double dist(const common::sfv_t& p1, const common::sfv_t& p2) { double ret = 0; common::sfv_t::const_iterator it1 = p1.begin(); common::sfv_t::const_iterator it2 = p2.begin(); while (it1 != p1.end() && it2 != p2.end()) { int cmp = strcmp(it1->first.c_str(), it2->first.c_str()); if (cmp < 0) { ret += it1->second * it1->second; ++it1; } else if (cmp > 0) { ret += it2->second * it2->second; ++it2; } else { ret += (it1->second - it2->second) * (it1->second - it2->second); ++it1; ++it2; } } for (; it1 != p1.end(); ++it1) { ret += std::pow(it1->second, 2); } for (; it2 != p2.end(); ++it2) { ret += std::pow(it2->second, 2); } return std::sqrt(ret); }
float recommender_base::calc_similality(common::sfv_t& q1, common::sfv_t& q2) { float q1_norm = calc_l2norm(q1); float q2_norm = calc_l2norm(q2); if (q1_norm == 0.f || q2_norm == 0.f) { return 0.f; } sort(q1.begin(), q1.end()); sort(q2.begin(), q2.end()); size_t i1 = 0; size_t i2 = 0; float ret = 0.f; while (i1 < q1.size() && i2 < q2.size()) { const string& ind1 = q1[i1].first; const string& ind2 = q2[i2].first; if (ind1 < ind2) { ++i1; } else if (ind1 > ind2) { ++i2; } else { ret += q1[i1].second * q2[i2].second; ++i1; ++i2; } } return ret / q1_norm / q2_norm; }
void scalar_mul_and_add( const common::sfv_t& left, float s, common::sfv_t& right) { common::sfv_t::const_iterator l = left.begin(); common::sfv_t::iterator r = right.begin(); while (l != left.end() && r != right.end()) { if (l->first < r->first) { std::pair<std::string, float> p = *l; p.second *= s; r = right.insert(r, p); ++l; } else if (l->first > r->first) { ++r; } else { r->second += l->second * s; ++l; ++r; } } for (; l != left.end(); ++l) { std::pair<std::string, float> p = *l; p.second *= s; right.push_back(p); } }
common::sfv_t add(const common::sfv_t& p1, const common::sfv_t& p2) { common::sfv_t ret; common::sfv_t::const_iterator it1 = p1.begin(); common::sfv_t::const_iterator it2 = p2.begin(); while (it1 != p1.end() && it2 != p2.end()) { if ((*it1).first < (*it2).first) { ret.push_back((*it1)); ++it1; } else if ((*it1).first > (*it2).first) { ret.push_back((*it2)); ++it2; } else { ret.push_back(make_pair((*it1).first, (*it1).second + (*it2).second)); ++it1; ++it2; } } for (; it1 != p1.end(); ++it1) { ret.push_back((*it1)); } for (; it2 != p2.end(); ++it2) { ret.push_back((*it2)); } return ret; }
void weight_manager::get_weight(common::sfv_t& fv) const { for (common::sfv_t::iterator it = fv.begin(); it != fv.end(); ++it) { double global_weight = get_global_weight(it->first); it->second = static_cast<float>(it->second * global_weight); } fv.erase(remove_if(fv.begin(), fv.end(), is_zero()), fv.end()); }
void arow::update( const common::sfv_t& sfv, float alpha, float beta, const std::string& pos_label, const std::string& neg_label) { storage::storage_base* sto = get_storage(); for (common::sfv_t::const_iterator it = sfv.begin(); it != sfv.end(); ++it) { const string& feature = it->first; float val = it->second; storage::feature_val2_t ret; sto->get2(feature, ret); storage::val2_t pos_val(0.f, 1.f); storage::val2_t neg_val(0.f, 1.f); ClassifierUtil::get_two(ret, pos_label, neg_label, pos_val, neg_val); sto->set2( feature, pos_label, storage::val2_t( pos_val.v1 + alpha * pos_val.v2 * val, pos_val.v2 - beta * pos_val.v2 * pos_val.v2 * val * val)); if (neg_label != "") { sto->set2( feature, neg_label, storage::val2_t( neg_val.v1 - alpha * neg_val.v2 * val, neg_val.v2 - beta * neg_val.v2 * neg_val.v2 * val * val)); } } }
