int
main (int argc, char** argv)
{
  if (argc < 2)
  {
    std::cerr << "Error: Please specify a PCD file (rosrun cob_3d_features profile_ne test.pcd)." << std::endl;
    return -1;
  }
  PointCloud<PointXYZ>::Ptr p (new PointCloud<PointXYZ>);
  PointCloud<Normal>::Ptr n (new PointCloud<Normal>);
  PointCloud<InterestPoint>::Ptr ip (new PointCloud<InterestPoint>);
  pcl::PointCloud<pcl::PointNormal> p_n;
  PrecisionStopWatch t;
  std::string file_ = argv[1];
  PCDReader r;
  if (r.read (file_, *p) == -1)
    return -1;

  Eigen::Vector3f normal;
  determinePlaneNormal (p, normal);
  //std::cout << normal << std::endl;

  cob_3d_features::OrganizedNormalEstimation<PointXYZ, Normal, PointLabel> ne;
  ne.setPixelSearchRadius (8, 2, 2);
  //ne.setSkipDistantPointThreshold(8);
  ne.setInputCloud (p);
  PointCloud<PointLabel>::Ptr labels (new PointCloud<PointLabel>);
  ne.setOutputLabels (labels);
  t.precisionStart ();
  ne.compute (*n);
  std::cout << t.precisionStop () << "s\t for organized normal estimation" << std::endl;

  cob_3d_features::OrganizedNormalEstimationOMP<PointXYZ, Normal, PointLabel> ne_omp;
  ne_omp.setPixelSearchRadius (8, 2, 2);
  //ne.setSkipDistantPointThreshold(8);
  ne_omp.setInputCloud (p);
  //PointCloud<PointLabel>::Ptr labels(new PointCloud<PointLabel>);
  ne_omp.setOutputLabels (labels);
  t.precisionStart ();
  ne_omp.compute (*n);
  std::cout << t.precisionStop () << "s\t for organized normal estimation (OMP)" << std::endl;
  concatenateFields (*p, *n, p_n);
  io::savePCDFileASCII ("normals_organized.pcd", p_n);

  double good_thr = 0.97;
  unsigned int ctr = 0, nan_ctr = 0;
  double d_sum = 0;
  for (unsigned int i = 0; i < p->size (); i++)
  {
    if (pcl_isnan(n->points[i].normal[0]))
    {
      nan_ctr++;
      continue;
    }
    double d = normal.dot (n->points[i].getNormalVector3fMap ());
    d_sum += fabs (1 - fabs (d));
    if (fabs (d) > good_thr)
      ctr++;
  }
  std::cout << "Average error: " << d_sum / p->size () << std::endl;
  std::cout << "Ratio of good normals: " << (double)ctr / p->size () << std::endl;
  std::cout << "Invalid normals: " << nan_ctr << std::endl;

  IntegralImageNormalEstimation<PointXYZ, Normal> ne2;
  ne2.setNormalEstimationMethod (ne2.COVARIANCE_MATRIX);
  ne2.setMaxDepthChangeFactor (0.02f);
  ne2.setNormalSmoothingSize (10.0f);
  ne2.setDepthDependentSmoothing (true);
  ne2.setInputCloud (p);
  t.precisionStart ();
  ne2.compute (*n);
  std::cout << t.precisionStop () << "s\t for integral image normal estimation" << std::endl;
  concatenateFields (*p, *n, p_n);
  io::savePCDFileASCII ("normals_integral.pcd", p_n);

  ctr = 0;
  nan_ctr = 0;
  d_sum = 0;
  for (unsigned int i = 0; i < p->size (); i++)
  {
    if (pcl_isnan(n->points[i].normal[0]))
    {
      nan_ctr++;
      continue;
    }
    double d = normal.dot (n->points[i].getNormalVector3fMap ());
    d_sum += fabs (1 - fabs (d));
    if (fabs (d) > good_thr)
      ctr++;
  }
  std::cout << "Average error: " << d_sum / p->size () << std::endl;
  std::cout << "Ratio of good normals: " << (double)ctr / p->size () << std::endl;
  std::cout << "Invalid normals: " << nan_ctr << std::endl;

  NormalEstimationOMP<PointXYZ, Normal> ne3;
  ne3.setInputCloud (p);
  ne3.setNumberOfThreads (4);
  ne3.setKSearch (256);
  //ne3.setRadiusSearch(0.01);
  t.precisionStart ();
  ne3.compute (*n);
  std::cout << t.precisionStop () << "s\t for vanilla normal estimation" << std::endl;
  concatenateFields (*p, *n, p_n);
  io::savePCDFileASCII ("normals_vanilla.pcd", p_n);

  ctr = 0;
  nan_ctr = 0;
  d_sum = 0;
  for (unsigned int i = 0; i < p->size (); i++)
  {
    if (pcl_isnan(n->points[i].normal[0]))
    {
      nan_ctr++;
      continue;
    }
    double d = normal.dot (n->points[i].getNormalVector3fMap ());
    d_sum += fabs (1 - fabs (d));
    if (fabs (d) > good_thr)
      ctr++;
  }
  std::cout << "Average error: " << d_sum / p->size () << std::endl;
  std::cout << "Ratio of good normals: " << (double)ctr / p->size () << std::endl;
  std::cout << "Invalid normals: " << nan_ctr << std::endl;

  return 0;
}
Пример #2
0
int test_eigen(int argc, char *argv[])
{
	int rc = 0;
	warnx("testing eigen");

	{
		Eigen::Vector2f v;
		Eigen::Vector2f v1(1.0f, 2.0f);
		Eigen::Vector2f v2(1.0f, -1.0f);
		float data[2] = {1.0f, 2.0f};
		TEST_OP("Constructor Vector2f()", Eigen::Vector2f v3);
		TEST_OP_VERIFY("Constructor Vector2f(Vector2f)", Eigen::Vector2f v3(v1), v3.isApprox(v1));
		TEST_OP_VERIFY("Constructor Vector2f(float[])", Eigen::Vector2f v3(data), v3[0] == data[0] && v3[1] == data[1]);
		TEST_OP_VERIFY("Constructor Vector2f(float, float)", Eigen::Vector2f v3(1.0f, 2.0f), v3(0) == 1.0f && v3(1) == 2.0f);
		TEST_OP_VERIFY("Vector2f = Vector2f", v = v1, v.isApprox(v1));
		VERIFY_OP("Vector2f + Vector2f", v = v + v1, v.isApprox(v1 + v1));
		VERIFY_OP("Vector2f - Vector2f", v = v - v1, v.isApprox(v1));
		VERIFY_OP("Vector2f += Vector2f", v += v1, v.isApprox(v1 + v1));
		VERIFY_OP("Vector2f -= Vector2f", v -= v1, v.isApprox(v1));
		TEST_OP_VERIFY("Vector2f dot Vector2f", v.dot(v1), fabs(v.dot(v1) - 5.0f) <= FLT_EPSILON);
		//TEST_OP("Vector2f cross Vector2f", v1.cross(v2)); //cross product for 2d array?
	}

	{
		Eigen::Vector3f v;
		Eigen::Vector3f v1(1.0f, 2.0f, 0.0f);
		Eigen::Vector3f v2(1.0f, -1.0f, 2.0f);
		float data[3] = {1.0f, 2.0f, 3.0f};
		TEST_OP("Constructor Vector3f()", Eigen::Vector3f v3);
		TEST_OP("Constructor Vector3f(Vector3f)", Eigen::Vector3f v3(v1));
		TEST_OP("Constructor Vector3f(float[])", Eigen::Vector3f v3(data));
		TEST_OP("Constructor Vector3f(float, float, float)", Eigen::Vector3f v3(1.0f, 2.0f, 3.0f));
		TEST_OP("Vector3f = Vector3f", v = v1);
		TEST_OP("Vector3f + Vector3f", v + v1);
		TEST_OP("Vector3f - Vector3f", v - v1);
		TEST_OP("Vector3f += Vector3f", v += v1);
		TEST_OP("Vector3f -= Vector3f", v -= v1);
		TEST_OP("Vector3f * float", v1 * 2.0f);
		TEST_OP("Vector3f / float", v1 / 2.0f);
		TEST_OP("Vector3f *= float", v1 *= 2.0f);
		TEST_OP("Vector3f /= float", v1 /= 2.0f);
		TEST_OP("Vector3f dot Vector3f", v.dot(v1));
		TEST_OP("Vector3f cross Vector3f", v1.cross(v2));
		TEST_OP("Vector3f length", v1.norm());
		TEST_OP("Vector3f length squared", v1.squaredNorm());
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-variable"
		// Need pragma here intead of moving variable out of TEST_OP and just reference because
		// TEST_OP measures performance of vector operations.
		TEST_OP("Vector<3> element read", volatile float a = v1(0));
		TEST_OP("Vector<3> element read direct", volatile float a = v1.data()[0]);
#pragma GCC diagnostic pop
		TEST_OP("Vector<3> element write", v1(0) = 1.0f);
		TEST_OP("Vector<3> element write direct", v1.data()[0] = 1.0f);
	}

	{
		Eigen::Vector4f v(0.0f, 0.0f, 0.0f, 0.0f);
		Eigen::Vector4f v1(1.0f, 2.0f, 0.0f, -1.0f);
		Eigen::Vector4f v2(1.0f, -1.0f, 2.0f, 0.0f);
		Eigen::Vector4f vres;
		float data[4] = {1.0f, 2.0f, 3.0f, 4.0f};
		TEST_OP("Constructor Vector<4>()", Eigen::Vector4f v3);
		TEST_OP("Constructor Vector<4>(Vector<4>)", Eigen::Vector4f v3(v1));
		TEST_OP("Constructor Vector<4>(float[])", Eigen::Vector4f v3(data));
		TEST_OP("Constructor Vector<4>(float, float, float, float)", Eigen::Vector4f v3(1.0f, 2.0f, 3.0f, 4.0f));
		TEST_OP("Vector<4> = Vector<4>", v = v1);
		TEST_OP("Vector<4> + Vector<4>", v + v1);
		TEST_OP("Vector<4> - Vector<4>", v - v1);
		TEST_OP("Vector<4> += Vector<4>", v += v1);
		TEST_OP("Vector<4> -= Vector<4>", v -= v1);
		TEST_OP("Vector<4> dot Vector<4>", v.dot(v1));
	}

	{
		Eigen::Vector10f v1;
		v1.Zero();
		float data[10];
		TEST_OP("Constructor Vector<10>()", Eigen::Vector10f v3);
		TEST_OP("Constructor Vector<10>(Vector<10>)", Eigen::Vector10f v3(v1));
		TEST_OP("Constructor Vector<10>(float[])", Eigen::Vector10f v3(data));
	}

	{
		Eigen::Matrix3f m1;
		m1.setIdentity();
		Eigen::Matrix3f m2;
		m2.setIdentity();
		Eigen::Vector3f v1(1.0f, 2.0f, 0.0f);
		TEST_OP("Matrix3f * Vector3f", m1 * v1);
		TEST_OP("Matrix3f + Matrix3f", m1 + m2);
		TEST_OP("Matrix3f * Matrix3f", m1 * m2);
	}

