr(3, std::string::npos).c_str(), "%i", &level); filename = filename.substr(0, idx); } HiresTextureCache::iterator iter = s_textureMap.find(filename); u32 min_item_size = level + 1; if (iter == s_textureMap.end()) { HiresTextureCacheItem item(min_item_size); if (arbitrary_mips) { item.has_arbitrary_mips = true; } item.maps[map_index].resize(min_item_size); std::vector<hires_mip_level>& dst = item.maps[map_index]; dst[level] = mip_level_detail; s_textureMap.emplace(filename, item); } else { std::vector<hires_mip_level>& dst = iter->second.maps[map_index]; if (arbitrary_mips) { iter->second.has_arbitrary_mips = true; } if (dst.size() < min_item_size) { dst.resize(min_item_size); } dst[level] = mip_level_detail; } } if (g_ActiveConfig.bCacheHiresTextures && s_textureMap.size() > 0) { // remove cached but deleted textures auto iter = s_textureCache.begin(); while (iter != s_textureCache.end()) { if (s_textureMap.find(iter->first) == s_textureMap.end()) { size_sum.fetch_sub(iter->second->m_cached_data_size); iter = s_textureCache.erase(iter); } else { iter++; } } s_textureCacheAbortLoading.Clear(); s_prefetcher = std::thread(Prefetch); if (g_ActiveConfig.bWaitForCacheHiresTextures && s_prefetcher.joinable()) { s_prefetcher.join(); } } }
void HiresTexture::Prefetch() { Common::SetCurrentThreadName("Prefetcher"); const size_t total = s_textureMap.size(); size_t count = 0; size_t notification = 10; u32 starttime = Common::Timer::GetTimeMs(); for (const auto& entry : s_textureMap) { const std::string& base_filename = entry.first; std::unique_lock<std::mutex> lk(s_textureCacheMutex); auto iter = s_textureCache.find(base_filename); if (iter == s_textureCache.end()) { lk.unlock(); HiresTexture* ptr = Load(base_filename, [](size_t requested_size) { return new u8[requested_size]; }, true); lk.lock(); if (ptr != nullptr) { size_sum.fetch_add(ptr->m_cached_data_size); iter = s_textureCache.insert( iter, std::make_pair(base_filename, std::shared_ptr<HiresTexture>(ptr))); } } if (s_textureCacheAbortLoading.IsSet()) { if (g_ActiveConfig.bWaitForCacheHiresTextures) { Host_UpdateProgressDialog("", -1, -1); } return; } if (size_sum.load() > max_mem) { Config::SetCurrent(Config::GFX_HIRES_TEXTURES, false); OSD::AddMessage( StringFromFormat( "Custom Textures prefetching after %.1f MB aborted, not enough RAM available", size_sum / (1024.0 * 1024.0)), 10000); if (g_ActiveConfig.bWaitForCacheHiresTextures) { Host_UpdateProgressDialog("", -1, -1); } return; } count++; size_t percent = (count * 100) / total; if (percent >= notification) { if (g_ActiveConfig.bWaitForCacheHiresTextures) { Host_UpdateProgressDialog(GetStringT("Prefetching Custom Textures...").c_str(), static_cast<int>(count), static_cast<int>(total)); } else { OSD::AddMessage(StringFromFormat("Custom Textures prefetching %.1f MB %zu %% finished", size_sum / (1024.0 * 1024.0), percent), 2000); } notification += 10; } } if (g_ActiveConfig.bWaitForCacheHiresTextures) { Host_UpdateProgressDialog("", -1, -1); } u32 stoptime = Common::Timer::GetTimeMs(); OSD::AddMessage(StringFromFormat("Custom Textures loaded, %.1f MB in %.1f s", size_sum / (1024.0 * 1024.0), (stoptime - starttime) / 1000.0), 10000); }
static void StartDVDThread() { ASSERT(!s_dvd_thread.joinable()); s_dvd_thread_exiting.Clear(); s_dvd_thread = std::thread(DVDThread); }
void HiresTexture::Update() { s_check_native_format = false; s_check_new_format = false; if (s_prefetcher.joinable()) { s_textureCacheAbortLoading.Set(); s_prefetcher.join(); } if (!g_ActiveConfig.bHiresTextures) { s_textureMap.clear(); s_textureCache.clear(); size_sum.store(0); return; } if (!g_ActiveConfig.bCacheHiresTextures) { s_textureCache.clear(); size_sum.store(0); } s_textureMap.clear(); const std::string& gameCode = SConfig::GetInstance().m_strUniqueID; std::string szDir = StringFromFormat("%s%s", File::GetUserPath(D_HIRESTEXTURES_IDX).c_str(), gameCode.c_str()); std::string ddscode(".dds"); std::string cddscode(".DDS"); std::vector<std::string> Extensions = { ".png", ".dds" }; auto rFilenames = DoFileSearch(Extensions, { szDir }, /*recursive*/ true); const std::string code = StringFromFormat("%s_", gameCode.c_str()); const std::string miptag = "mip"; const std::string normaltag = ".nrm"; for (u32 i = 0; i < rFilenames.size(); i++) { std::string FileName; std::string Extension; SplitPath(rFilenames[i], nullptr, &FileName, &Extension); if (FileName.substr(0, code.length()) == code) { s_check_native_format = true; } else if (FileName.substr(0, s_format_prefix.length()) == s_format_prefix) { s_check_new_format = true; } else { // Discard wrong files continue; } const bool is_compressed = Extension.compare(ddscode) == 0 || Extension.compare(cddscode) == 0; const bool is_normal_map = hasEnding(FileName, normaltag); if (is_normal_map) { FileName = FileName.substr(0, FileName.size() - normaltag.size()); } hires_mip_level mip_level_detail(rFilenames[i], Extension, is_compressed); u32 