Пример #1
0
  /** Find the best total assignment - can be expensive */
  Scheduler::sharedValues Scheduler::optimalAssignment() const {
    DiscreteBayesNet::shared_ptr chordal = eliminate();

    if (ISDEBUG("Scheduler::optimalAssignment")) {
      DiscreteBayesNet::const_iterator it = chordal->end()-1;
      const Student & student = students_.front();
      cout << endl;
      (*it)->print(student.name_);
    }

    gttic(my_optimize);
    sharedValues mpe = chordal->optimize();
    gttoc(my_optimize);
    return mpe;
  }
Пример #2
0
/* ************************************************************************* */
TEST(DiscreteBayesNet, Asia)
{
  DiscreteBayesNet asia;
//  DiscreteKey A("Asia"), S("Smoking"), T("Tuberculosis"), L("LungCancer"), B(
//      "Bronchitis"), E("Either"), X("XRay"), D("Dyspnoea");
  DiscreteKey A(0,2), S(4,2), T(3,2), L(6,2), B(7,2), E(5,2), X(2,2), D(1,2);

  // TODO: make a version that doesn't use the parser
  asia.add(A % "99/1");
  asia.add(S % "50/50");

  asia.add(T | A = "99/1 95/5");
  asia.add(L | S = "99/1 90/10");
  asia.add(B | S = "70/30 40/60");

  asia.add((E | T, L) = "F T T T");

  asia.add(X | E = "95/5 2/98");
  // next lines are same as asia.add((D | E, B) = "9/1 2/8 3/7 1/9");
  DiscreteConditional::shared_ptr actual =
      boost::make_shared<DiscreteConditional>((D | E, B) = "9/1 2/8 3/7 1/9");
  asia.push_back(actual);
  //  GTSAM_PRINT(asia);

  // Convert to factor graph
  DiscreteFactorGraph fg(asia);
//    GTSAM_PRINT(fg);
  LONGS_EQUAL(3,fg.back()->size());
  Potentials::ADT expected(B & D & E, "0.9 0.3 0.1 0.7 0.2 0.1 0.8 0.9");
  CHECK(assert_equal(expected,(Potentials::ADT)*actual));

  // Create solver and eliminate
  Ordering ordering;
  ordering += Key(0),Key(1),Key(2),Key(3),Key(4),Key(5),Key(6),Key(7);
  DiscreteBayesNet::shared_ptr chordal = fg.eliminateSequential(ordering);
//    GTSAM_PRINT(*chordal);
  DiscreteConditional expected2(B % "11/9");
  CHECK(assert_equal(expected2,*chordal->back()));

  // solve
  DiscreteFactor::sharedValues actualMPE = chordal->optimize();
  DiscreteFactor::Values expectedMPE;
  insert(expectedMPE)(A.first, 0)(D.first, 0)(X.first, 0)(T.first, 0)(S.first,
      0)(E.first, 0)(L.first, 0)(B.first, 0);
  EXPECT(assert_equal(expectedMPE, *actualMPE));

  // add evidence, we were in Asia and we have Dispnoea
  fg.add(A, "0 1");
  fg.add(D, "0 1");
//  fg.product().dot("fg");

  // solve again, now with evidence
  DiscreteBayesNet::shared_ptr chordal2 = fg.eliminateSequential(ordering);
//  GTSAM_PRINT(*chordal2);
  DiscreteFactor::sharedValues actualMPE2 = chordal2->optimize();
  DiscreteFactor::Values expectedMPE2;
  insert(expectedMPE2)(A.first, 1)(D.first, 1)(X.first, 0)(T.first, 0)(S.first,
      1)(E.first, 0)(L.first, 0)(B.first, 1);
  EXPECT(assert_equal(expectedMPE2, *actualMPE2));

  // now sample from it
  DiscreteFactor::Values expectedSample;
  SETDEBUG("DiscreteConditional::sample", false);
  insert(expectedSample)(A.first, 1)(D.first, 1)(X.first, 0)(T.first, 0)(
      S.first, 1)(E.first, 0)(L.first, 0)(B.first, 1);
  DiscreteFactor::sharedValues actualSample = chordal2->sample();
  EXPECT(assert_equal(expectedSample, *actualSample));
}