	{
		Eigen::Matrix<float, 10, 10> m1;
		m1.setIdentity();
		Eigen::Matrix<float, 10, 10> m2;
		m2.setIdentity();
		Eigen::Vector10f v1;
		v1.Zero();
		TEST_OP("Matrix<10, 10> * Vector<10>", m1 * v1);
		TEST_OP("Matrix<10, 10> + Matrix<10, 10>", m1 + m2);
		TEST_OP("Matrix<10, 10> * Matrix<10, 10>", m1 * m2);
	}

	{
		warnx("Nonsymmetric matrix operations test");
		// test nonsymmetric +, -, +=, -=

		const Eigen::Matrix<float, 2, 3> m1_orig =
			(Eigen::Matrix<float, 2, 3>() << 1, 2, 3,
			 4, 5, 6).finished();

		Eigen::Matrix<float, 2, 3> m1(m1_orig);

		Eigen::Matrix<float, 2, 3> m2;
		m2 << 2, 4, 6,
		8, 10, 12;

		Eigen::Matrix<float, 2, 3> m3;
		m3 << 3, 6, 9,
		12, 15, 18;

		if (m1 + m2 != m3) {
			warnx("Matrix<2, 3> + Matrix<2, 3> failed!");
			printEigen(m1 + m2);
			printf("!=\n");
			printEigen(m3);
			rc = 1;
		}

		if (m3 - m2 != m1) {
			warnx("Matrix<2, 3> - Matrix<2, 3> failed!");
			printEigen(m3 - m2);
			printf("!=\n");
			printEigen(m1);
			rc = 1;
		}

		m1 += m2;

		if (m1 != m3) {
			warnx("Matrix<2, 3> += Matrix<2, 3> failed!");
			printEigen(m1);
			printf("!=\n");
			printEigen(m3);
			rc = 1;
		}

		m1 -= m2;

		if (m1 != m1_orig) {
			warnx("Matrix<2, 3> -= Matrix<2, 3> failed!");
			printEigen(m1);
			printf("!=\n");
			printEigen(m1_orig);
			rc = 1;
		}

	}

	/* QUATERNION TESTS CURRENTLY FAILING
	{
		// test conversion rotation matrix to quaternion and back
		Eigen::Matrix3f R_orig;
		Eigen::Matrix3f R;
		Eigen::Quaternionf q;
		float diff = 0.1f;
		float tol = 0.00001f;

		warnx("Quaternion transformation methods test.");

		for (float roll = -M_PI_F; roll <= M_PI_F; roll += diff) {
			for (float pitch = -M_PI_2_F; pitch <= M_PI_2_F; pitch += diff) {
				for (float yaw = -M_PI_F; yaw <= M_PI_F; yaw += diff) {
					R_orig.eulerAngles(roll, pitch, yaw);
					q = R_orig; //from_dcm
					R = q.toRotationMatrix();

					for (size_t i = 0; i < 3; i++) {
						for (size_t j = 0; j < 3; j++) {
							if (fabsf(R_orig(i, j) - R(i, j)) > tol) {
								warnx("Quaternion method 'from_dcm' or 'toRotationMatrix' outside tolerance!");
								rc = 1;
							}
						}
					}
				}
			}
		}

		// test against some known values
		tol = 0.0001f;
		Eigen::Quaternionf q_true = {1.0f, 0.0f, 0.0f, 0.0f};
		R_orig.setIdentity();
		q = R_orig;

		for (size_t i = 0; i < 4; i++) {
			if (!q.isApprox(q_true, tol)) {
				warnx("Quaternion method 'from_dcm()' outside tolerance!");
				rc = 1;
			}
		}

		q_true = quatFromEuler(0.3f, 0.2f, 0.1f);
		q = {0.9833f, 0.1436f, 0.1060f, 0.0343f};

		for (size_t i = 0; i < 4; i++) {
			if (!q.isApprox(q_true, tol)) {
				warnx("Quaternion method 'eulerAngles()' outside tolerance!");
				rc = 1;
			}
		}

		q_true = quatFromEuler(-1.5f, -0.2f, 0.5f);
		q = {0.7222f, -0.6391f, -0.2386f, 0.1142f};

		for (size_t i = 0; i < 4; i++) {
			if (!q.isApprox(q_true, tol)) {
				warnx("Quaternion method 'eulerAngles()' outside tolerance!");
				rc = 1;
			}
		}

		q_true = quatFromEuler(M_PI_2_F, -M_PI_2_F, -M_PI_F / 3);
		q = {0.6830f, 0.1830f, -0.6830f, 0.1830f};

		for (size_t i = 0; i < 4; i++) {
			if (!q.isApprox(q_true, tol)) {
				warnx("Quaternion method 'eulerAngles()' outside tolerance!");
				rc = 1;
			}
		}

	}

	{
		// test quaternion method "rotate" (rotate vector by quaternion)
		Eigen::Vector3f vector = {1.0f, 1.0f, 1.0f};
		Eigen::Vector3f vector_q;
		Eigen::Vector3f vector_r;
		Eigen::Quaternionf q;
		Eigen::Matrix3f R;
		float diff = 0.1f;
		float tol = 0.00001f;

		warnx("Quaternion vector rotation method test.");

		for (float roll = -M_PI_F; roll <= M_PI_F; roll += diff) {
			for (float pitch = -M_PI_2_F; pitch <= M_PI_2_F; pitch += diff) {
				for (float yaw = -M_PI_F; yaw <= M_PI_F; yaw += diff) {
					R.eulerAngles(roll, pitch, yaw);
					q = quatFromEuler(roll, pitch, yaw);
					vector_r = R * vector;
					vector_q = q._transformVector(vector);

					for (int i = 0; i < 3; i++) {
						if (fabsf(vector_r(i) - vector_q(i)) > tol) {
							warnx("Quaternion method 'rotate' outside tolerance");
							rc = 1;
						}
					}
				}
			}
		}

		// test some values calculated with matlab
		tol = 0.0001f;
		q = quatFromEuler(M_PI_2_F, 0.0f, 0.0f);
		vector_q = q._transformVector(vector);
		Eigen::Vector3f vector_true = {1.00f, -1.00f, 1.00f};

		for (size_t i = 0; i < 3; i++) {
			if (fabsf(vector_true(i) - vector_q(i)) > tol) {
				warnx("Quaternion method 'rotate' outside tolerance");
				rc = 1;
			}
		}

		q = quatFromEuler(0.3f, 0.2f, 0.1f);
		vector_q = q._transformVector(vector);
		vector_true = {1.1566, 0.7792, 1.0273};

		for (size_t i = 0; i < 3; i++) {
			if (fabsf(vector_true(i) - vector_q(i)) > tol) {
				warnx("Quaternion method 'rotate' outside tolerance");
				rc = 1;
			}
		}

		q = quatFromEuler(-1.5f, -0.2f, 0.5f);
		vector_q = q._transformVector(vector);
		vector_true = {0.5095, 1.4956, -0.7096};

		for (size_t i = 0; i < 3; i++) {
			if (fabsf(vector_true(i) - vector_q(i)) > tol) {
				warnx("Quaternion method 'rotate' outside tolerance");
				rc = 1;
			}
		}

		q = quatFromEuler(M_PI_2_F, -M_PI_2_F, -M_PI_F / 3.0f);
		vector_q = q._transformVector(vector);
		vector_true = { -1.3660, 0.3660, 1.0000};

		for (size_t i = 0; i < 3; i++) {
			if (fabsf(vector_true(i) - vector_q(i)) > tol) {
				warnx("Quaternion method 'rotate' outside tolerance");
				rc = 1;
			}
		}
	}
	*/
	return rc;
}
Пример #3
0
double RobustViconTracker::angle_between(const Eigen::Vector3f& v1, const Eigen::Vector3f& v2)
{
  return acos(v1.dot(v2) / (v1.norm() * v2.norm()));
}
  CloudPtr
      get ()
      {
        //lock while we swap our cloud and reset it.
        boost::mutex::scoped_lock lock (mtx_);
        CloudPtr temp_cloud (new Cloud);
        CloudPtr temp_cloud2 (new Cloud);
        CloudPtr temp_cloud3 (new Cloud);
        CloudPtr temp_cloud4 (new Cloud);
        CloudPtr temp_cloud5 (new Cloud);
        CloudConstPtr empty_cloud;


        cout << "===============================\n"
                "======Start of frame===========\n"
                "===============================\n";
        //cerr << "cloud size orig: " << cloud_->size() << endl;
        voxel_grid.setInputCloud (cloud_);
        voxel_grid.filter (*temp_cloud);  // filter cloud for z depth

        //cerr << "cloud size postzfilter: " << temp_cloud->size() << endl;

        pcl::ModelCoefficients::Ptr planecoefficients (new pcl::ModelCoefficients ());
        pcl::PointIndices::Ptr plane_inliers (new pcl::PointIndices ());
        std::vector<pcl::ModelCoefficients> linecoefficients1;
        pcl::ModelCoefficients model;
        model.values.resize (6);
        pcl::PointIndices::Ptr line_inliers (new pcl::PointIndices ());
        std::vector<Eigen::Vector3f> corners;

        if(temp_cloud->size() > MIN_CLOUD_POINTS) {
          plane_seg.setInputCloud (temp_cloud);
          plane_seg.segment (*plane_inliers, *planecoefficients); // find plane
        }

        //cerr << "plane inliers size: " << plane_inliers->indices.size() << endl;

        cout << "planecoeffs: " 
            << planecoefficients->values[0]  << " "
            << planecoefficients->values[1]  << " "
            << planecoefficients->values[2]  << " "
            << planecoefficients->values[3]  << " "
            << endl;

        Eigen::Vector3f pn = Eigen::Vector3f(
            planecoefficients->values[0],
            planecoefficients->values[1],
            planecoefficients->values[2]);

        float planedeg = pcl::rad2deg(acos(pn.dot(Eigen::Vector3f::UnitZ())));
        cout << "angle of camera to floor normal: " << planedeg << " degrees" << endl;
        cout << "distance of camera to floor: " << planecoefficients->values[3]
            << " meters" <<  endl;

        plane_extract.setNegative (true); 
        plane_extract.setInputCloud (temp_cloud);
        plane_extract.setIndices (plane_inliers);
        plane_extract.filter (*temp_cloud2);   // remove plane
        plane_extract.setNegative (false); 
        plane_extract.filter (*temp_cloud5);   // only plane

        for(size_t i = 0; i < temp_cloud5->size (); ++i)
        {
          temp_cloud5->points[i].r = 0; 
          temp_cloud5->points[i].g = 255; 
          temp_cloud5->points[i].b = 0; 
          // tint found plane green for ground
        }

        for(size_t j = 0 ; j < MAX_LINES && temp_cloud2->size() > MIN_CLOUD_POINTS; j++) 
          // look for x lines until cloud gets too small
        {
//          cerr << "cloud size: " << temp_cloud2->size() << endl;

          line_seg.setInputCloud (temp_cloud2);
          line_seg.segment (*line_inliers, model); // find line