level = 0; size_t idx = FileName.find_last_of('_'); std::string miplevel = FileName.substr(idx + 1, std::string::npos); if (miplevel.substr(0, miptag.length()) == miptag) { sscanf(miplevel.substr(3, std::string::npos).c_str(), "%i", &level); FileName = FileName.substr(0, idx); } HiresTextureCache::iterator iter = s_textureMap.find(FileName); u32 min_item_size = level + 1; if (iter == s_textureMap.end()) { HiresTextureCacheItem item(min_item_size); if (is_normal_map) { item.normal_map.resize(min_item_size); } std::vector<hires_mip_level> &dst = is_normal_map ? item.normal_map : item.color_map; dst[level] = mip_level_detail; s_textureMap.emplace(FileName, item); } else { std::vector<hires_mip_level> &dst = is_normal_map ? iter->second.normal_map : iter->second.color_map; if (dst.size() < min_item_size) { dst.resize(min_item_size); } dst[level] = mip_level_detail; } } if (g_ActiveConfig.bCacheHiresTextures && s_textureMap.size() > 0) { // remove cached but deleted textures auto iter = s_textureCache.begin(); while (iter != s_textureCache.end()) { if (s_textureMap.find(iter->first) == s_textureMap.end()) { size_sum.fetch_sub(iter->second->m_cached_data_size); iter = s_textureCache.erase(iter); } else { iter++; } } s_textureCacheAbortLoading.Clear(); s_prefetcher = std::thread(Prefetch); } }
namespace DVDThread { struct ReadRequest { bool copy_to_ram; u32 output_address; u64 dvd_offset; u32 length; DiscIO::Partition partition; // This determines which code DVDInterface will run to reply // to the emulated software. We can't use callbacks, // because function pointers can't be stored in savestates. DVDInterface::ReplyType reply_type; // IDs are used to uniquely identify a request. They must not be // identical to IDs of any other requests that currently exist, but // it's fine to re-use IDs of requests that have existed in the past. u64 id; // Only used for logging u64 time_started_ticks; u64 realtime_started_us; u64 realtime_done_us; }; using ReadResult = std::pair<ReadRequest, std::vector<u8>>; static void StartDVDThread(); static void StopDVDThread(); static void DVDThread(); static void WaitUntilIdle(); static void StartReadInternal(bool copy_to_ram, u32 output_address, u64 dvd_offset, u32 length, const DiscIO::Partition& partition, DVDInterface::ReplyType reply_type, s64 ticks_until_completion); static void FinishRead(u64 id, s64 cycles_late); static CoreTiming::EventType* s_finish_read; static u64 s_next_id = 0; static std::thread s_dvd_thread; static Common::Event s_request_queue_expanded; // Is set by CPU thread static Common::Event s_result_queue_expanded; // Is set by DVD thread static Common::Flag s_dvd_thread_exiting(false); // Is set by CPU thread static Common::SPSCQueue<ReadRequest, false> s_request_queue; static Common::SPSCQueue<ReadResult, false> s_result_queue; static std::map<u64, ReadResult> s_result_map; static std::unique_ptr<DiscIO::Volume> s_disc; void Start() { s_finish_read = CoreTiming::RegisterEvent("FinishReadDVDThread", FinishRead); s_request_queue_expanded.Reset(); s_result_queue_expanded.Reset(); s_request_queue.Clear(); s_result_queue.Clear(); // This is reset on every launch for determinism, but it doesn't matter // much, because this will never get exposed to the emulated game. s_next_id = 0; StartDVDThread(); } static void StartDVDThread() { ASSERT(!s_dvd_thread.joinable()); s_dvd_thread_exiting.Clear(); s_dvd_thread = std::thread(DVDThread); } void Stop() { StopDVDThread(); s_disc.reset(); } static void StopDVDThread() { ASSERT(s_dvd_thread.joinable()); // By setting s_DVD_thread_exiting, we ask the DVD thread to cleanly exit. // In case the request queue is empty, we need to set s_request_queue_expanded // so that the DVD thread will wake up and check s_DVD_thread_exiting. s_dvd_thread_exiting.Set(); s_request_queue_expanded.Set(); s_dvd_thread.join(); } void DoState(PointerWrap& p) { // By waiting for the DVD thread to be done working, we ensure // that s_request_queue will be empty and that the DVD thread // won't be touching anything while this function runs. WaitUntilIdle(); // Move all results from s_result_queue to s_result_map because // PointerWrap::Do supports std::map but not Common::SPSCQueue. // This won't affect the behavior of FinishRead. ReadResult result; while (s_result_queue.Pop(result)) s_result_map.emplace(result.first.id, std::move(result)); // Both queues are now empty, so we don't need to savestate them. p.Do(s_result_map); p.Do(s_next_id); // s_disc isn't savestated (because it points to files on the // local system). Instead, we check that the status of the disc // is the same as when the savestate was made. This won't catch // cases of having the wrong disc inserted, though. // TODO: Check the game ID, disc number, revision? bool had_disc = HasDisc(); p.Do(had_disc); if (had_disc != HasDisc()) { if (had_disc) PanicAlertT("An inserted disc was expected but not