void do_work(const sensor_msgs::ImageConstPtr& msg, const std::string input_frame_from_msg)
  {
    // Work on the image.
    try
    {
      // Convert the image into something opencv can handle.
      cv::Mat frame = cv_bridge::toCvShare(msg, msg->encoding)->image;

      // Messages
      opencv_apps::CircleArrayStamped circles_msg;
      circles_msg.header = msg->header;

      // Do the work
      std::vector<cv::Rect> faces;
      cv::Mat src_gray, edges;

      if ( frame.channels() > 1 ) {
        cv::cvtColor( frame, src_gray, cv::COLOR_BGR2GRAY );
      } else {
        src_gray = frame;
      }

      // Reduce the noise so we avoid false circle detection
      cv::GaussianBlur( src_gray, src_gray, cv::Size(9, 9), 2, 2 );

      // create the main window, and attach the trackbars
      if( debug_view_) {
        cv::namedWindow( window_name_, cv::WINDOW_AUTOSIZE );

        cv::createTrackbar("Canny Threshold", window_name_, &canny_threshold_, max_canny_threshold_, trackbarCallback);
        cv::createTrackbar("Accumulator Threshold", window_name_, &accumulator_threshold_, max_accumulator_threshold_, trackbarCallback);

        if (need_config_update_) {
          config_.canny_threshold = canny_threshold_;
          config_.accumulator_threshold = accumulator_threshold_;
          srv.updateConfig(config_);
          need_config_update_ = false;
        }
      }

      // those paramaters cannot be =0
      // so we must check here
      canny_threshold_ = std::max(canny_threshold_, 1);
      accumulator_threshold_ = std::max(accumulator_threshold_, 1);

      //runs the detection, and update the display
      // will hold the results of the detection
      std::vector<cv::Vec3f> circles;
      // runs the actual detection
      cv::HoughCircles( src_gray, circles, CV_HOUGH_GRADIENT, 1, src_gray.rows/8, canny_threshold_, accumulator_threshold_, 0, 0 );


      // clone the colour, input image for displaying purposes
      for( size_t i = 0; i < circles.size(); i++ )
      {
        cv::Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
        int radius = cvRound(circles[i][2]);
        // circle center
        circle( frame, center, 3, cv::Scalar(0,255,0), -1, 8, 0 );
        // circle outline
        circle( frame, center, radius, cv::Scalar(0,0,255), 3, 8, 0 );

        opencv_apps::Circle circle_msg;
        circle_msg.center.x = center.x;
        circle_msg.center.y = center.y;
        circle_msg.radius = radius;
        circles_msg.circles.push_back(circle_msg);
      }

      // shows the results
      if( debug_view_) {
        cv::imshow( window_name_, frame );
        int c = cv::waitKey(1);
      }

      // Publish the image.
      sensor_msgs::Image::Ptr out_img = cv_bridge::CvImage(msg->header, msg->encoding,frame).toImageMsg();
      img_pub_.publish(out_img);
      msg_pub_.publish(circles_msg);
    }
    catch (cv::Exception &e)
    {
      NODELET_ERROR("Image processing error: %s %s %s %i", e.err.c_str(), e.func.c_str(), e.file.c_str(), e.line);
    }

    prev_stamp_ = msg->header.stamp;
  }
  void do_work(const sensor_msgs::ImageConstPtr& msg, const std::string input_frame_from_msg)
  {
    // Work on the image.
    try
    {
      // Convert the image into something opencv can handle.
      cv::Mat frame = cv_bridge::toCvShare(msg, msg->encoding)->image;

      // Messages
      opencv_apps::ContourArrayStamped contours_msg;
      contours_msg.header = msg->header;

      // Do the work
      cv::Mat src_gray;

      /// Convert it to gray
      cv::cvtColor( frame, src_gray, cv::COLOR_RGB2GRAY );
      cv::GaussianBlur( src_gray, src_gray, cv::Size(3,3), 0, 0, cv::BORDER_DEFAULT );
      
      /// Create window
      if( debug_view_) {
        cv::namedWindow( window_name_, cv::WINDOW_AUTOSIZE );
      }
      
      cv::Mat canny_output;
      int max_thresh = 255;
      std::vector<std::vector<cv::Point> > contours;
      std::vector<cv::Vec4i> hierarchy;
      cv::RNG rng(12345);

      /// Reduce noise with a kernel 3x3
      cv::blur( src_gray, canny_output, cv::Size(3,3) );

      /// Canny detector
      cv::Canny( canny_output, canny_output, low_threshold_, low_threshold_*2, 3 );