 //         cerr << "line inliears size: " << line_inliers->indices.size() << endl;

          if(line_inliers->indices.size() < MIN_CLOUD_POINTS)
            break;

          linecoefficients1.push_back (model);  // store line coeffs

          line_extract.setNegative (true); 
          line_extract.setInputCloud (temp_cloud2);
          line_extract.setIndices (line_inliers);
          line_extract.filter (*temp_cloud3);  // remove plane
          line_extract.setNegative (false); 
          line_extract.filter (*temp_cloud4);  // only plane
          for(size_t i = 0; i < temp_cloud4->size (); ++i) {
            temp_cloud4->points[i].g = 0; 
            if(j%2) {
              temp_cloud4->points[i].r = 255-j*int(255/MAX_LINES); 
              temp_cloud4->points[i].b = 0+j*int(255/MAX_LINES); 
            } else {
              temp_cloud4->points[i].b = 255-j*int(255/MAX_LINES); 
              temp_cloud4->points[i].r = 0+j*int(255/MAX_LINES); 
            }
          }
          *temp_cloud5 += *temp_cloud4;	// add line to ground

          temp_cloud2.swap ( temp_cloud3); // remove line

        }

        cout << "found " << linecoefficients1.size() << " lines." << endl;

        for(size_t i = 0; i < linecoefficients1.size(); i++)
        {
          //cerr << "linecoeffs: " << i  << " "
          //    << linecoefficients1[i].values[0]  << " "
          //    << linecoefficients1[i].values[1]  << " "
          //    << linecoefficients1[i].values[2]  << " "
          //    << linecoefficients1[i].values[3]  << " "
          //    << linecoefficients1[i].values[4]  << " "
          //    << linecoefficients1[i].values[5]  << " "
          //    << endl;

          Eigen::Vector3f lv = Eigen::Vector3f(
              linecoefficients1[i].values[3],
              linecoefficients1[i].values[4],
              linecoefficients1[i].values[5]); 

          Eigen::Vector3f lp = Eigen::Vector3f(
              linecoefficients1[i].values[0],
              linecoefficients1[i].values[1],
              linecoefficients1[i].values[2]); 

          float r = pn.dot(lv);
          float deg = pcl::rad2deg(acos(r));

          cout << "angle of line to floor normal: " << deg << " degrees" << endl;

          if(abs(deg-30) < 5 || abs(deg-150) < 5) 
          {
            cout << "found corner line" << endl;

            float t = -(lp.dot(pn) + planecoefficients->values[3])/ r;
            Eigen::Vector3f intersect = lp + lv*t;
            cout << "corner intersects floor at: " << endl << intersect << endl;
            cout << "straight line distance from camera to corner: " <<
                intersect.norm() << " meters" << endl;

            corners.push_back(intersect);

            Eigen::Vector3f floor_distance = intersect + pn;  // should be - ???

            cout << "distance along floor to corner: " <<
                floor_distance.norm() << " meters" << endl;
          }
          else if(abs(deg-90) < 5) 
          {
            cout << "found horizontal line" << endl;
          }

        }

        switch(corners.size())
        {
          case 2:
            cout << "distance between corners " << (corners[0] - corners[1]).norm() << endl;
            cout << "angle of pyramid to camera " <<
                pcl::rad2deg(acos(((corners[0] - corners[1]).normalized()).dot(Eigen::Vector3f::UnitX())))
                << endl;

            break;

          case 3:
            cout << "distance between corners " << (corners[0] - corners[1]).norm() << endl;
            cout << "distance between corners " << (corners[0] - corners[2]).norm() << endl;
            cout << "distance between corners " << (corners[1] - corners[2]).norm() << endl;

            cout << "angle of corner on floor (should be 90) " <<
                pcl::rad2deg(acos((corners[0] - corners[1]).dot(corners[0] - corners [2])))
                << endl;
            
            cout << "angle of pyramid to camera " <<
                pcl::rad2deg(acos(((corners[0] - corners[1]).normalized()).dot(Eigen::Vector3f::UnitX())))
                << endl;

            break;
        }

        if (saveCloud)
        {
          std::stringstream stream, stream1;
          std::string filename;

          stream << "inputCloud" << filesSaved << ".pcd";
          filename = stream.str();
          if (pcl::io::savePCDFile(filename, *cloud_, true) == 0)
          {
            filesSaved++;
            cout << "Saved " << filename << "." << endl;
          }
          else PCL_ERROR("Problem saving %s.\n", filename.c_str());

          
          stream1 << "inputCloud" << filesSaved << ".pcd";
          filename = stream1.str();
          if (pcl::io::savePCDFile(filename, *temp_cloud5, true) == 0)
          {
            filesSaved++;
            cout << "Saved " << filename << "." << endl;
          }
          else PCL_ERROR("Problem saving %s.\n", filename.c_str());

          saveCloud = false;
        }

        empty_cloud.swap(cloud_);  // set cloud_ to null

        if(toggleView == 1) 
          return (temp_cloud);  // return orig cloud
        else
          return (temp_cloud5); // return colored cloud
      }
Пример #5
0
template <typename PointInT, typename PointNT, typename PointOutT> bool
pcl::ShapeContext3DEstimation<PointInT, PointNT, PointOutT>::computePoint (
    size_t index, const pcl::PointCloud<PointNT> &normals, float rf[9], std::vector<float> &desc)
{
  // The RF is formed as this x_axis | y_axis | normal
  Eigen::Map<Eigen::Vector3f> x_axis (rf);
  Eigen::Map<Eigen::Vector3f> y_axis (rf + 3);
  Eigen::Map<Eigen::Vector3f> normal (rf + 6);

  // Find every point within specified search_radius_
  std::vector<int> nn_indices;
  std::vector<float> nn_dists;
  const size_t neighb_cnt = searchForNeighbors ((*indices_)[index], search_radius_, nn_indices, nn_dists);
  if (neighb_cnt == 0)
  {
    for (size_t i = 0; i < desc.size (); ++i)
      desc[i] = std::numeric_limits<float>::quiet_NaN ();

    memset (rf, 0, sizeof (rf[0]) * 9);
    return (false);
  }

  float minDist = std::numeric_limits<float>::max ();
  int minIndex = -1;
  for (size_t i = 0; i < nn_indices.size (); i++)
  {
	  if (nn_dists[i] < minDist)
	  {
      minDist = nn_dists[i];
      minIndex = nn_indices[i];
	  }
  }
  
  // Get origin point
  Vector3fMapConst origin = input_->points[(*indices_)[index]].getVector3fMap ();
  // Get origin normal
  // Use pre-computed normals
  normal = normals[minIndex].getNormalVector3fMap ();

  // Compute and store the RF direction
  x_axis[0] = static_cast<float> (rnd ());
  x_axis[1] = static_cast<float> (rnd ());
  x_axis[2] = static_cast<float> (rnd ());
  if (!pcl::utils::equal (normal[2], 0.0f))
    x_axis[2] = - (normal[0]*x_axis[0] + normal[1]*x_axis[1]) / normal[2];
  else if (!pcl::utils::equal (normal[1], 0.0f))
    x_axis[1] = - (normal[0]*x_axis[0] + normal[2]*x_axis[2]) / normal[1];
  else if (!pcl::utils::equal (normal[0], 0.0f))
    x_axis[0] = - (normal[1]*x_axis[1] + normal[2]*x_axis[2]) / normal[0];

  x_axis.normalize ();

  // Check if the computed x axis is orthogonal to the normal
  assert (pcl::utils::equal (x_axis[0]*normal[0] + x_axis[1]*normal[1] + x_axis[2]*normal[2], 0.0f, 1E-6f));

  // Store the 3rd frame vector
  y_axis = normal.cross (x_axis);

  // For each point within radius
  for (size_t ne = 0; ne < neighb_cnt; ne++)
  {
    if (pcl::utils::equal (nn_dists[ne], 0.0f))
		  continue;
    // Get neighbours coordinates
    Eigen::Vector3f neighbour = surface_->points[nn_indices[ne]].getVector3fMap ();

    /// ----- Compute current neighbour polar coordinates -----
    /// Get distance between the neighbour and the origin
    float r = sqrt (nn_dists[ne]); 
    
    /// Project point into the tangent plane
    Eigen::Vector3f proj;
    pcl::geometry::project (neighbour, origin, normal, proj);
    proj -= origin;

    /// Normalize to compute the dot product
    proj.normalize ();
    
    /// Compute the angle between the projection and the x axis in the interval [0,360] 
    Eigen::Vector3f cross = x_axis.cross (proj);
    float phi = pcl::rad2deg (std::atan2 (cross.norm (), x_axis.dot (proj)));
    phi = cross.dot (normal) < 0.f ? (360.0f - phi) : phi;
    /// Compute the angle between the neighbour and the z axis (normal) in the interval [0, 180]
    Eigen::Vector3f no = neighbour - origin;
    no.normalize ();
    float theta = normal.dot (no);
    theta = pcl::rad2deg (acosf (std::min (1.0f, std::max (-1.0f, theta))));

    // Bin (j, k, l)
    size_t j = 0;
    size_t k = 0;
    size_t l = 0;

    // Compute the Bin(j, k, l) coordinates of current neighbour
    for (size_t rad = 1; rad < radius_bins_+1; rad++) 
    {
      if (r <= radii_interval_[rad]) 
      {
        j = rad-1;
        break;
      }
    }

    for (size_t ang = 1; ang < elevation_bins_+1; ang++) 
    {
      if (theta <= theta_divisions_[ang]) 
      {
        k = ang-1;
        break;
      }
    }

    for (size_t ang = 1; ang < azimuth_bins_+1; ang++) 
    {
      if (phi <= phi_divisions_[ang]) 
      {
        l = ang-1;
        break;
      }
    }

    // Local point density = number of points in a sphere of radius "point_density_radius_" around the current neighbour
    std::vector<int> neighbour_indices;
    std::vector<float> neighbour_distances;
    int point_density = searchForNeighbors (*surface_, nn_indices[ne], point_density_radius_, neighbour_indices, neighbour_distances);
    // point_density is NOT always bigger than 0 (on error, searchForNeighbors returns 0), so we must check for that
    if (point_density == 0)
      continue;

    float w = (1.0f / static_cast<float> (point_density)) * 
              volume_lut_[(l*elevation_bins_*radius_bins_) +  (k*radius_bins_) + j];
      
    assert (w >= 0.0);
    if (w == std::numeric_limits<float>::infinity ())
      PCL_ERROR ("Shape Context Error INF!\n");
    if (w != w)
      PCL_ERROR ("Shape Context Error IND!\n");
    /// Accumulate w into correspondant Bin(j,k,l)
    desc[(l*elevation_bins_*radius_bins_) + (k*radius_bins_) + j] += w;

    assert (desc[(l*elevation_bins_*radius_bins_) + (k*radius_bins_) + j] >= 0);
  } // end for each neighbour