found."); else s_disc.reset(); } // TODO: Savestates can be smaller if the buffers of results aren't saved, // but instead get re-read from the disc when loading the savestate. // TODO: It would be possible to create a savestate faster by stopping // the DVD thread regardless of whether there are pending requests. // After loading a savestate, the debug log in FinishRead will report // screwed up times for requests that were submitted before the savestate // was made. Handling that properly may be more effort than it's worth. } void SetDisc(std::unique_ptr<DiscIO::Volume> disc) { WaitUntilIdle(); s_disc = std::move(disc); } bool HasDisc() { return s_disc != nullptr; } bool IsEncryptedAndHashed() { // IsEncryptedAndHashed is thread-safe, so calling WaitUntilIdle isn't necessary. return s_disc->IsEncryptedAndHashed(); } DiscIO::Platform GetDiscType() { // GetVolumeType is thread-safe, so calling WaitUntilIdle isn't necessary. return s_disc->GetVolumeType(); } u64 PartitionOffsetToRawOffset(u64 offset, const DiscIO::Partition& partition) { // PartitionOffsetToRawOffset is thread-safe, so calling WaitUntilIdle isn't necessary. return s_disc->PartitionOffsetToRawOffset(offset, partition); } IOS::ES::TMDReader GetTMD(const DiscIO::Partition& partition) { WaitUntilIdle(); return s_disc->GetTMD(partition); } IOS::ES::TicketReader GetTicket(const DiscIO::Partition& partition) { WaitUntilIdle(); return s_disc->GetTicket(partition); } bool IsInsertedDiscRunning() { if (!s_disc) return false; WaitUntilIdle(); return SConfig::GetInstance().GetGameID() == s_disc->GetGameID(); } bool UpdateRunningGameMetadata(const DiscIO::Partition& partition, std::optional<u64> title_id) { if (!s_disc) return false; WaitUntilIdle(); if (title_id) { const std::optional<u64> volume_title_id = s_disc->GetTitleID(partition); if (!volume_title_id || *volume_title_id != *title_id) return false; } SConfig::GetInstance().SetRunningGameMetadata(*s_disc, partition); return true; } void WaitUntilIdle() { ASSERT(Core::IsCPUThread()); while (!s_request_queue.Empty()) s_result_queue_expanded.Wait(); StopDVDThread(); StartDVDThread(); } void StartRead(u64 dvd_offset, u32 length, const DiscIO::Partition& partition, DVDInterface::ReplyType reply_type, s64 ticks_until_completion) { StartReadInternal(false, 0, dvd_offset, length, partition, reply_type, ticks_until_completion); } void StartReadToEmulatedRAM(u32 output_address, u64 dvd_offset, u32 length, const DiscIO::Partition& partition, DVDInterface::ReplyType reply_type, s64 ticks_until_completion) { StartReadInternal(true, output_address, dvd_offset, length, partition, reply_type, ticks_until_completion); } static void StartReadInternal(bool copy_to_ram, u32 output_address, u64 dvd_offset, u32 length, const DiscIO::Partition& partition, DVDInterface::ReplyType reply_type, s64 ticks_until_completion) { ASSERT(Core::IsCPUThread()); ReadRequest request; request.copy_to_ram = copy_to_ram; request.output_address = output_address; request.dvd_offset = dvd_offset; request.length = length; request.partition = partition; request.reply_type = reply_type; u64 id = s_next_id++; request.id = id; request.time_started_ticks = CoreTiming::GetTicks(); request.realtime_started_us = Common::Timer::GetTimeUs(); s_request_queue.Push(std::move(request)); s_request_queue_expanded.Set(); CoreTiming::ScheduleEvent(ticks_until_completion, s_finish_read, id); } static void FinishRead(u64 id, s64 cycles_late) { // We can't simply pop s_result_queue and always get the ReadResult // we want, because the DVD thread may add ReadResults to the queue // in a different order than we want to get them. What we do instead // is to pop the queue until we find the ReadResult we want (the one // whose ID matches userdata), which means we may end up popping // ReadResults that we don't want. We can't add those unwanted results // back to the queue, because the queue can only have one writer. // Instead, we add them to a map that only is used by the CPU thread. // When this function is called again later, it will check the map for // the wanted ReadResult before it starts searching through the queue. ReadResult result; auto it = s_result_map.find(id); if (it != s_result_map.end()) { result = std::move(it->second); s_result_map.erase(it); } else { while (true) { while (!s_result_queue.Pop(result)) s_result_queue_expanded.Wait(); if (result.first.id == id) break; else s_result_map.emplace(result.first.id, std::move(result)); } } // We have now obtained the right ReadResult. const ReadRequest& request = result.first; const std::vector<u8>& buffer = result.second; DEBUG_LOG(DVDINTERFACE, "Disc has been read. Real time: %" PRIu64 " us. " "Real time including delay: %" PRIu64 " us. " "Emulated time including delay: %" PRIu64 " us.", request.realtime_done_us - request.realtime_started_us, Common::Timer::GetTimeUs() - request.realtime_started_us, (CoreTiming::GetTicks() - request.time_started_ticks) / (SystemTimers::GetTicksPerSecond() / 