      /// Find contours
      cv::findContours( canny_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, cv::Point(0, 0) );

      /// Draw contours
      cv::Mat drawing = cv::Mat::zeros( canny_output.size(), CV_8UC3 );
      for( size_t i = 0; i< contours.size(); i++ )
      {
        cv::Scalar color = cv::Scalar( rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255) );
        cv::drawContours( drawing, contours, (int)i, color, 2, 8, hierarchy, 0, cv::Point() );
        
        opencv_apps::Contour contour_msg;
        for ( size_t j = 0; j < contours[i].size(); j++ ) {
          opencv_apps::Point2D point_msg;
          point_msg.x = contours[i][j].x;
          point_msg.y = contours[i][j].y;
          contour_msg.points.push_back(point_msg);
        }
        contours_msg.contours.push_back(contour_msg);
      }

      /// Create a Trackbar for user to enter threshold
      if( debug_view_) {
        if (need_config_update_) {
          config_.canny_low_threshold = low_threshold_;
          srv.updateConfig(config_);
          need_config_update_ = false;
        }
        cv::createTrackbar( "Canny thresh:", window_name_, &low_threshold_, max_thresh, trackbarCallback);

        cv::imshow( window_name_, drawing );
        int c = cv::waitKey(1);
      }

      // Publish the image.
      sensor_msgs::Image::Ptr out_img = cv_bridge::CvImage(msg->header, sensor_msgs::image_encodings::BGR8, drawing).toImageMsg();
      img_pub_.publish(out_img);
      msg_pub_.publish(contours_msg);
    }
    catch (cv::Exception &e)
    {
      NODELET_ERROR("Image processing error: %s %s %s %i", e.err.c_str(), e.func.c_str(), e.file.c_str(), e.line);
    }

    prev_stamp_ = msg->header.stamp;
  }
Пример #3
0
  void do_work(const sensor_msgs::ImageConstPtr& msg, const std::string input_frame_from_msg)
  {
    // Work on the image.
    try
    {
      // Convert the image into something opencv can handle.
      cv::Mat frame = cv_bridge::toCvShare(msg, msg->encoding)->image;

      // Messages
      opencv_apps::FlowArrayStamped flows_msg;
      flows_msg.header = msg->header;

      if( debug_view_) {
        cv::namedWindow( window_name_, cv::WINDOW_AUTOSIZE );
        if (need_config_update_) {
          srv.updateConfig(config_);
          need_config_update_ = false;
        }
      }

      // Do the work
      if ( frame.channels() > 1 ) {
        cv::cvtColor( frame, gray, cv::COLOR_BGR2GRAY );
      } else {
        frame.copyTo(gray);
      }
      if( prevgray.data )
      {
        cv::calcOpticalFlowFarneback(prevgray, gray, flow, 0.5, 3, 15, 3, 5, 1.2, 0);
        cv::cvtColor(prevgray, cflow, cv::COLOR_GRAY2BGR);
        //drawOptFlowMap(flow, cflow, 16, 1.5, Scalar(0, 255, 0));
        int step = 16;
        cv::Scalar color = cv::Scalar(0, 255, 0);
        for(int y = 0; y < cflow.rows; y += step)
          for(int x = 0; x < cflow.cols; x += step)
        {
          const cv::Point2f& fxy = flow.at<cv::Point2f>(y, x);
          cv::line(cflow, cv::Point(x,y), cv::Point(cvRound(x+fxy.x), cvRound(y+fxy.y)),
                   color);
          cv::circle(cflow, cv::Point(x,y), 2, color, -1);

          opencv_apps::Flow flow_msg;
          opencv_apps::Point2D point_msg;
          opencv_apps::Point2D velocity_msg;
          point_msg.x = x;
          point_msg.y = y;
          velocity_msg.x = fxy.x;
          velocity_msg.y = fxy.y;
          flow_msg.point = point_msg;
          flow_msg.velocity = velocity_msg;
          flows_msg.flow.push_back(flow_msg);
        }
      }

      std::swap(prevgray, gray);

      //-- Show what you got
      if( debug_view_) {
        cv::imshow( window_name_, cflow );
        int c = cv::waitKey(1);
      }