  // 3DSC does not define a repeatable local RF, we set it to zero to signal it to the user 
  memset (rf, 0, sizeof (rf[0]) * 9);
  return (true);
}
void rawCloudHandler(const sensor_msgs::PointCloud2ConstPtr& laserCloud)
{
	//double timeScanCur = laserCloud->header.stamp.toSec();
	ros::Time timestamp = laserCloud->header.stamp;
	//bool returnBool;

	pcl::fromROSMsg(*laserCloud, *laserCloudIn);

	if (visualizationFlag)
	{
	viewer->removeAllPointClouds(0);
	viewer->removeAllShapes(0);
	}

	pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloudRGB(new pcl::PointCloud<pcl::PointXYZRGB>);
	pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloudLabeled(new pcl::PointCloud<pcl::PointXYZRGB>);
	pcl::PointCloud<pcl::PointXYZI>::Ptr cloudRaw(new pcl::PointCloud<pcl::PointXYZI>);
	//	std::vector<std::string> labelsC1;
	//	std::vector<std::string> labelsC2;
	//	pcl::PointCloud<SAFEFeatures>::Ptr featureCloudC1Acc(new pcl::PointCloud<SAFEFeatures>);
	//	pcl::PointCloud<SAFEFeatures>::Ptr featureCloudC2Acc(new pcl::PointCloud<SAFEFeatures>);
	std::vector<std::string> labelsC1;
	std::vector<std::string> labelsC2;
	std::vector<std::string> labelsC3;
	std::vector<std::string> labels;
	pcl::PointCloud<AllFeatures>::Ptr featureCloudAcc(new pcl::PointCloud<AllFeatures>);
	pcl::PointCloud<AllFeatures>::Ptr featureCloudC1Acc(new pcl::PointCloud<AllFeatures>);
	pcl::PointCloud<AllFeatures>::Ptr featureCloudC2Acc(new pcl::PointCloud<AllFeatures>);
	pcl::PointCloud<AllFeatures>::Ptr featureCloudC3Acc(new pcl::PointCloud<AllFeatures>);
	std::vector<Eigen::Matrix3f> confMats;
	pcl::PointCloud<pcl::PointXYZRGB>::Ptr classificationCloud(new pcl::PointCloud<pcl::PointXYZRGB>);

	std::vector<DatasetContainer> dataset;

	std::string folder = "/home/mikkel/catkin_ws/src/trainingSet/";

	pcl::copyPointCloud(*laserCloudIn, *cloudRGB);
	pcl::copyPointCloud(*laserCloudIn, *cloudRaw);

	// Single colored
	if (visualizationFlag)
		{
		pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZRGB> color1(cloudRGB, 0, 0, 255);
	viewer->addPointCloud<pcl::PointXYZRGB>(cloudRGB,color1,"cloudRGB",viewP(RawCloud));
		}
	//viewer->addText ("RawCloud", 10, 10, "vPP text", viewP(RawCloud));

	// Ground modeling
	//	pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloudStat(new pcl::PointCloud<pcl::PointXYZRGB>);
	//	pcl::PointCloud<pcl::PointXYZ>::Ptr planeDistCloud(new pcl::PointCloud<pcl::PointXYZ>);
	//	pcl::copyPointCloud(*cloudRGB,*cloudStat);
	//	pcl::copyPointCloud(*cloudRGB,*planeDistCloud);


	// Remove everything outside the two lines
	pcl::PointCloud<pcl::PointXYZI>::Ptr cloud_filtered(new pcl::PointCloud<pcl::PointXYZI>);
	//pcl::copyPointCloud(*cloudRaw, *cloud_filtered);

	// Rotation
	float thetaZ = theta*PI/180; // The angle of rotation in radians
	Eigen::Affine3f transform_2 = Eigen::Affine3f::Identity();
	transform_2.rotate (Eigen::AngleAxisf (thetaZ, Eigen::Vector3f::UnitZ()));
	pcl::PointCloud<pcl::PointXYZ>::Ptr transformed_cloud (new pcl::PointCloud<pcl::PointXYZ> ());
	pcl::transformPointCloud (*cloudRaw, *cloud_filtered, transform_2);

	// Passthrough
	pcl::PassThrough<pcl::PointXYZI> passX;
	passX.setInputCloud (cloud_filtered);
	passX.setFilterFieldName ("x");
	passX.setFilterLimits (-0.5, 100.0);
	//pass.setFilterLimitsNegative (true);
	passX.filter (*cloud_filtered);

	pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_filteredRGB(new pcl::PointCloud<pcl::PointXYZRGB>);
	if (receivedHough)
	{
		pcl::PassThrough<pcl::PointXYZI> pass;
		pass.setInputCloud (cloud_filtered);
		pass.setFilterFieldName ("y");
		pass.setFilterLimits (r1+WALL_CLEARANCE, r2-WALL_CLEARANCE);
		//pass.setFilterLimitsNegative (true);
		pass.filter (*cloud_filtered);
	}

	pcl::copyPointCloud(*cloud_filtered, *cloud_filteredRGB);
	if (visualizationFlag)
		{
	pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZRGB> color9(cloudRGB, 0, 0, 255);
	viewer->addPointCloud<pcl::PointXYZRGB>(cloud_filteredRGB,color9,"LinesFiltered",viewP(LinesFiltered));
	viewer->setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "LinesFiltered");
	viewer->addText ("LinesFiltered", 10, 10, fontsize, 1, 1, 1, "LinesFiltered text", viewP(LinesFiltered));
		}


	// Grid Minimum
//	pcl::PointCloud<pcl::PointXYZI>::Ptr gridCloud(new pcl::PointCloud<pcl::PointXYZI>);
//	pcl::GridMinimum<pcl::PointXYZI> gridm(1.0); // Set grid resolution
//	gridm.setInputCloud(cloud_filtered);
//	gridm.filter(*gridCloud);

	//*** Transform point cloud to adjust for a Ground Plane ***//
	pcl::ModelCoefficients ground_coefficients;
	pcl::PointIndices ground_indices;
	pcl::SACSegmentation<pcl::PointXYZI> ground_finder;
	ground_finder.setOptimizeCoefficients(true);
	ground_finder.setModelType(pcl::SACMODEL_PLANE);
	ground_finder.setMethodType(pcl::SAC_RANSAC);
	ground_finder.setDistanceThreshold(0.15);
	ground_finder.setInputCloud(cloud_filtered);
	ground_finder.segment(ground_indices, ground_coefficients);

	// Convert plane normal vector from type ModelCoefficients to Vector4f
	Eigen::Vector3f np = Eigen::Vector3f(ground_coefficients.values[0],ground_coefficients.values[1],ground_coefficients.values[2]);
	// Find rotation vector, u, and angle, theta
	Eigen::Vector3f u = np.cross(Eigen::Vector3f(0,0,1));
	u.normalize();
	float theta = acos(np.dot(Eigen::Vector3f(0,0,1)));
	// Construct transformation matrix (rotation matrix from axis and angle)
	Eigen::Affine3f tf = Eigen::Affine3f::Identity();
	float d = ground_coefficients.values[3];
	tf.translation() << d*np[0], d*np[1], d*np[2];
	tf.rotate (Eigen::AngleAxisf (theta, u));
	// Execute the transformation
	pcl::PointCloud<pcl::PointXYZI>::Ptr transformedCloud (new pcl::PointCloud<pcl::PointXYZI> ());
	pcl::transformPointCloud(*cloud_filtered, *transformedCloud, tf);


	// Compute statistical moments for least significant direction in neighborhood
#if (OLD_METHOD)
	pcl::NeighborhoodFeatures<pcl::PointXYZI, AllFeatures> features;
	pcl::PointCloud<AllFeatures>::Ptr featureCloud(new pcl::PointCloud<AllFeatures>);
	features.setInputCloud(transformedCloud);
	pcl::search::KdTree<pcl::PointXYZI>::Ptr search_tree5( new pcl::search::KdTree<pcl::PointXYZI>());
	features.setSearchMethod(search_tree5);
	//principalComponentsAnalysis.setRadiusSearch(0.6);
	//features.setKSearch(30);
	features.setRadiusSearch(0.01); // This value does not do anything! Look inside "NeighborgoodFeatures.h" to see adaptive radius calculation.
	features.compute(*featureCloud);

	//	ros::Time tFeatureCalculation2 = ros::Time::now();
	//	ros::Duration tFeatureCalculation = tFeatureCalculation2-tPreprocessing2;
	//	if (executionTimes==true)
	//		ROS_INFO("Feature calculation time = %i",tFeatureCalculation.nsec);



	visualizeFeature(*cloudRGB, *featureCloud, 0, viewP(GPDistMean), "GPDistMean");
	visualizeFeature(*cloudRGB, *featureCloud, 1, viewP(GPDistMin), "GPDistMin");
	visualizeFeature(*cloudRGB, *featureCloud, 2, viewP(GPDistPoint), "GPDistPoint");
	visualizeFeature(*cloudRGB, *featureCloud, 3, viewP(GPDistVar), "GPDistVar");
	visualizeFeature(*cloudRGB, *featureCloud, 4, viewP(PCA1), "PCA1"); // 4 = PCA1
	visualizeFeature(*cloudRGB, *featureCloud, 5, viewP(PCA2), "PCA2"); // 3 = GPVar
	visualizeFeature(*cloudRGB, *featureCloud, 6, viewP(PCA3), "PCA3"); // 0 = GPMean
	visualizeFeature(*cloudRGB, *featureCloud, 7, viewP(PCANX), "PCANX");
	visualizeFeature(*cloudRGB, *featureCloud, 8, viewP(PCANY), "PCANY");
	visualizeFeature(*cloudRGB, *featureCloud, 9, viewP(PCANZ), "PCANZ"); // 9 = PCANZ
	visualizeFeature(*cloudRGB, *featureCloud, 10, viewP(PointDist), "PointDist");
	visualizeFeature(*cloudRGB, *featureCloud, 11, viewP(RSS), "RSS");
	visualizeFeature(*cloudRGB, *featureCloud, 12, viewP(Reflectance), "Reflectance");

	ROS_INFO("Computed all neighborhood features");

	std::vector<float>* centroid = new std::vector<float>();
	std::vector<float>* stds = new std::vector<float>();

	//*** Testing ***//
	if (training == false)
	{
		Eigen::Matrix3f confMat = Eigen::Matrix3f::Zero();
		if (testdata==true)
		{
			*featureCloud = *featureCloudAcc;
		}

		pcl::copyPointCloud(*cloudRGB,*classificationCloud);

		// Load feature normalization parameters
		std::ifstream input_file((folder + "centroid").c_str());
		std::istream_iterator<float> start(input_file), end;
		std::vector<float> numbers(start, end);
		std::copy(numbers.begin(), numbers.end(), std::back_inserter(*centroid));
		std::ifstream input_file2((folder + "stds").c_str());
		std::istream_iterator<float> start2(input_file2), end2;
		std::vector<float> numbers2(start2, end2);
		std::copy(numbers2.begin(), numbers2.end(), std::back_inserter(*stds));