1000000)); if (buffer.size() != request.length) { PanicAlertT("The disc could not be read (at 0x%" PRIx64 " - 0x%" PRIx64 ").", request.dvd_offset, request.dvd_offset + request.length); } else { if (request.copy_to_ram) Memory::CopyToEmu(request.output_address, buffer.data(), request.length); } // Notify the emulated software that the command has been executed DVDInterface::FinishExecutingCommand(request.reply_type, DVDInterface::INT_TCINT, cycles_late, buffer); } static void DVDThread() { Common::SetCurrentThreadName("DVD thread"); while (true) { s_request_queue_expanded.Wait(); if (s_dvd_thread_exiting.IsSet()) return; ReadRequest request; while (s_request_queue.Pop(request)) { FileMonitor::Log(*s_disc, request.partition, request.dvd_offset); std::vector<u8> buffer(request.length); if (!s_disc->Read(request.dvd_offset, request.length, buffer.data(), request.partition)) buffer.resize(0); request.realtime_done_us = Common::Timer::GetTimeUs(); s_result_queue.Push(ReadResult(std::move(request), std::move(buffer))); s_result_queue_expanded.Set(); if (s_dvd_thread_exiting.IsSet()) return; } } } } // namespace DVDThread
// Description: Main FIFO update loop // Purpose: Keep the Core HW updated about the CPU-GPU distance void RunGpuLoop() { AsyncRequests::GetInstance()->SetEnable(true); AsyncRequests::GetInstance()->SetPassthrough(false); s_gpu_mainloop.Run( [] { const SConfig& param = SConfig::GetInstance(); g_video_backend->PeekMessages(); // Do nothing while paused if (!s_emu_running_state.IsSet()) return; if (s_use_deterministic_gpu_thread) { AsyncRequests::GetInstance()->PullEvents(); // All the fifo/CP stuff is on the CPU. We just need to run the opcode decoder. u8* seen_ptr = s_video_buffer_seen_ptr; u8* write_ptr = s_video_buffer_write_ptr; // See comment in SyncGPU if (write_ptr > seen_ptr) { s_video_buffer_read_ptr = OpcodeDecoder::Run(DataReader(s_video_buffer_read_ptr, write_ptr), nullptr, false); s_video_buffer_seen_ptr = write_ptr; } } else { SCPFifoStruct& fifo = CommandProcessor::fifo; AsyncRequests::GetInstance()->PullEvents(); CommandProcessor::SetCPStatusFromGPU(); // check if we are able to run this buffer while (!CommandProcessor::IsInterruptWaiting() && fifo.bFF_GPReadEnable && fifo.CPReadWriteDistance && !AtBreakpoint()) { if (param.bSyncGPU && s_sync_ticks.load() < param.iSyncGpuMinDistance) break; u32 cyclesExecuted = 0; u32 readPtr = fifo.CPReadPointer; ReadDataFromFifo(readPtr); if (readPtr == fifo.CPEnd) readPtr = fifo.CPBase; else readPtr += 32; _assert_msg_(COMMANDPROCESSOR, (s32)fifo.CPReadWriteDistance - 32 >= 0, "Negative fifo.CPReadWriteDistance = %i in FIFO Loop !\nThat can produce " "instability in the game. Please report it.", fifo.CPReadWriteDistance - 32); u8* write_ptr = s_video_buffer_write_ptr; s_video_buffer_read_ptr = OpcodeDecoder::Run( DataReader(s_video_buffer_read_ptr, write_ptr), &cyclesExecuted, false); Common::AtomicStore(fifo.CPReadPointer, readPtr); Common::AtomicAdd(fifo.CPReadWriteDistance, -32); if ((write_ptr - s_video_buffer_read_ptr) == 0) Common::AtomicStore(fifo.SafeCPReadPointer, fifo.CPReadPointer); CommandProcessor::SetCPStatusFromGPU(); if (param.bSyncGPU) { cyclesExecuted = (int)(cyclesExecuted / param.fSyncGpuOverclock); int old = s_sync_ticks.fetch_sub(cyclesExecuted); if (old >= param.iSyncGpuMaxDistance && old - (int)cyclesExecuted < param.iSyncGpuMaxDistance) s_sync_wakeup_event.Set(); } // This call is pretty important in DualCore mode and must be called in the FIFO Loop. // If we don't, s_swapRequested or s_efbAccessRequested won't be set to false // leading the CPU thread to wait in Video_BeginField or Video_AccessEFB thus slowing // things down. AsyncRequests::GetInstance()->PullEvents(); } // fast skip remaining GPU time if fifo is empty if (s_sync_ticks.load() > 0) { int old = s_sync_ticks.exchange(0); if (old >= param.iSyncGpuMaxDistance) s_sync_wakeup_event.Set(); } // The fifo is empty and it's unlikely we will get any more work in the near future. // Make sure VertexManager finishes drawing any primitives it has stored in it's buffer. g_vertex_manager->Flush(); } }, 100); AsyncRequests::GetInstance()->SetEnable(false); AsyncRequests::GetInstance()->SetPassthrough(true); }