void local_storage::inp(const common::sfv_t& sfv, map_feature_val1_t& ret) const { ret.clear(); scoped_rlock lk(mutex_); // Use uin64_t map instead of string map as hash function for string is slow jubatus::util::data::unordered_map<uint64_t, double> ret_id; for (common::sfv_t::const_iterator it = sfv.begin(); it != sfv.end(); ++it) { const string& feature = it->first; const double val = it->second; id_features3_t::const_iterator it2 = tbl_.find(feature); if (it2 == tbl_.end()) { continue; } const id_feature_val3_t& m = it2->second; for (id_feature_val3_t::const_iterator it3 = m.begin(); it3 != m.end(); ++it3) { ret_id[it3->first] += it3->second.v1 * val; } } std::vector<std::string> labels = class2id_.get_all_id2key(); for (size_t i = 0; i < labels.size(); ++i) { const std::string& label = labels[i]; uint64_t id = class2id_.get_id_const(label); if (id == common::key_manager::NOTFOUND || ret_id.count(id) == 0) { ret[label] = 0.0; } else { ret[label] = ret_id[id]; } } }
void local_storage::inp(const common::sfv_t& sfv, map_feature_val1_t& ret) const { ret.clear(); std::vector<float> ret_id(class2id_.size()); for (common::sfv_t::const_iterator it = sfv.begin(); it != sfv.end(); ++it) { const string& feature = it->first; const float val = it->second; id_features3_t::const_iterator it2 = tbl_.find(feature); if (it2 == tbl_.end()) { continue; } const id_feature_val3_t& m = it2->second; for (id_feature_val3_t::const_iterator it3 = m.begin(); it3 != m.end(); ++it3) { ret_id[it3->first] += it3->second.v1 * val; } } for (size_t i = 0; i < ret_id.size(); ++i) { if (ret_id[i] == 0.f) { continue; } ret[class2id_.get_key(i)] = ret_id[i]; } }
double sum2(const common::sfv_t& p) { double s = 0; for (common::sfv_t::const_iterator it = p.begin(); it != p.end(); ++it) { s += std::pow((*it).second, 2); } return s; }
common::sfv_t scalar_dot(const common::sfv_t& p, double s) { common::sfv_t ret; for (common::sfv_t::const_iterator it = p.begin(); it != p.end(); ++it) { ret.push_back(make_pair((*it).first, (*it).second*s)); } return ret; }
eigen_svec_t eigen_feature_mapper::convertc(const common::sfv_t& src) const { eigen_svec_t ret(d_); for (common::sfv_t::const_iterator it = src.begin(); it != src.end(); ++it) { insertc(*it, ret); } return ret; }
void confidence_weighted::update( const common::sfv_t& sfv, float step_width, const string& pos_label, const string& neg_label) { util::concurrent::scoped_wlock lk(storage_->get_lock()); for (common::sfv_t::const_iterator it = sfv.begin(); it != sfv.end(); ++it) { const string& feature = it->first; float val = it->second; storage::feature_val2_t val2; storage_->get2_nolock(feature, val2); storage::val2_t pos_val(0.f, 1.f); storage::val2_t neg_val(0.f, 1.f); ClassifierUtil::get_two(val2, pos_label, neg_label, pos_val, neg_val); const float C = config_.regularization_weight; float covar_pos_step = 2.f * step_width * val * val * C; float covar_neg_step = 2.f * step_width * val * val * C; storage_->set2_nolock( feature, pos_label, storage::val2_t(pos_val.v1 + step_width * pos_val.v2 * val, 1.f / (1.f / pos_val.v2 + covar_pos_step))); if (neg_label != "") { storage_->set2_nolock( feature, neg_label, storage::val2_t(neg_val.v1 - step_width * neg_val.v2 * val, 1.f / (1.f / neg_val.v2 + covar_neg_step))); } } touch(pos_label); }