		// Normalize features
		//		if (pcl::io::savePCDFile ("testFeaturesNonNormalized.pcd", *featureCloud) != 0)
		//			return (false);

		ros::Time tNormalization1 = ros::Time::now();
		normalizeFeatures(*featureCloud,*featureCloud, &centroid, &stds);
		ros::Time tNormalization2 = ros::Time::now();
		ros::Duration tNormalization = tNormalization2-tNormalization1;
		if (executionTimes==true)
			ROS_INFO("Normalization time = %f",(float)(tNormalization.nsec)/1000000);

		pcl::PointIndices::Ptr unclassifiedIndices (new pcl::PointIndices ());
		//		if (pcl::io::savePCDFile ("testFeatures.pcd", *featureCloud) != 0)
		//			return (false);

		CvSVM SVM;
		//int dim = sizeof(featureCloud->points[0])/sizeof(float);
		int dim = useFeatures.size();//sizeof(useFeatures)/sizeof(int);

		SVM.load((folder + "svm").c_str());
		//SVM.load((folder + "svm2014-11-06-11-22-59").c_str());
		//SVM.load((folder + "svm2014-11-07-14-00-31").c_str());
		//SVM.load((folder + "svm2014-11-07-13-16-28").c_str());

		ros::Time tClassification1 = ros::Time::now();
		//int nMissingLabels = 0;
		for (size_t i=0;i<classificationCloud->points.size();i++)
		{
			float dataSVM[dim];
			for (int d=0;d<dim;d++)
			{
				//dataSVM[d] = featureCloud->points[i].data[d];
				dataSVM[d] = featureCloud->points[i].data[useFeatures[d]];
			}
			Mat labelsMat(1, dim, CV_32FC1, dataSVM);

			float response = SVM.predict(labelsMat);

			if (response == 1.0)
				classificationCloud->points[i].b = 255;
			else if (response == 2.0)
				classificationCloud->points[i].g = 255;
			else if (response == 3.0)
				classificationCloud->points[i].r = 255;
			else
				ROS_INFO("Another class label = %f",response);

			if (testdata==true)
			{
				int groundTruth;
				if (labels[i].compare("ground") == 0)
					groundTruth = 1;
				else if (labels[i].compare("vegetation") == 0)
					groundTruth = 2;
				else if (labels[i].compare("object") == 0)
					groundTruth = 3;
				confMat(groundTruth-1,(int)response-1)++;
			}
		}
		ros::Time tClassification2 = ros::Time::now();
		ros::Duration tClassification = tClassification2-tClassification1;
		if (executionTimes==true)
			ROS_INFO("Classification time = %f",(float)(tClassification.nsec)/100000);

		//ROS_INFO("Number of missing class labels = %i", nMissingLabels);

		pcl::visualization::PointCloudColorHandlerRGBField<pcl::PointXYZRGB> colorC(classificationCloud);
		viewer->addPointCloud<pcl::PointXYZRGB>(classificationCloud,colorC,"Classification",viewP(Classification));
		viewer->setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "Classification");
		viewer->addText ("Classification", 10, 10, fontsize, 1, 1, 1, "Classification text", viewP(Classification));

		// Test set - calculate performance statistics
		if (testdata == true)
		{
			std::cout << confMat << std::endl;
			confMats.push_back(confMat);

			if (true)//k==files.size()-1)
			{
				ofstream myfile;
				string resultsFolder = "/home/mikkel/catkin_ws/src/Results/";
				myfile.open ((resultsFolder + "run_number_here.txt").c_str());

				// Distance threshold
				myfile << "DistanceThreshold:" << distThr << ";\n";

				// Neighborhood parameters
				myfile << "Neighborhood:" << rmin << ";" << rmindist << ";" << rmax << ";" << rmaxdist << ";\n";

				// Features
				myfile << "Features:";
				for (int d=0;d<dim;d++)
					myfile << useFeatures[d] << ";";
				myfile << "\n";

				myfile << "ConfusionMatrix:";
				for (size_t i=0;i<confMats.size();i++)
				{
					for (int r=0;r<confMats[i].rows();r++)
						for (int c=0;c<confMats[i].cols();c++)
							myfile << confMats[i](r,c) << ";";
					myfile << "\n";
				}

				myfile << "Accuracy:" << confMat.diagonal().sum()/confMat.sum() << ";\n";


				myfile.close();
			}

		}
		featureCloudAcc->clear();
		labels.clear();

#else

		for (size_t i=0;i<transformedCloud->size();i++)
		{
			pcl::PointXYZI pTmp2 = transformedCloud->points[i];
			pcl::PointXYZRGB pTmp;
			pTmp.x = pTmp2.x;
			pTmp.y = pTmp2.y;
			pTmp.z = pTmp2.z;
			pTmp.r = 255;
			pTmp.g = 255;
			if (pTmp.z > 0.1) // Object
			{
				classificationCloud->push_back(pTmp);
			}
		}

		if (visualizationFlag)
		{
			pcl::visualization::PointCloudColorHandlerRGBField<pcl::PointXYZRGB> colorC(classificationCloud);
			viewer->addPointCloud<pcl::PointXYZRGB>(classificationCloud,colorC,"Classification",viewP(Classification));
			viewer->setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "Classification");
			viewer->addText ("Classification", 10, 10, fontsize, 1, 1, 1, "Classification text", viewP(Classification));
		}


#endif





		// REGION GROWING
		//ROS_INFO("region growing 5");
		pcl::PointCloud <pcl::PointXYZRGB>::Ptr objectCloud(new pcl::PointCloud<pcl::PointXYZRGB>);
		//pcl::PointCloud <pcl::PointXYZRGB>::Ptr cloud (new pcl::PointCloud <pcl::PointXYZRGB>);

		for (size_t i=0;i<classificationCloud->size();i++)
		{
			pcl::PointXYZRGB pTmp = classificationCloud->points[i];
			if ((pTmp.r == 255) || (pTmp.g == 255)) // Object
			{
				objectCloud->push_back(pTmp);
			}
		}

		pcl::RegionGrowing<pcl::PointXYZRGB, pcl::Normal> reg;

		reg.setInputCloud (objectCloud);
		//reg.setIndices (indices);
		pcl::search::Search<pcl::PointXYZRGB>::Ptr tree = boost::shared_ptr<pcl::search::Search<pcl::PointXYZRGB> > (new pcl::search::KdTree<pcl::PointXYZRGB>);
		reg.setSearchMethod (tree);
		//reg.setDistanceThreshold (0.0001f);
		//reg.setResidualThreshold(0.01f);
		//ROS_INFO("res = %f",reg.getSmoothnessThreshold());
		//reg.setPointColorThreshold (6);
		//reg.setRegionColorThreshold (5);
		reg.setMinClusterSize (1);
		reg.setResidualThreshold(min_cluster_distance);
		reg.setCurvatureTestFlag(false);
		//		reg.setResidualTestFlag(true);
		//		reg.setNormalTestFlag(false);
		//		reg.setSmoothModeFlag(false);
		std::vector <pcl::PointIndices> clusters;
		reg.extract (clusters);

		//ROS_INFO("clusters = %d", clusters.size());

		//std::cout << "testefter" << std::endl;

		pcl::PointCloud <pcl::PointXYZRGB>::Ptr colored_cloud = reg.getColoredCloud ();

		pcl::PointCloud <pcl::PointXYZRGB>::Ptr clustersFilteredCloud(new pcl::PointCloud<pcl::PointXYZRGB>);
		std::vector <pcl::PointIndices> clustersFiltered;
		//pcl::PointXYZRGB min_pt, max_pt;
		Eigen::Vector4f min_pt, max_pt;
		obstacle_detection::boundingbox bbox;
		obstacle_detection::boundingboxes bboxes;
		bboxes.header.stamp = timestamp;
		bboxes.header.frame_id = "/velodyne";

		if (visualizationFlag)
			viewer->removeAllShapes(viewP(SegmentsFiltered));


		for (size_t i=0;i<clusters.size();i++)
		{
			//ROS_INFO("cluster size = %d",clusters[i].indices.size());
			if (clusters[i].indices.size() > 100)
			{
				clustersFiltered.push_back(clusters[i]);

				for (size_t pp=0;pp<clusters[i].indices.size();pp++)
				{
					clustersFilteredCloud->push_back(colored_cloud->points[clusters[i].indices[pp]]);
				}

				// Calculate bounding box
				pcl::getMinMax3D(*colored_cloud, clusters[i], min_pt, max_pt);
				bbox.start.x = min_pt[0];
				bbox.start.y = min_pt[1];
				bbox.start.z = min_pt[2];
				bbox.width.x = max_pt[0]-min_pt[0];
				bbox.width.y = max_pt[1]-min_pt[1];
				bbox.width.z = max_pt[2]-min_pt[2];
				bbox.header.stamp = timestamp;
				bbox.header.frame_id = "/velodyne";

				bboxes.boundingboxes.push_back(bbox);

				if (visualizationFlag)
					viewer->addCube (min_pt[0], max_pt[0], min_pt[1], max_pt[1], min_pt[2], max_pt[2], 1.0f, 1.0f, 1.0f, (boost::format("%04d") % i).str().c_str(), viewP(SegmentsFiltered));
			}


		}

		pubBBoxesPointer->publish(bboxes);
		//
		//		//pcl::visualization::CloudViewer viewer ("Cluster viewer");
		//		//viewer.showCloud (colored_cloud);
		//
		if (visualizationFlag)
		{
		pcl::visualization::PointCloudColorHandlerRGBField<pcl::PointXYZRGB> colorC2(colored_cloud);
		viewer->addPointCloud<pcl::PointXYZRGB>(colored_cloud,colorC2,"Segments",viewP(Segments));
		viewer->setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "Segments");
		viewer->addText ("Segments", 10, 10, fontsize, 1, 1, 1, "Segments text", viewP(Segments));


		pcl::visualization::PointCloudColorHandlerRGBField<pcl::PointXYZRGB> colorC3(clustersFilteredCloud);
		viewer->addPointCloud<pcl::PointXYZRGB>(clustersFilteredCloud,colorC3,"SegmentsFiltered",viewP(SegmentsFiltered));
		viewer->setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "SegmentsFiltered");
		viewer->addText ("Segments", 10, 10, fontsize, 1, 1, 1, "SegmentsFiltered text", viewP(SegmentsFiltered));
		}
		//
		//
		//		// BOUNDING BOXES



		//		viewer->addCube (min_pt.x, max_pt.x, min_pt.y, max_pt.y, min_pt.z, max_pt.z);





		//		std_msgs::Float64 testF;
		//		//testF.data = 10;
		//		testF.data = 10;
		//