int main(int argc, char* argv[]) { auto parser = CommandLineParse::CreateParser(CommandLineParse::ParserOptions::OmitGUIOptions); optparse::Values& options = CommandLineParse::ParseArguments(parser.get(), argc, argv); std::vector<std::string> args = parser->args(); std::string boot_filename; if (options.is_set("exec")) { boot_filename = static_cast<const char*>(options.get("exec")); } else if (args.size()) { boot_filename = args.front(); args.erase(args.begin()); } else { parser->print_help(); return 0; } std::string user_directory; if (options.is_set("user")) { user_directory = static_cast<const char*>(options.get("user")); } platform = GetPlatform(); if (!platform) { fprintf(stderr, "No platform found\n"); return 1; } UICommon::SetUserDirectory(user_directory); UICommon::Init(); Core::SetOnStoppedCallback([]() { s_running.Clear(); }); platform->Init(); // Shut down cleanly on SIGINT and SIGTERM struct sigaction sa; sa.sa_handler = signal_handler; sigemptyset(&sa.sa_mask); sa.sa_flags = SA_RESETHAND; sigaction(SIGINT, &sa, nullptr); sigaction(SIGTERM, &sa, nullptr); DolphinAnalytics::Instance()->ReportDolphinStart("nogui"); if (!BootManager::BootCore(BootParameters::GenerateFromFile(boot_filename))) { fprintf(stderr, "Could not boot %s\n", boot_filename.c_str()); return 1; } while (!Core::IsRunning() && s_running.IsSet()) { Core::HostDispatchJobs(); updateMainFrameEvent.Wait(); } if (s_running.IsSet()) platform->MainLoop(); Core::Stop(); Core::Shutdown(); platform->Shutdown(); UICommon::Shutdown(); delete platform; return 0; }
void MainLoop() override { bool fullscreen = SConfig::GetInstance().bFullscreen; int last_window_width = SConfig::GetInstance().iRenderWindowWidth; int last_window_height = SConfig::GetInstance().iRenderWindowHeight; if (fullscreen) { rendererIsFullscreen = X11Utils::ToggleFullscreen(dpy, win); #if defined(HAVE_XRANDR) && HAVE_XRANDR XRRConfig->ToggleDisplayMode(True); #endif } // The actual loop while (s_running.IsSet()) { if (s_shutdown_requested.TestAndClear()) { const auto ios = IOS::HLE::GetIOS(); const auto stm = ios ? ios->GetDeviceByName("/dev/stm/eventhook") : nullptr; if (!s_tried_graceful_shutdown.IsSet() && stm && std::static_pointer_cast<IOS::HLE::Device::STMEventHook>(stm)->HasHookInstalled()) { ProcessorInterface::PowerButton_Tap(); s_tried_graceful_shutdown.Set(); } else { s_running.Clear(); } } XEvent event; KeySym key; for (int num_events = XPending(dpy); num_events > 0; num_events--) { XNextEvent(dpy, &event); switch (event.type) { case KeyPress: key = XLookupKeysym((XKeyEvent*)&event, 0); if (key == XK_Escape) { if (Core::GetState() == Core::State::Running) { if (SConfig::GetInstance().bHideCursor) XUndefineCursor(dpy, win); Core::SetState(Core::State::Paused); } else { if (SConfig::GetInstance().bHideCursor) XDefineCursor(dpy, win, blankCursor); Core::SetState(Core::State::Running); } } else if ((key == XK_Return) && (event.xkey.state & Mod1Mask)) { fullscreen = !fullscreen; X11Utils::ToggleFullscreen(dpy, win); #if defined(HAVE_XRANDR) && HAVE_XRANDR XRRConfig->ToggleDisplayMode(fullscreen); #endif } else if (key >= XK_F1 && key <= XK_F8) { int slot_number = key - XK_F1 + 1; if (event.xkey.state & ShiftMask) State::Save(slot_number); else State::Load(slot_number); } else if (key == XK_F9) Core::SaveScreenShot(); else if (key == XK_F11) State::LoadLastSaved(); else if (key == XK_F12) { if (event.xkey.state & ShiftMask) State::UndoLoadState(); else State::UndoSaveState(); } break; case FocusIn: rendererHasFocus = true; if (SConfig::GetInstance().bHideCursor && Core::GetState() != Core::State::Paused) XDefineCursor(dpy, win, blankCursor); break; case FocusOut: rendererHasFocus = false; if (SConfig::GetInstance().bHideCursor) XUndefineCursor(dpy, win); break; case ClientMessage: if ((unsigned long)event.xclient.data.l[0] == XInternAtom(dpy, "WM_DELETE_WINDOW", False)) s_shutdown_requested.Set(); break; case ConfigureNotify: { if (last_window_width != event.xconfigure.width || last_window_height != event.xconfigure.height) { last_window_width = event.xconfigure.width; last_window_height = event.xconfigure.height; // We call Renderer::ChangeSurface here to indicate the size has changed, // but pass the same window handle. This is needed for the Vulkan backend, // otherwise it cannot tell that the window has been resized on some drivers. if (g_renderer) g_renderer->ChangeSurface(s_window_handle); } } break; } } if (!fullscreen) { Window winDummy; unsigned int borderDummy, depthDummy; XGetGeometry(dpy, win, &winDummy, &SConfig::GetInstance().iRenderWindowXPos, &SConfig::GetInstance().iRenderWindowYPos, (unsigned int*)&SConfig::GetInstance().iRenderWindowWidth, (unsigned int*)&SConfig::GetInstance().iRenderWindowHeight, &borderDummy, &depthDummy); rendererIsFullscreen = false; } Core::HostDispatchJobs(); usleep(100000); } }