      // Publish the image.
      sensor_msgs::Image::Ptr out_img = cv_bridge::CvImage(msg->header, "bgr8", cflow).toImageMsg();
      img_pub_.publish(out_img);
      msg_pub_.publish(flows_msg);
    }
    catch (cv::Exception &e)
    {
      NODELET_ERROR("Image processing error: %s %s %s %i", e.err.c_str(), e.func.c_str(), e.file.c_str(), e.line);
    }

    prev_stamp_ = msg->header.stamp;
  }
Пример #4
0
	void onEnableController(const std_msgs::Bool::ConstPtr& msg) {
		setEnabled(msg->data);
		current_cfg.enable = msg->data;
		reconfigure_server.updateConfig(current_cfg);
	}
Пример #5
0
  void do_work(const sensor_msgs::ImageConstPtr& msg, const std::string input_frame_from_msg)
  {
    // Work on the image.
    try
    {
      // Convert the image into something opencv can handle.
      cv::Mat frame = cv_bridge::toCvShare(msg, msg->encoding)->image;

      // Messages
      opencv_apps::RotatedRectArrayStamped rects_msg, ellipses_msg;
      rects_msg.header = msg->header;
      ellipses_msg.header = msg->header;

      // Do the work
      cv::Mat src_gray;

      /// Convert image to gray and blur it
      if ( frame.channels() > 1 ) {
        cv::cvtColor( frame, src_gray, cv::COLOR_RGB2GRAY );
      } else {
        src_gray = frame;
      }
      cv::blur( src_gray, src_gray, cv::Size(3,3) );

      /// Create window
      if( debug_view_) {
        cv::namedWindow( window_name_, cv::WINDOW_AUTOSIZE );
      }

      cv::Mat threshold_output;
      int max_thresh = 255;
      std::vector<std::vector<cv::Point> > contours;
      std::vector<cv::Vec4i> hierarchy;
      cv::RNG rng(12345);

      /// Detect edges using Threshold
      cv::threshold( src_gray, threshold_output, threshold_, 255, cv::THRESH_BINARY );

      /// Find contours
      cv::findContours( threshold_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, cv::Point(0, 0) );

      /// Find the rotated rectangles and ellipses for each contour
      std::vector<cv::RotatedRect> minRect( contours.size() );
      std::vector<cv::RotatedRect> minEllipse( contours.size() );

      for( size_t i = 0; i < contours.size(); i++ )
      { minRect[i] = cv::minAreaRect( cv::Mat(contours[i]) );
        if( contours[i].size() > 5 )
        { minEllipse[i] = cv::fitEllipse( cv::Mat(contours[i]) ); }
      }

      /// Draw contours + rotated rects + ellipses
      cv::Mat drawing = cv::Mat::zeros( threshold_output.size(), CV_8UC3 );
      for( size_t i = 0; i< contours.size(); i++ )
      {
        cv::Scalar color = cv::Scalar( rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255) );
        // contour
        cv::drawContours( drawing, contours, (int)i, color, 1, 8, std::vector<cv::Vec4i>(), 0, cv::Point() );
        // ellipse
        cv::ellipse( drawing, minEllipse[i], color, 2, 8 );
        // rotated rectangle
        cv::Point2f rect_points[4]; minRect[i].points( rect_points );
        for( int j = 0; j < 4; j++ )
          cv::line( drawing, rect_points[j], rect_points[(j+1)%4], color, 1, 8 );

        opencv_apps::RotatedRect rect_msg;
        opencv_apps::Point2D rect_center;
        opencv_apps::Size rect_size;
        rect_center.x = minRect[i].center.x;
        rect_center.y = minRect[i].center.y;
        rect_size.width = minRect[i].size.width;
        rect_size.height = minRect[i].size.height;
        rect_msg.center = rect_center;
        rect_msg.size = rect_size;
        rect_msg.angle = minRect[i].angle;
        opencv_apps::RotatedRect ellipse_msg;
        opencv_apps::Point2D ellipse_center;
        opencv_apps::Size ellipse_size;
        ellipse_center.x = minEllipse[i].center.x;
        ellipse_center.y = minEllipse[i].center.y;
        ellipse_size.width = minEllipse[i].size.width;
        ellipse_size.height = minEllipse[i].size.height;
        ellipse_msg.center = ellipse_center;
        ellipse_msg.size = ellipse_size;
        ellipse_msg.angle = minEllipse[i].angle;

        rects_msg.rects.push_back(rect_msg);
        ellipses_msg.rects.push_back(ellipse_msg);
      }