		// Compute principal directions
		//		Eigen::Vector4f pcaCentroid;
		//		pcl::compute3DCentroid(*clustersFilteredCloud, pcaCentroid);
		//		Eigen::Matrix3f covariance;
		//		computeCovarianceMatrixNormalized(*clustersFilteredCloud, pcaCentroid, covariance);
		//		Eigen::SelfAdjointEigenSolver<Eigen::Matrix3f> eigen_solver(covariance, Eigen::ComputeEigenvectors);
		//		Eigen::Matrix3f eigenVectorsPCA = eigen_solver.eigenvectors();
		//		eigenVectorsPCA.col(2) = eigenVectorsPCA.col(0).cross(eigenVectorsPCA.col(1));
		//
		//		// Transform the original cloud to the origin where the principal components correspond to the axes.
		//		Eigen::Matrix4f projectionTransform(Eigen::Matrix4f::Identity());
		//		projectionTransform.block<3,3>(0,0) = eigenVectorsPCA.transpose();
		//		projectionTransform.block<3,1>(0,3) = -1.f * (projectionTransform.block<3,3>(0,0) * pcaCentroid.head<3>());
		//		pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloudPointsProjected (new pcl::PointCloud<pcl::PointXYZRGB>);
		//		pcl::transformPointCloud(*clustersFilteredCloud, *cloudPointsProjected, projectionTransform);
		//		// Get the minimum and maximum points of the transformed cloud.
		//		pcl::PointXYZRGB minPoint, maxPoint;
		//		pcl::getMinMax3D(*cloudPointsProjected, minPoint, maxPoint);
		//		const Eigen::Vector3f meanDiagonal = 0.5f*(maxPoint.getVector3fMap() + minPoint.getVector3fMap());
		//
		//		// Final transform
		//		const Eigen::Quaternionf bboxQuaternion(eigenVectorsPCA); //Quaternions are a way to do rotations https://www.youtube.com/watch?v=mHVwd8gYLnI
		//		const Eigen::Vector3f bboxTransform = eigenVectorsPCA * meanDiagonal + pcaCentroid.head<3>();
		//		viewer->addCube(bboxTransform, bboxQuaternion, maxPoint.x - minPoint.x, maxPoint.y - minPoint.y, maxPoint.z - minPoint.z, "bbox");


























		//pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZRGB> colorTTF1(featureCloudTest, 0, 255, 0);
		//	pcl::visualization::PointCloudColorHandlerRGBField<pcl::PointXYZRGB> colorTTF1(featureCloudTest);
		//	PCL_INFO("featureCloudTest size = %i",featureCloudTest->points.size());
		//	pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZRGB> colorTTF2(featureCloudTrain, 255, 0, 0);
		//	viewer->addPointCloud<pcl::PointXYZRGB>(featureCloudTest,colorTTF1,"TestTrainFeatures1",viewP(TestTrainFeatures));
		//	viewer->addPointCloud<pcl::PointXYZRGB>(featureCloudTrain,colorTTF2,"TestTrainFeatures2",viewP(TestTrainFeatures));
		//	viewer->addText ("TestTrainFeatures", 10, 10, "TestTrainFeatures text", viewP(TestTrainFeatures));

		//		sensor_msgs::PointCloud2 processedCloud;
		//		pcl::toROSMsg(*classificationCloud, processedCloud);
		//		processedCloud.header.stamp = ros::Time::now();//processedCloud->header.stamp;
		//		processedCloud.header.frame_id = "/velodyne";
		//		pubProcessedPointCloudPointer->publish(processedCloud);
		//
		//		pcl::PointCloud<pcl::PointXYZRGB>::Ptr groundCloud2D(new pcl::PointCloud<pcl::PointXYZRGB>);
		//		pcl::PointCloud<pcl::PointXYZRGB>::Ptr objectCloud2D(new pcl::PointCloud<pcl::PointXYZRGB>);
		//
		//		for (size_t i=0;i<classificationCloud->size();i++)
		//		{
		//			pcl::PointXYZRGB pTmp = classificationCloud->points[i];
		//			pTmp.z = 0; // 3D -> 2D
		//			if ((pTmp.r == 255) || (pTmp.g == 255)) // Object
		//			{
		//				objectCloud2D->push_back(pTmp);
		//			}
		//			else if (pTmp.b == 255) // Object
		//			{
		//				groundCloud2D->push_back(pTmp);
		//			}
		//		}
		//
		//		//std::vector<int> indexVector;
		//		unsigned int leafNodeCounter = 0;
		//		unsigned int voxelDensity = 0;
		//		unsigned int totalPoints = 0;
		//		//int occupancyW = OCCUPANCY_WIDTH/OCCUPANCY_GRID_RESOLUTION;
		//		//int occupancyH = OCCUPANCY_DEPTH/OCCUPANCY_GRID_RESOLUTION;
		//		std::vector<unsigned int> ocGroundGrid(OCCUPANCY_WIDTH*OCCUPANCY_DEPTH, 0);
		//		std::vector<unsigned int> ocObjectGrid(OCCUPANCY_WIDTH*OCCUPANCY_DEPTH, 0);
		//		std::vector<signed char> ocGridFinal(OCCUPANCY_WIDTH*OCCUPANCY_DEPTH,-1);
		//
		//		// Ground grid
		//		pcl::octree::OctreePointCloudDensity< pcl::PointXYZRGB > octreeGround (OCCUPANCY_GRID_RESOLUTION);
		//		octreeGround.setInputCloud (groundCloud2D);
		//		pcl::PointXYZ bot(-OCCUPANCY_DEPTH_M/2,-OCCUPANCY_WIDTH_M/2,-0.5);
		//		pcl::PointXYZ top(OCCUPANCY_DEPTH_M/2,OCCUPANCY_WIDTH_M/2,0.5);
		//		octreeGround.defineBoundingBox(bot.x, bot.y, bot.z, top.x, top.y, top.z);    // I have already calculated the BBox of my point cloud
		//		octreeGround.addPointsFromInputCloud ();
		//		pcl::octree::OctreePointCloudDensity<pcl::PointXYZRGB>::LeafNodeIterator it1;
		//		pcl::octree::OctreePointCloudDensity<pcl::PointXYZRGB>::LeafNodeIterator it1_end = octreeGround.leaf_end();
		//		int minx = 1000;
		//		int miny = 1000;
		//		int maxx = -1000;
		//		int maxy = -1000;
		//		for (it1 = octreeGround.leaf_begin(); it1 != it1_end; ++it1)
		//		{
		//			pcl::octree::OctreePointCloudDensityContainer& container = it1.getLeafContainer();
		//			voxelDensity = container.getPointCounter();
		//			Eigen::Vector3f min_pt, max_pt;
		//			octreeGround.getVoxelBounds (it1, min_pt, max_pt);
		//			//ROS_INFO("x = %f, y = %f, z = %f, x2 = %f, y2 = %f, z2 = %f",min_pt[0],min_pt[1],min_pt[2],max_pt[0],max_pt[1],max_pt[2]);
		//			totalPoints += voxelDensity;
		//			if (min_pt[0] < minx)
		//				minx = min_pt[0];
		//			if (min_pt[0] > maxx)
		//				maxx = min_pt[0];
		//			if (min_pt[1] < miny)
		//				miny = min_pt[1];
		//			if (min_pt[1] > maxy)
		//				maxy = min_pt[1];
		//
		//			int r = OCCUPANCY_DEPTH-(min_pt[0]+OCCUPANCY_DEPTH_M/2)/OCCUPANCY_GRID_RESOLUTION;
		//			int c = OCCUPANCY_WIDTH-(min_pt[1]+OCCUPANCY_WIDTH_M/2)/OCCUPANCY_GRID_RESOLUTION;
		//
		//			//			if ((r == 51) || (c==51))
		//			//				ROS_INFO("r = %i,c = %i",r,c);
		//
		//			//if (((int)min_pt[0] == -1) || ((int)min_pt[1]==-1))
		//			//ROS_INFO("min_pt[0] = %f, min_pt[1]=%f",min_pt[0],min_pt[1]);
		//			if (!((r < 0) || (c < 0) || (r > OCCUPANCY_DEPTH-1) || (c > OCCUPANCY_WIDTH-1)))
		//				ocGroundGrid[r+OCCUPANCY_DEPTH*c] = voxelDensity;
		//			//ROS_INFO("density = %i, r = %i, c=%i",voxelDensity, r, c);
		//			//ROS_INFO("x (%f) -> r (%i), y (%f) -> c (%i)",min_pt[0],r,min_pt[1],c);
		//			leafNodeCounter++;
		//		}
		//
		//
		//		// Object grid
		//		pcl::octree::OctreePointCloudDensity< pcl::PointXYZRGB > octreeObject (OCCUPANCY_GRID_RESOLUTION);
		//		octreeObject.setInputCloud (objectCloud2D);
		//		octreeObject.defineBoundingBox(bot.x, bot.y, bot.z, top.x, top.y, top.z);    // I have already calculated the BBox of my point cloud
		//		octreeObject.addPointsFromInputCloud ();
		//		pcl::octree::OctreePointCloudDensity<pcl::PointXYZRGB>::LeafNodeIterator it2;
		//		pcl::octree::OctreePointCloudDensity<pcl::PointXYZRGB>::LeafNodeIterator it2_end = octreeObject.leaf_end();
		//		minx = 1000;
		//		miny = 1000;
		//		maxx = -1000;
		//		maxy = -1000;
		//		leafNodeCounter = 0;
		//		voxelDensity = 0;
		//		totalPoints = 0;
		//		int t1 = 0;
		//		int t2 = 0;
		//		int t3 = 0;
		//		for (it2 = octreeObject.leaf_begin(); it2 != it2_end; ++it2)
		//		{
		//			pcl::octree::OctreePointCloudDensityContainer& container = it2.getLeafContainer();
		//			voxelDensity = container.getPointCounter();
		//			Eigen::Vector3f min_pt, max_pt;
		//			octreeObject.getVoxelBounds (it2, min_pt, max_pt);
		//			//ROS_INFO("x = %f, y = %f, z = %f, x2 = %f, y2 = %f, z2 = %f",min_pt[0],min_pt[1],min_pt[2],max_pt[0],max_pt[1],max_pt[2]);
		//			totalPoints += voxelDensity;
		//			if (min_pt[0] < minx)
		//				minx = min_pt[0];
		//			if (min_pt[0] > maxx)
		//				maxx = min_pt[0];
		//			if (min_pt[1] < miny)
		//				miny = min_pt[1];
		//			if (min_pt[1] > maxy)
		//				maxy = min_pt[1];
		//
		//			int r = OCCUPANCY_DEPTH-(min_pt[0]+OCCUPANCY_DEPTH_M/2)/OCCUPANCY_GRID_RESOLUTION;
		//			int c = OCCUPANCY_WIDTH-(min_pt[1]+OCCUPANCY_WIDTH_M/2)/OCCUPANCY_GRID_RESOLUTION;
		//			if (!((r < 0) || (c < 0) || (r > OCCUPANCY_DEPTH-1) || (c > OCCUPANCY_WIDTH-1)))
		//				ocObjectGrid[r+OCCUPANCY_DEPTH*c] = voxelDensity;
		//			//ROS_INFO("object points = %i -> %i: x (%f) -> r (%i), y (%f) -> c (%i)",voxelDensity,ocGridFinal[r+OCCUPANCY_DEPTH*c],min_pt[0],r,min_pt[1],c);
		//			//ocGrid[r+OCCUPANCY_DEPTH*c] = voxelDensity;
		//			//ROS_INFO("density = %i, r = %i, c=%i",voxelDensity, r, c);
		//
		//			leafNodeCounter++;
		//		}
		//
		//		for (int r=0;r<OCCUPANCY_DEPTH;r++)
		//		{
		//			for (int c=0;c<OCCUPANCY_WIDTH;c++)
		//			{
		//				if ((ocGroundGrid[r+OCCUPANCY_DEPTH*c] == 0) && (ocObjectGrid[r+OCCUPANCY_DEPTH*c] <= 1))
		//				{
		//					ocGridFinal[r+OCCUPANCY_DEPTH*c] = -1.0; // 0.5 default likelihood
		//					t1++;
		//				}
		//				else if ((ocObjectGrid[r+OCCUPANCY_DEPTH*c] == 0))// && (ocGroundGrid[r+OCCUPANCY_DEPTH*c] > 0))
		//				{
		//					ocGridFinal[r+OCCUPANCY_DEPTH*c] = OCCUPANCY_MIN_PROB;
		//					t2++;
		//				}
		//				else
		//				{
		//					ocGridFinal[r+OCCUPANCY_DEPTH*c] = 50+(OCCUPANCY_MAX_PROB-50)*ocObjectGrid[r+OCCUPANCY_DEPTH*c]/(ocObjectGrid[r+OCCUPANCY_DEPTH*c]+ocGroundGrid[r+OCCUPANCY_DEPTH*c]);
		//					t3++;
		//				}
		//			}
		//		}
		//
		//		nav_msgs::OccupancyGrid occupancyGrid;
		//		occupancyGrid.info.resolution = OCCUPANCY_GRID_RESOLUTION;
		//		occupancyGrid.header.stamp = timestamp;//ros::Time::now();
		//		occupancyGrid.header.frame_id = "/velodyne";
		//		occupancyGrid.info.width = OCCUPANCY_WIDTH;
		//		occupancyGrid.info.height = OCCUPANCY_DEPTH;
		//		//geometry_msgs::Pose lidarPose;
		//		geometry_msgs::Point lidarPoint;
		//		lidarPoint.x = 0;
		//		lidarPoint.y = 0;
		//		lidarPoint.z = 0;
		//		geometry_msgs::Quaternion lidarQuaternion;
		//		lidarQuaternion.w = 1;
		//		lidarQuaternion.x = 0;
		//		lidarQuaternion.y = 0;
		//		lidarQuaternion.z = 0;
		//		occupancyGrid.info.origin.position = lidarPoint;
		//		occupancyGrid.info.origin.orientation = lidarQuaternion;
		//		occupancyGrid.data = ocGridFinal;
		//
		//		//ROS_INFO("total points = %i, total leaves = %i",totalPoints,leafNodeCounter);
		//		//ROS_INFO("minx = %i, maxx = %i, miny = %i, maxy = %i",minx,maxx,miny,maxy);
		//		//ROS_INFO("t1 = %i, t2 = %i, t3 = %i",t1,t2,t3);
		//
		//
		//		pubOccupancyGridPointer->publish(occupancyGrid);