namespace Fifo { static constexpr u32 FIFO_SIZE = 2 * 1024 * 1024; static constexpr int GPU_TIME_SLOT_SIZE = 1000; static Common::BlockingLoop s_gpu_mainloop; static Common::Flag s_emu_running_state; // Most of this array is unlikely to be faulted in... static u8 s_fifo_aux_data[FIFO_SIZE]; static u8* s_fifo_aux_write_ptr; static u8* s_fifo_aux_read_ptr; // This could be in SConfig, but it depends on multiple settings // and can change at runtime. static bool s_use_deterministic_gpu_thread; static CoreTiming::EventType* s_event_sync_gpu; // STATE_TO_SAVE static u8* s_video_buffer; static u8* s_video_buffer_read_ptr; static std::atomic<u8*> s_video_buffer_write_ptr; static std::atomic<u8*> s_video_buffer_seen_ptr; static u8* s_video_buffer_pp_read_ptr; // The read_ptr is always owned by the GPU thread. In normal mode, so is the // write_ptr, despite it being atomic. In deterministic GPU thread mode, // things get a bit more complicated: // - The seen_ptr is written by the GPU thread, and points to what it's already // processed as much of as possible - in the case of a partial command which // caused it to stop, not the same as the read ptr. It's written by the GPU, // under the lock, and updating the cond. // - The write_ptr is written by the CPU thread after it copies data from the // FIFO. Maybe someday it will be under the lock. For now, because RunGpuLoop // polls, it's just atomic. // - The pp_read_ptr is the CPU preprocessing version of the read_ptr. static std::atomic<int> s_sync_ticks; static bool s_syncing_suspended; static Common::Event s_sync_wakeup_event; void DoState(PointerWrap& p) { p.DoArray(s_video_buffer, FIFO_SIZE); u8* write_ptr = s_video_buffer_write_ptr; p.DoPointer(write_ptr, s_video_buffer); s_video_buffer_write_ptr = write_ptr; p.DoPointer(s_video_buffer_read_ptr, s_video_buffer); if (p.mode == PointerWrap::MODE_READ && s_use_deterministic_gpu_thread) { // We're good and paused, right? s_video_buffer_seen_ptr = s_video_buffer_pp_read_ptr = s_video_buffer_read_ptr; } p.Do(s_sync_ticks); p.Do(s_syncing_suspended); } void PauseAndLock(bool doLock, bool unpauseOnUnlock) { if (doLock) { SyncGPU(SyncGPUReason::Other); EmulatorState(false); const SConfig& param = SConfig::GetInstance(); if (!param.bCPUThread || s_use_deterministic_gpu_thread) return; s_gpu_mainloop.WaitYield(std::chrono::milliseconds(100), Host_YieldToUI); } else { if (unpauseOnUnlock) EmulatorState(true); } } void Init() { // Padded so that SIMD overreads in the vertex loader are safe s_video_buffer = static_cast<u8*>(Common::AllocateMemoryPages(FIFO_SIZE + 4)); ResetVideoBuffer(); if (SConfig::GetInstance().bCPUThread) s_gpu_mainloop.Prepare(); s_sync_ticks.store(0); } void Shutdown() { if (s_gpu_mainloop.IsRunning()) PanicAlert("Fifo shutting down while active"); Common::FreeMemoryPages(s_video_buffer, FIFO_SIZE + 4); s_video_buffer = nullptr; s_video_buffer_write_ptr = nullptr; s_video_buffer_pp_read_ptr = nullptr; s_video_buffer_read_ptr = nullptr; s_video_buffer_seen_ptr = nullptr; s_fifo_aux_write_ptr = nullptr; s_fifo_aux_read_ptr = nullptr; } // May be executed from any thread, even the graphics thread. // Created to allow for self shutdown. void ExitGpuLoop() { // This should break the wait loop in CPU thread CommandProcessor::fifo.bFF_GPReadEnable = false; FlushGpu(); // Terminate GPU thread loop s_emu_running_state.Set(); s_gpu_mainloop.Stop(false); } void EmulatorState(bool running) { s_emu_running_state.Set(running); if (running) s_gpu_mainloop.Wakeup(); else s_gpu_mainloop.AllowSleep(); } void SyncGPU(SyncGPUReason reason, bool may_move_read_ptr) { if (s_use_deterministic_gpu_thread) { s_gpu_mainloop.Wait(); if (!s_gpu_mainloop.IsRunning()) return; // Opportunistically reset FIFOs so we don't wrap around. if (may_move_read_ptr && s_fifo_aux_write_ptr != s_fifo_aux_read_ptr) PanicAlert("aux fifo not synced (%p, %p)", s_fifo_aux_write_ptr, s_fifo_aux_read_ptr); memmove(s_fifo_aux_data, s_fifo_aux_read_ptr, s_fifo_aux_write_ptr - s_fifo_aux_read_ptr); s_fifo_aux_write_ptr -= (s_fifo_aux_read_ptr - s_fifo_aux_data); s_fifo_aux_read_ptr = s_fifo_aux_data; if (may_move_read_ptr) { u8* write_ptr = s_video_buffer_write_ptr; // what's left over in the buffer size_t size = write_ptr - s_video_buffer_pp_read_ptr; memmove(s_video_buffer, s_video_buffer_pp_read_ptr, size); // This change always decreases the pointers. We write seen_ptr // after write_ptr here, and read it before in RunGpuLoop, so // 'write_ptr > seen_ptr' there cannot become spuriously true. s_video_buffer_write_ptr = write_ptr = s_video_buffer + size; s_video_buffer_pp_read_ptr = s_video_buffer; s_video_buffer_read_ptr = s_video_buffer; s_video_buffer_seen_ptr = write_ptr; } } } void PushFifoAuxBuffer(void* ptr, size_t size) { if (size > (size_t)(s_fifo_aux_data + FIFO_SIZE - s_fifo_aux_write_ptr)) { SyncGPU(SyncGPUReason::AuxSpace, /* may_move_read_ptr */ false); if (!s_gpu_mainloop.IsRunning()) { // GPU is shutting down return; } if (size > (size_t)(s_fifo_aux_data + FIFO_SIZE - s_fifo_aux_write_ptr)) { // That will sync us up to the last 32 bytes, so this short region // of FIFO would have to point to a 2MB display list or something. PanicAlert("absurdly large aux buffer"); return; } } memcpy(s_fifo_aux_write_ptr, ptr, size); s_fifo_aux_write_ptr += size; } void* PopFifoAuxBuffer(size_t size) { void* ret = s_fifo_aux_read_ptr; s_fifo_aux_read_ptr += size; return ret; } // Description: RunGpuLoop() sends data through this function. static void ReadDataFromFifo(u32 readPtr) { size_t len = 32; if (len > (size_t)(s_video_buffer + FIFO_SIZE - s_video_buffer_write_ptr)) { size_t existing_len = s_video_buffer_write_ptr - s_video_buffer_read_ptr; if (len > (size_t)(FIFO_SIZE - existing_len)) { PanicAlert("FIFO out of bounds (existing %zu + new %zu > %lu)", existing_len, len, (unsigned long)FIFO_SIZE); return; } memmove(s_video_buffer, s_video_buffer_read_ptr, existing_len); s_video_buffer_write_ptr = s_video_buffer + existing_len; s_video_buffer_read_ptr = s_video_buffer; } // Copy new video instructions to s_video_buffer for future use in rendering the new picture Memory::CopyFromEmu(s_video_buffer_write_ptr, readPtr, len); s_video_buffer_write_ptr += len; } // The deterministic_gpu_thread version. static void ReadDataFromFifoOnCPU(u32 readPtr) { size_t len = 32; u8* write_ptr = s_video_buffer_write_ptr; if (len > (size_t)(s_video_buffer + FIFO_SIZE - write_ptr)) { // We can't wrap around while the GPU is working on the data. // This should be very rare due to the reset in SyncGPU. SyncGPU(SyncGPUReason::Wraparound); if (!s_gpu_mainloop.IsRunning()) { // GPU is shutting down, so the next asserts may fail return; } if (s_video_buffer_pp_read_ptr != s_video_buffer_read_ptr) { PanicAlert("desynced read pointers"); return; } write_ptr = s_video_buffer_write_ptr; size_t existing_len = write_ptr - s_video_buffer_pp_read_ptr; if (len > (size_t)(FIFO_SIZE - existing_len)) { PanicAlert("FIFO out of bounds (existing %zu + new %zu > %lu)", existing_len, len, (unsigned long)FIFO_SIZE); return; } } Memory::CopyFromEmu(s_video_buffer_write_ptr, readPtr, len); s_video_buffer_pp_read_ptr = OpcodeDecoder::Run<true>( DataReader(s_video_buffer_pp_read_ptr, write_ptr + len), nullptr, false); // This would have to be locked if the GPU thread didn't spin. s_video_buffer_write_ptr = write_ptr + len; } void ResetVideoBuffer() { s_video_buffer_read_ptr = s_video_buffer; s_video_buffer_write_ptr = s_video_buffer; s_video_buffer_seen_ptr = s_video_buffer; s_video_buffer_pp_read_ptr = s_video_buffer; s_fifo_aux_write_ptr = s_fifo_aux_data; s_fifo_aux_read_ptr = s_fifo_aux_data; } // Description: Main FIFO update loop // Purpose: Keep the Core HW updated about the CPU-GPU distance void RunGpuLoop() { AsyncRequests::GetInstance()->SetEnable(true); AsyncRequests::GetInstance()->SetPassthrough(false); s_gpu_mainloop.Run( [] { const SConfig& param = SConfig::GetInstance(); g_video_backend->PeekMessages(); // Do nothing while paused if (!s_emu_running_state.IsSet()) return; if (s_use_deterministic_gpu_thread) { AsyncRequests::GetInstance()->PullEvents(); // All the fifo/CP stuff is on the CPU. We just need to run the opcode decoder. u8* seen_ptr = s_video_buffer_seen_ptr; u8* write_ptr = s_video_buffer_write_ptr; // See comment in SyncGPU if (write_ptr > seen_ptr) { s_video_buffer_read_ptr = OpcodeDecoder::Run(DataReader(s_video_buffer_read_ptr, write_ptr), nullptr, false); s_video_buffer_seen_ptr = write_ptr; } } else { SCPFifoStruct& fifo = CommandProcessor::fifo; AsyncRequests::GetInstance()->PullEvents(); CommandProcessor::SetCPStatusFromGPU(); // check if we are able to run this buffer while (!CommandProcessor::IsInterruptWaiting() && fifo.bFF_GPReadEnable && fifo.CPReadWriteDistance && !AtBreakpoint()) { if (param.bSyncGPU && s_sync_ticks.load() < param.iSyncGpuMinDistance) break; u32 cyclesExecuted = 0; u32 readPtr = fifo.CPReadPointer; ReadDataFromFifo(readPtr); if (readPtr == fifo.CPEnd) readPtr = fifo.CPBase; else readPtr += 32; _assert_msg_(COMMANDPROCESSOR, (s32)fifo.CPReadWriteDistance - 32 >= 0, "Negative fifo.CPReadWriteDistance = %i in FIFO Loop !\nThat can produce " "instability in the game. Please report it.", fifo.CPReadWriteDistance - 32); u8* write_ptr = s_video_buffer_write_ptr; s_video_buffer_read_ptr = OpcodeDecoder::Run( DataReader(s_video_buffer_read_ptr, write_ptr), &cyclesExecuted, false); Common::AtomicStore(fifo.CPReadPointer, readPtr); Common::AtomicAdd(fifo.CPReadWriteDistance, -32); if ((write_ptr - s_video_buffer_read_ptr) == 0) Common::AtomicStore(fifo.SafeCPReadPointer, fifo.CPReadPointer); CommandProcessor::SetCPStatusFromGPU(); if (param.bSyncGPU) { cyclesExecuted = (int)(cyclesExecuted / param.fSyncGpuOverclock); int old = s_sync_ticks.fetch_sub(cyclesExecuted); if (old >= param.iSyncGpuMaxDistance && old - (int)cyclesExecuted < param.iSyncGpuMaxDistance) s_sync_wakeup_event.Set(); } // This call is pretty important in DualCore mode and must be called in the FIFO Loop. // If we don't, s_swapRequested or s_efbAccessRequested won't be set to false // leading the CPU thread to wait in Video_BeginField or Video_AccessEFB thus slowing // things down. AsyncRequests::GetInstance()->PullEvents(); } // fast skip remaining GPU time if fifo is empty if (s_sync_ticks.load() > 0) { int old = s_sync_ticks.exchange(0); if (old >= param.iSyncGpuMaxDistance) s_sync_wakeup_event.Set(); } // The fifo is empty and it's unlikely we will get any more work in the near future. // Make sure VertexManager finishes drawing any primitives