      /// Create a Trackbar for user to enter threshold
      if( debug_view_) {
        if (need_config_update_) {
          config_.threshold = threshold_;
          srv.updateConfig(config_);
          need_config_update_ = false;
        }
        cv::createTrackbar( "Threshold:", window_name_, &threshold_, max_thresh, trackbarCallback);

        cv::imshow( window_name_, drawing );
        int c = cv::waitKey(1);
      }

      // Publish the image.
      sensor_msgs::Image::Ptr out_img = cv_bridge::CvImage(msg->header, sensor_msgs::image_encodings::BGR8, drawing).toImageMsg();
      img_pub_.publish(out_img);
      rects_pub_.publish(rects_msg);
      ellipses_pub_.publish(ellipses_msg);
    }
    catch (cv::Exception &e)
    {
      NODELET_ERROR("Image processing error: %s %s %s %i", e.err.c_str(), e.func.c_str(), e.file.c_str(), e.line);
    }

    prev_stamp_ = msg->header.stamp;
  }
Пример #6
0
  void do_work(const sensor_msgs::ImageConstPtr& msg, const std::string input_frame_from_msg)
  {
    // Work on the image.
    try
    {
      // Convert the image into something opencv can handle.
      cv::Mat frame = cv_bridge::toCvShare(msg, msg->encoding)->image;

      // Messages
      opencv_apps::ContourArrayStamped contours_msg;
      contours_msg.header = msg->header;

      // Do the work
      cv::Mat src_gray;

      /// Convert image to gray and blur it
      if ( frame.channels() > 1 ) {
        cv::cvtColor( frame, src_gray, cv::COLOR_RGB2GRAY );
      } else {
        src_gray = frame;
      }
      cv::blur( src_gray, src_gray, cv::Size(3,3) );

      /// Create window
      if( debug_view_) {
        cv::namedWindow( window_name_, cv::WINDOW_AUTOSIZE );
      }

      cv::Mat threshold_output;
      int max_thresh = 255;
      std::vector<std::vector<cv::Point> > contours;
      std::vector<cv::Vec4i> hierarchy;
      cv::RNG rng(12345);

      /// Detect edges using Threshold
      cv::threshold( src_gray, threshold_output, threshold_, 255, cv::THRESH_BINARY );

      /// Find contours
      cv::findContours( threshold_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, cv::Point(0, 0) );

      /// Find the convex hull object for each contour
      std::vector<std::vector<cv::Point> >hull( contours.size() );
      for( size_t i = 0; i < contours.size(); i++ )
      {   cv::convexHull( cv::Mat(contours[i]), hull[i], false ); }

      /// Draw contours + hull results
      cv::Mat drawing = cv::Mat::zeros( threshold_output.size(), CV_8UC3 );
      for( size_t i = 0; i< contours.size(); i++ )
      {
        cv::Scalar color = cv::Scalar( rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255) );
        cv::drawContours( drawing, contours, (int)i, color, 1, 8, std::vector<cv::Vec4i>(), 0, cv::Point() );
        cv::drawContours( drawing, hull, (int)i, color, 4, 8, std::vector<cv::Vec4i>(), 0, cv::Point() );

        opencv_apps::Contour contour_msg;
        for ( size_t j = 0; j < hull[i].size(); j++ ) {
          opencv_apps::Point2D point_msg;
          point_msg.x = hull[i][j].x;
          point_msg.y = hull[i][j].y;
          contour_msg.points.push_back(point_msg);
        }
        contours_msg.contours.push_back(contour_msg);
      }

      /// Create a Trackbar for user to enter threshold
      if( debug_view_) {
        if (need_config_update_) {
          config_.threshold = threshold_;
          srv.updateConfig(config_);
          need_config_update_ = false;
        }
        cv::createTrackbar( "Threshold:", window_name_, &threshold_, max_thresh, trackbarCallback);

        cv::imshow( window_name_, drawing );
        int c = cv::waitKey(1);
      }

      // Publish the image.
      sensor_msgs::Image::Ptr out_img = cv_bridge::CvImage(msg->header, sensor_msgs::image_encodings::BGR8, drawing).toImageMsg();
      img_pub_.publish(out_img);
      msg_pub_.publish(contours_msg);
    }
    catch (cv::Exception &e)
    {
      NODELET_ERROR("Image processing error: %s %s %s %i", e.err.c_str(), e.func.c_str(), e.file.c_str(), e.line);
    }

    prev_stamp_ = msg->header.stamp;
  }
Пример #7
0
    void do_work(const sensor_msgs::ImageConstPtr& msg, const std::string input_frame_from_msg)
    {
        // Work on the image.
        try
        {
            // Convert the image into something opencv can handle.
            cv::Mat frame = cv_bridge::toCvShare(msg, msg->encoding)->image;