		//		int l = 0;
		//		while (*++itLeafs)
		//		{
		//		    //Iteratively explore only the leaf nodes..
		//		    std::vector<PointXYZ> points;
		//		    itLeafs->getData(points);
		//		    l++;
		//		}
		//
		//		ROS_INFO("l = %i",l);

		//pcl::octree::OctreePointCloudSearch<pcl::PointXYZ> octree (OCCUPANCY_GRID_RESOLUTION);

		//		sensor_msgs::PointCloud2::Ptr cloud_filtered (new sensor_msgs::PointCloud2 ());
		//		pcl::VoxelGrid<sensor_msgs::PointCloud2> sor;
		//		sor.setInputCloud (processedCloud);
		//		sor.setLeafSize (0.01f, 0.01f, 0.01f);
		//		sor.filter (*cloud_filtered);
		if (n==0)
		{
			//viewer->setCameraPosition(-20,0,10,1,0,2,1,0,2,v1);
			//viewer->setCameraPosition(-20,0,10,1,0,2,1,0,2,v2);
			//viewer->loadCameraParameters("pcl_video.cam");
		}
#if (OLD_METHOD)
	}
#endif

	if (visualizationFlag)
		viewer->spinOnce();

	// Save screenshot
//	std::stringstream tmp;
//	tmp << n;
//	viewer->saveScreenshot("/home/mikkel/images/" + (boost::format("%04d") % n).str() + ".png");
//	n++;
}
Пример #7
0
template <typename PointInT, typename PointOutT> void
pcl::ROPSEstimation <PointInT, PointOutT>::computeLRF (const PointInT& point, const std::set <unsigned int>& local_triangles, Eigen::Matrix3f& lrf_matrix) const
{
  const unsigned int number_of_triangles = static_cast <unsigned int> (local_triangles.size ());

  std::vector<Eigen::Matrix3f, Eigen::aligned_allocator<Eigen::Matrix3f> > scatter_matrices (number_of_triangles);
  std::vector <float> triangle_area (number_of_triangles);
  std::vector <float> distance_weight (number_of_triangles);

  float total_area = 0.0f;
  const float coeff = 1.0f / 12.0f;
  const float coeff_1_div_3 = 1.0f / 3.0f;

  Eigen::Vector3f feature_point (point.x, point.y, point.z);

  unsigned int i_triangle = 0;
  for (auto it = local_triangles.cbegin (); it != local_triangles.cend (); it++, i_triangle++)
  {
    Eigen::Vector3f pt[3];
    for (unsigned int i_vertex = 0; i_vertex < 3; i_vertex++)
    {
      const unsigned int index = triangles_[*it].vertices[i_vertex];
      pt[i_vertex] (0) = surface_->points[index].x;
      pt[i_vertex] (1) = surface_->points[index].y;
      pt[i_vertex] (2) = surface_->points[index].z;
    }

    const float curr_area = ((pt[1] - pt[0]).cross (pt[2] - pt[0])).norm ();
    triangle_area[i_triangle] = curr_area;
    total_area += curr_area;

    distance_weight[i_triangle] = std::pow (support_radius_ - (feature_point - (pt[0] + pt[1] + pt[2]) * coeff_1_div_3).norm (), 2.0f);

    Eigen::Matrix3f curr_scatter_matrix;
    curr_scatter_matrix.setZero ();
    for (const auto &i_pt : pt)
    {
      Eigen::Vector3f vec = i_pt - feature_point;
      curr_scatter_matrix += vec * (vec.transpose ());
      for (const auto &j_pt : pt)
        curr_scatter_matrix += vec * ((j_pt - feature_point).transpose ());
    }
    scatter_matrices[i_triangle] = coeff * curr_scatter_matrix;
  }

  if (std::abs (total_area) < std::numeric_limits <float>::epsilon ())
    total_area = 1.0f / total_area;
  else
    total_area = 1.0f;

  Eigen::Matrix3f overall_scatter_matrix;
  overall_scatter_matrix.setZero ();
  std::vector<float> total_weight (number_of_triangles);
  const float denominator = 1.0f / 6.0f;
  for (unsigned int i_triangle = 0; i_triangle < number_of_triangles; i_triangle++)
  {
    float factor = distance_weight[i_triangle] * triangle_area[i_triangle] * total_area;
    overall_scatter_matrix += factor * scatter_matrices[i_triangle];
    total_weight[i_triangle] = factor * denominator;
  }

  Eigen::Vector3f v1, v2, v3;
  computeEigenVectors (overall_scatter_matrix, v1, v2, v3);

  float h1 = 0.0f;
  float h3 = 0.0f;
  i_triangle = 0;
  for (auto it = local_triangles.cbegin (); it != local_triangles.cend (); it++, i_triangle++)
  {
    Eigen::Vector3f pt[3];
    for (unsigned int i_vertex = 0; i_vertex < 3; i_vertex++)
    {
      const unsigned int index = triangles_[*it].vertices[i_vertex];
      pt[i_vertex] (0) = surface_->points[index].x;
      pt[i_vertex] (1) = surface_->points[index].y;
      pt[i_vertex] (2) = surface_->points[index].z;
    }

    float factor1 = 0.0f;
    float factor3 = 0.0f;
    for (const auto &i_pt : pt)
    {
      Eigen::Vector3f vec = i_pt - feature_point;
      factor1 += vec.dot (v1);
      factor3 += vec.dot (v3);
    }
    h1 += total_weight[i_triangle] * factor1;
    h3 += total_weight[i_triangle] * factor3;
  }

  if (h1 < 0.0f) v1 = -v1;
  if (h3 < 0.0f) v3 = -v3;

  v2 = v3.cross (v1);

  lrf_matrix.row (0) = v1;
  lrf_matrix.row (1) = v2;
  lrf_matrix.row (2) = v3;
}
Пример #8
0
// Calculate the distance between the point and the plane
static double GetDistanceToPlane(const pcl::PointXYZ& point, const Eigen::Vector3f& normalVector, double d)
{
	Eigen::Vector3f t;
	t << point.x, point.y, point.z;
	return fabs(t.dot(normalVector) + d);
}
Пример #9
0
bool SimpleRayCaster::intersectRayTriangle(const Eigen::Vector3f ray,
        const Eigen::Vector3f a, const Eigen::Vector3f b, const Eigen::Vector3f c,
        Eigen::Vector3f& isec)
{

    /* As discribed by:
     * http://geomalgorithms.com/a06-_intersect-2.html#intersect_RayTriangle%28%29 */

    const Eigen::Vector3f p(0,0,0);
    const Eigen::Vector3f u = b - a;
    const Eigen::Vector3f v = c - a;
    const Eigen::Vector3f n = u.cross(v);
    const float n_dot_ray = n.dot(ray);

    if (std::fabs(n_dot_ray) < 1e-9) {
        return false;
    }


    const float r = n.dot(a-p) / n_dot_ray;

    if (r < 0) {
        return false;
    }

    // the ray intersection point
    isec = ray * r;

    const Eigen::Vector3f w = p + r * ray - a;
    const float denominator = u.dot(v) * u.dot(v) - u.dot(u) * v.dot(v);
    const float s_numerator = u.dot(v) * w.dot(v) - v.dot(v) * w.dot(u);
    const float s = s_numerator / denominator;
    if (s < 0 || s > 1) {
        return false;
    }

    const float t_numerator = u.dot(v) * w.dot(u) - u.dot(u) * w.dot(v);
    const float t = t_numerator / denominator;
    if (t < 0 || s+t > 1) {
        return false;
    }

    return true;
}
Пример #10
0
bool is_inlier(const Eigen::Vector3f& point, const Eigen::Vector4f plane, double threshold)
{
    return fabs(point.dot(plane.segment<3>(0)) + plane(3)) < threshold;
}
// METHOD THAT RECEIVES POINT CLOUDS (OPEN MP)
std::vector<cluster> poseEstimationSV::poseEstimationCore_openmp(pcl::PointCloud<pcl::PointXYZ>::ConstPtr cloud)
{
Tic();
	std::vector <std::vector < pose > > bestPosesAux;
	bestPosesAux.resize(omp_get_num_procs());

	//int bestPoseAlpha;
	//int bestPosePoint;
	//int bestPoseVotes;
	