void storage_base::inp(const common::sfv_t& sfv, map_feature_val1_t& ret) const { ret.clear(); for (common::sfv_t::const_iterator it = sfv.begin(); it != sfv.end(); ++it) { const string& feature = it->first; const float val = it->second; feature_val1_t fval1; get(feature, fval1); for (feature_val1_t::const_iterator it2 = fval1.begin(); it2 != fval1.end(); ++it2) { ret[it2->first] += it2->second * val; } } }
void local_storage::bulk_update( const common::sfv_t& sfv, float step_width, const string& inc_class, const string& dec_class) { uint64_t inc_id = class2id_.get_id(inc_class); typedef common::sfv_t::const_iterator iter_t; if (dec_class != "") { uint64_t dec_id = class2id_.get_id(dec_class); for (iter_t it = sfv.begin(); it != sfv.end(); ++it) { float val = it->second * step_width; id_feature_val3_t& feature_row = tbl_[it->first]; feature_row[inc_id].v1 += val; feature_row[dec_id].v1 -= val; } } else { for (iter_t it = sfv.begin(); it != sfv.end(); ++it) { float val = it->second * step_width; id_feature_val3_t& feature_row = tbl_[it->first]; feature_row[inc_id].v1 += val; } } }
void normal_herd::update( const common::sfv_t& sfv, float margin, float variance, const string& pos_label, const string& neg_label) { storage::storage_base* sto = get_storage(); for (common::sfv_t::const_iterator it = sfv.begin(); it != sfv.end(); ++it) { const string& feature = it->first; float val = it->second; storage::feature_val2_t ret; sto->get2(feature, ret); storage::val2_t pos_val(0.f, 1.f); storage::val2_t neg_val(0.f, 1.f); ClassifierUtil::get_two(ret, pos_label, neg_label, pos_val, neg_val); float val_covariance_pos = val * pos_val.v2; float val_covariance_neg = val * neg_val.v2; const float C = config_.C; sto->set2( feature, pos_label, storage::val2_t( pos_val.v1 + (1.f - margin) * val_covariance_pos / (val_covariance_pos * val + 1.f / C), 1.f / ((1.f / pos_val.v2) + (2 * C + C * C * variance) * val * val))); if (neg_label != "") { sto->set2( feature, neg_label, storage::val2_t( neg_val.v1 - (1.f - margin) * val_covariance_neg / (val_covariance_neg * val + 1.f / C), 1.f / ((1.f / neg_val.v2) + (2 * C + C * C * variance) * val * val))); } } }
void arow::update( const common::sfv_t& sfv, double alpha, double beta) { util::concurrent::scoped_wlock lk(storage_->get_lock()); for (common::sfv_t::const_iterator it = sfv.begin(); it != sfv.end(); ++it) { const std::string& feature = it->first; double val = it->second; storage::feature_val2_t val2; storage_->get2_nolock(feature, val2); storage::val2_t current_val(0.0, 1.0); if (val2.size() > 0) { current_val = val2[0].second; } storage_->set2_nolock( feature, "+", storage::val2_t(current_val.v1 + alpha * current_val.v2 * val, current_val.v2 - beta * current_val.v2 * current_val.v2* val * val)); } }
void storage_base::bulk_update( const common::sfv_t& sfv, float step_width, const std::string& inc_class, const std::string& dec_class) { for (common::sfv_t::const_iterator it = sfv.begin(); it != sfv.end(); ++it) { const string& feature = it->first; float val = it->second; if (dec_class != "") { update(feature, inc_class, dec_class, step_width * val); } else { feature_val1_t ret; get(feature, ret); float pos_val = 0.f; for (size_t i = 0; i < ret.size(); ++i) { if (ret[i].first == inc_class) { pos_val = ret[i].second; break; } } set(feature, inc_class, pos_val + step_width * val); } } }