            // Messages
            opencv_apps::LineArrayStamped lines_msg;
            lines_msg.header = msg->header;

            // Do the work
            std::vector<cv::Rect> faces;
            cv::Mat src_gray, edges;

            if ( frame.channels() > 1 ) {
                cv::cvtColor( frame, src_gray, cv::COLOR_BGR2GRAY );
            } else {
                src_gray = frame;
            }
            /// Apply Canny edge detector
            Canny( src_gray, edges, 50, 200, 3 );

            if( debug_view_) {
                /// Create Trackbars for Thresholds
                char thresh_label[50];
                sprintf( thresh_label, "Thres: %d + input", min_threshold_ );

                cv::namedWindow( window_name_, cv::WINDOW_AUTOSIZE );
                cv::createTrackbar( thresh_label, window_name_, &threshold_, max_threshold_, trackbarCallback);
                if (need_config_update_) {
                    config_.threshold = threshold_;
                    srv.updateConfig(config_);
                    need_config_update_ = false;
                }
            }

            /// Initialize
            cv::cvtColor( edges, frame, cv::COLOR_GRAY2BGR );

            switch (config_.hough_type) {
            case hough_lines::HoughLines_Standard_Hough_Transform:
            {
                std::vector<cv::Vec2f> s_lines;

                /// 1. Use Standard Hough Transform
                cv::HoughLines( edges, s_lines, 1, CV_PI/180, min_threshold_ + threshold_, 0, 0 );

                /// Show the result
                for( size_t i = 0; i < s_lines.size(); i++ )
                {
                    float r = s_lines[i][0], t = s_lines[i][1];
                    double cos_t = cos(t), sin_t = sin(t);
                    double x0 = r*cos_t, y0 = r*sin_t;
                    double alpha = 1000;

                    cv::Point pt1( cvRound(x0 + alpha*(-sin_t)), cvRound(y0 + alpha*cos_t) );
                    cv::Point pt2( cvRound(x0 - alpha*(-sin_t)), cvRound(y0 - alpha*cos_t) );
#ifndef CV_VERSION_EPOCH
                    cv::line( frame, pt1, pt2, cv::Scalar(255,0,0), 3, cv::LINE_AA);
#else
                    cv::line( frame, pt1, pt2, cv::Scalar(255,0,0), 3, CV_AA);
#endif
                    opencv_apps::Line line_msg;
                    line_msg.pt1.x = pt1.x;
                    line_msg.pt1.y = pt1.y;
                    line_msg.pt2.x = pt2.x;
                    line_msg.pt2.y = pt2.y;
                    lines_msg.lines.push_back(line_msg);
                }

                break;
            }
            case hough_lines::HoughLines_Probabilistic_Hough_Transform:
            default:
            {
                std::vector<cv::Vec4i> p_lines;

                /// 2. Use Probabilistic Hough Transform
                cv::HoughLinesP( edges, p_lines, 1, CV_PI/180, min_threshold_ + threshold_, 30, 10 );

                /// Show the result
                for( size_t i = 0; i < p_lines.size(); i++ )
                {
                    cv::Vec4i l = p_lines[i];
#ifndef CV_VERSION_EPOCH
                    cv::line( frame, cv::Point(l[0], l[1]), cv::Point(l[2], l[3]), cv::Scalar(255,0,0), 3, cv::LINE_AA);
#else
                    cv::line( frame, cv::Point(l[0], l[1]), cv::Point(l[2], l[3]), cv::Scalar(255,0,0), 3, CV_AA);
#endif
                    opencv_apps::Line line_msg;
                    line_msg.pt1.x = l[0];
                    line_msg.pt1.y = l[1];
                    line_msg.pt2.x = l[2];
                    line_msg.pt2.y = l[3];
                    lines_msg.lines.push_back(line_msg);
                }

                break;
            }
            }

            //-- Show what you got
            if( debug_view_) {
                cv::imshow( window_name_, frame );
                int c = cv::waitKey(1);
            }

            // Publish the image.
            sensor_msgs::Image::Ptr out_img = cv_bridge::CvImage(msg->header, msg->encoding,frame).toImageMsg();
            img_pub_.publish(out_img);
            msg_pub_.publish(lines_msg);
        }
        catch (cv::Exception &e)
        {
            NODELET_ERROR("Image processing error: %s %s %s %i", e.err.c_str(), e.func.c_str(), e.file.c_str(), e.line);
        }

        prev_stamp_ = msg->header.stamp;
    }