it has stored in it's buffer. g_vertex_manager->Flush(); } }, 100); AsyncRequests::GetInstance()->SetEnable(false); AsyncRequests::GetInstance()->SetPassthrough(true); } void FlushGpu() { const SConfig& param = SConfig::GetInstance(); if (!param.bCPUThread || s_use_deterministic_gpu_thread) return; s_gpu_mainloop.Wait(); } void GpuMaySleep() { s_gpu_mainloop.AllowSleep(); } bool AtBreakpoint() { SCPFifoStruct& fifo = CommandProcessor::fifo; return fifo.bFF_BPEnable && (fifo.CPReadPointer == fifo.CPBreakpoint); } void RunGpu() { const SConfig& param = SConfig::GetInstance(); // wake up GPU thread if (param.bCPUThread && !s_use_deterministic_gpu_thread) { s_gpu_mainloop.Wakeup(); } // if the sync GPU callback is suspended, wake it up. if (!SConfig::GetInstance().bCPUThread || s_use_deterministic_gpu_thread || SConfig::GetInstance().bSyncGPU) { if (s_syncing_suspended) { s_syncing_suspended = false; CoreTiming::ScheduleEvent(GPU_TIME_SLOT_SIZE, s_event_sync_gpu, GPU_TIME_SLOT_SIZE); } } } static int RunGpuOnCpu(int ticks) { SCPFifoStruct& fifo = CommandProcessor::fifo; bool reset_simd_state = false; int available_ticks = int(ticks * SConfig::GetInstance().fSyncGpuOverclock) + s_sync_ticks.load(); while (fifo.bFF_GPReadEnable && fifo.CPReadWriteDistance && !AtBreakpoint() && available_ticks >= 0) { if (s_use_deterministic_gpu_thread) { ReadDataFromFifoOnCPU(fifo.CPReadPointer); s_gpu_mainloop.Wakeup(); } else { if (!reset_simd_state) { FPURoundMode::SaveSIMDState(); FPURoundMode::LoadDefaultSIMDState(); reset_simd_state = true; } ReadDataFromFifo(fifo.CPReadPointer); u32 cycles = 0; s_video_buffer_read_ptr = OpcodeDecoder::Run( DataReader(s_video_buffer_read_ptr, s_video_buffer_write_ptr), &cycles, false); available_ticks -= cycles; } if (fifo.CPReadPointer == fifo.CPEnd) fifo.CPReadPointer = fifo.CPBase; else fifo.CPReadPointer += 32; fifo.CPReadWriteDistance -= 32; } CommandProcessor::SetCPStatusFromGPU(); if (reset_simd_state) { FPURoundMode::LoadSIMDState(); } // Discard all available ticks as there is nothing to do any more. s_sync_ticks.store(std::min(available_ticks, 0)); // If the GPU is idle, drop the handler. if (available_ticks >= 0) return -1; // Always wait at least for GPU_TIME_SLOT_SIZE cycles. return -available_ticks + GPU_TIME_SLOT_SIZE; } void UpdateWantDeterminism(bool want) { // We are paused (or not running at all yet), so // it should be safe to change this. const SConfig& param = SConfig::GetInstance(); bool gpu_thread = false; switch (param.m_GPUDeterminismMode) { case GPU_DETERMINISM_AUTO: gpu_thread = want; // Hack: For now movies are an exception to this being on (but not // to wanting determinism in general). Once vertex arrays are // fixed, there should be no reason to want this off for movies by // default, so this can be removed. if (!NetPlay::IsNetPlayRunning()) gpu_thread = false; break; case GPU_DETERMINISM_NONE: gpu_thread = false; break; case GPU_DETERMINISM_FAKE_COMPLETION: gpu_thread = true; break; } gpu_thread = gpu_thread && param.bCPUThread; if (s_use_deterministic_gpu_thread != gpu_thread) { s_use_deterministic_gpu_thread = gpu_thread; if (gpu_thread) { // These haven't been updated in non-deterministic mode. s_video_buffer_seen_ptr = s_video_buffer_pp_read_ptr = s_video_buffer_read_ptr; CopyPreprocessCPStateFromMain(); VertexLoaderManager::MarkAllDirty(); } } } bool UseDeterministicGPUThread() { return s_use_deterministic_gpu_thread; } /* This function checks the emulated CPU - GPU distance and may wake up the GPU, * or block the CPU if required. It should be called by the CPU thread regularly. * @ticks The gone emulated CPU time. * @return A good time to call WaitForGpuThread() next. */ static int WaitForGpuThread(int ticks) { const SConfig& param = SConfig::GetInstance(); int old = s_sync_ticks.fetch_add(ticks); int now = old + ticks; // GPU is idle, so stop polling. if (old >= 0 && s_gpu_mainloop.IsDone()) return -1; // Wakeup GPU if (old < param.iSyncGpuMinDistance && now >= param.iSyncGpuMinDistance) RunGpu(); // If the GPU is still sleeping, wait for a longer time if (now < param.iSyncGpuMinDistance) return GPU_TIME_SLOT_SIZE + param.iSyncGpuMinDistance - now; // Wait for GPU if (now >= param.iSyncGpuMaxDistance) s_sync_wakeup_event.Wait(); return GPU_TIME_SLOT_SIZE; } static void SyncGPUCallback(u64 ticks, s64 cyclesLate) { ticks += cyclesLate; int next = -1; if (!SConfig::GetInstance().bCPUThread || s_use_deterministic_gpu_thread) { next = RunGpuOnCpu((int)ticks); } else if (SConfig::GetInstance().bSyncGPU) { next = WaitForGpuThread((int)ticks); } s_syncing_suspended = next < 0; if (!s_syncing_suspended) CoreTiming::ScheduleEvent(next, s_event_sync_gpu, next); } // Initialize GPU - CPU thread syncing, this gives us a deterministic way to start the GPU thread. void Prepare() { s_event_sync_gpu = CoreTiming::RegisterEvent("SyncGPUCallback", SyncGPUCallback); s_syncing_suspended = true; } }