	Eigen::Vector3f scenePoint;
	Eigen::Vector3f sceneNormal;


	pcl::PointIndices normals_nan_indices;
	pcl::ExtractIndices<pcl::PointNormal> nan_extract;

	float alpha;
	unsigned int alphaBin,index;
	// Iterators
	//unsigned int sr; // scene reference point
	pcl::PointCloud<pcl::PointNormal>::iterator si;	// scene paired point
	std::vector<pointPairSV>::iterator sameFeatureIt; // same key on hash table
	std::vector<boost::shared_ptr<pose> >::iterator bestPosesIt;

	Eigen::Vector4f feature;
	Eigen::Vector3f _pointTwoTransformed;
	std::cout<< "\tCloud size: " << cloud->size() << endl;
	//////////////////////////////////////////////
	// Downsample point cloud using a voxelgrid //
	//////////////////////////////////////////////

	pcl::PointCloud<pcl::PointXYZ>::Ptr cloudDownsampled(new pcl::PointCloud<pcl::PointXYZ> ());
  	// Create the filtering object
  	pcl::VoxelGrid<pcl::PointXYZ> sor;
  	sor.setInputCloud (cloud);
  	sor.setLeafSize (model->distanceStep,model->distanceStep,model->distanceStep);
  	sor.filter (*cloudDownsampled);
	std::cout<< "\tCloud size after downsampling: " << cloudDownsampled->size() << endl;

	// Compute point cloud normals (using cloud before downsampling information)
	std::cout<< "\tCompute normals... ";
	cloudNormals=model->computeSceneNormals(cloudDownsampled);
	std::cout<< "Done" << endl;

	/*boost::shared_ptr<pcl_visualization::PCLVisualizer> viewer2 = objectModel::viewportsVis(cloudFilteredNormals);

  	while (!viewer2->wasStopped ())
  	{
   		viewer2->spinOnce (100);
    		boost::this_thread::sleep (boost::posix_time::microseconds (100000));
  	}*/

	/*boost::shared_ptr<pcl_visualization::PCLVisualizer> viewer2 = objectModel::viewportsVis(model->modelCloud);

  	while (!viewer2->wasStopped ())
  	{
   		viewer2->spinOnce (100);
    		boost::this_thread::sleep (boost::posix_time::microseconds (100000));
  	}*/
	//////////////////////////////////////////////////////////////////////////////
	// Filter again to remove spurious normals nans (and it's associated point) //
	////////////////////////////////////////////////fa//////////////////////////////

	for (unsigned int i = 0; i < cloudNormals->points.size(); ++i) 
	{
		if (isnan(cloudNormals->points[i].normal[0]) || isnan(cloudNormals->points[i].normal[1]) || isnan(cloudNormals->points[i].normal[2]))
		{
	   		normals_nan_indices.indices.push_back(i);
		}
	}

	nan_extract.setInputCloud(cloudNormals);
	nan_extract.setIndices(boost::make_shared<pcl::PointIndices> (normals_nan_indices));
	nan_extract.setNegative(true);
	nan_extract.filter(*cloudWithNormalsDownSampled);
	std::cout<< "\tCloud size after removing NaN normals: " << cloudWithNormalsDownSampled->size() << endl;


	/////////////////////////////////////////////
	// Extract reference points from the scene //
	/////////////////////////////////////////////

	//pcl::RandomSample< pcl::PointCloud<pcl::PointNormal> > randomSampler;
	//randomSampler.setInputCloud(cloudWithNormalsDownSampled);
	// Create the filtering object
	int numberOfPoints=(int) (cloudWithNormalsDownSampled->size () )*referencePointsPercentage;
	int totalPoints=(int) (cloudWithNormalsDownSampled->size ());
	std::cout << "\tUniform sample a set of " << numberOfPoints << "(" << referencePointsPercentage*100 <<  "%)... ";
	referencePointsIndices->indices.clear();
	extractReferencePointsUniform(referencePointsPercentage,totalPoints);
	std::cout << "Done" << std::endl;
	//std::cout << referencePointsIndices->indices.size() << std::endl;

	//////////////
	// Votation //
	//////////////

	std::cout<< "\tVotation... ";

	omp_set_num_threads(omp_get_num_procs());
	//omp_set_num_threads(1);
	//int iteration=0;

        bestPoses.clear();
	#pragma omp parallel for private(alpha,alphaBin,alphaScene,sameFeatureIt,index,feature,si,_pointTwoTransformed) //reduction(+:iteration)  //nowait
	for(unsigned int sr=0; sr < referencePointsIndices->indices.size(); ++sr)
	{
	
		//++iteration;
		//std::cout << "iteration: " << iteration << " thread:" << omp_get_thread_num() << std::endl;
		//printf("Hello from thread %d, nthreads %d\n", omp_get_thread_num(), omp_get_num_threads());
		scenePoint=cloudWithNormalsDownSampled->points[referencePointsIndices->indices[sr]].getVector3fMap();
		sceneNormal=cloudWithNormalsDownSampled->points[referencePointsIndices->indices[sr]].getNormalVector3fMap();

		// Get transformation from scene frame to global frame
		Eigen::Vector3f cross=sceneNormal.cross (Eigen::Vector3f::UnitX ()). normalized();

		Eigen::Affine3f rotationSceneToGlobal;
		if(isnan(cross[0]))
		{
			rotationSceneToGlobal=Eigen::AngleAxisf(0.0,Eigen::Vector3f::UnitX ());
		}
		else
			rotationSceneToGlobal=Eigen::AngleAxisf(acosf (sceneNormal.dot (Eigen::Vector3f::UnitX ())),cross);

		Eigen::Affine3f transformSceneToGlobal = Eigen::Translation3f ( rotationSceneToGlobal* ((-1)*scenePoint)) * rotationSceneToGlobal;

		//////////////////////
		// Choose best pose //
		//////////////////////

		// Reset pose accumulator
		for(std::vector<std::vector<int> >::iterator accumulatorIt=accumulatorParallelAux[omp_get_thread_num()].begin();accumulatorIt < accumulatorParallelAux[omp_get_thread_num()].end(); ++accumulatorIt)
		{
			std::fill(accumulatorIt->begin(),accumulatorIt->end(),0); 
		}
		

		//std::cout << std::endl;
		for(si=cloudWithNormalsDownSampled->begin(); si < cloudWithNormalsDownSampled->end();++si)
		{
			// if same point, skip point pair
			if( (cloudWithNormalsDownSampled->points[referencePointsIndices->indices[sr]].x==si->x) && (cloudWithNormalsDownSampled->points[referencePointsIndices->indices[sr]].y==si->y) && (cloudWithNormalsDownSampled->points[referencePointsIndices->indices[sr]].z==si->z))
			{
				//std::cout << si->x << " " << si->y << " " << si->z << std::endl;
				continue;
			}	

			// Compute PPF
			pointPairSV PPF=pointPairSV(cloudWithNormalsDownSampled->points[sr],*si, transformSceneToGlobal);

			// Compute index
			index=PPF.getHash(*si,model->distanceStepInverted);

			// If distance between point pairs is bigger than the maximum for this model, skip point pair
			if(index>pointPairSV::maxHash)
			{
				//std::cout << "DEBUG" << std::endl;
				continue;
			}

			// If there is no similar point pair features in the model, skip point pair and avoid computing the alpha
			if(model->hashTable[index].size()==0)
				continue; 

			for(sameFeatureIt=model->hashTable[index].begin(); sameFeatureIt<model->hashTable[index].end(); ++sameFeatureIt)
			{
				// Vote on the reference point and angle (and object)
				alpha=sameFeatureIt->alpha-PPF.alpha; // alpha values between [-360,360]

				// alpha values should be between [-180,180] ANGLE_MAX = 2*PI
				if(alpha<(-PI))
					alpha=ANGLE_MAX+alpha;
				else if(alpha>(PI))
					alpha=alpha-ANGLE_MAX;
				//std::cout << "alpha after: " << alpha*RAD_TO_DEG << std::endl;
				//std::cout << "alpha after2: " << (alpha+PI)*RAD_TO_DEG << std::endl;
				alphaBin=static_cast<unsigned int> ( round((alpha+PI)*pointPair::angleStepInverted) ); // division is slower than multiplication
				//std::cout << "angle1: " << alphaBin << std::endl;
           			/*alphaBin = static_cast<unsigned int> (floor (alpha) + floor (PI *poseAngleStepInverted));
				std::cout << "angle2: " << alphaBin << std::endl;*/
				//alphaBin=static_cast<unsigned int> ( floor(alpha*poseAngleStepInverted) + floor(PI*poseAngleStepInverted) );
				if(alphaBin>=pointPair::angleBins)
				{	
					alphaBin=0;
					//ROS_INFO("naoooo");
					//exit(1);
				}

//#pragma omp critical
//{std::cout << index <<" "<<sameFeatureIt->id << " " << alphaBin << " " << omp_get_thread_num() << " " << accumulatorParallelAux[omp_get_thread_num()][sameFeatureIt->id][alphaBin] << std::endl;}

				accumulatorParallelAux[omp_get_thread_num()][sameFeatureIt->id][alphaBin]+=sameFeatureIt->weight;
			}
		}
		//ROS_INFO("DISTANCE:%f DISTANCE SQUARED:%f", model->maxModelDist, model->maxModel

		// Choose best pose (highest peak on the accumulator[peak with more votes])

		int bestPoseAlpha=0;
		int bestPosePoint=0;
		int bestPoseVotes=0;

		for(size_t p=0; p < model->modelCloud->size(); ++p)
		{
			for(unsigned int a=0; a < pointPair::angleBins; ++a)
			{
				if(accumulatorParallelAux[omp_get_thread_num()][p][a]>bestPoseVotes)
				{
					bestPoseVotes=accumulatorParallelAux[omp_get_thread_num()][p][a];
					bestPosePoint=p;
					bestPoseAlpha=a;
				}
			}
		}

		// A candidate pose was found
		if(bestPoseVotes!=0)
		{
			// Compute and store transformation from model to scene
			//boost::shared_ptr<pose> bestPose(new pose( bestPoseVotes,model->modelToScene(model->modelCloud->points[bestPosePoint],transformSceneToGlobal,static_cast<float>(bestPoseAlpha)*pointPair::angleStep-PI) ));

			bestPosesAux[omp_get_thread_num()].push_back(pose( bestPoseVotes,model->modelToScene(bestPosePoint,transformSceneToGlobal,static_cast<float>(bestPoseAlpha)*pointPair::angleStep-PI) ));
			//bestPoses.push_back(bestPose);

			//std::cout << bestPosesAux[omp_get_thread_num()].size() <<" " <<omp_get_thread_num()<< std::endl;
		}
		else 
		{
			continue;
		}

		// Choose poses whose votes are a percentage above a given threshold of the best pose
		accumulatorParallelAux[omp_get_thread_num()][bestPosePoint][bestPoseAlpha]=0; 	// This is more efficient than having an if condition to verify if we are considering the best pose again
		for(size_t p=0; p < model->modelCloud->size(); ++p)
		{
			for(unsigned int a=0; a < pointPair::angleBins; ++a)
			{
				if(accumulatorParallelAux[omp_get_thread_num()][p][a]>=accumulatorPeakThreshold*bestPoseVotes)
				{
					// Compute and store transformation from model to scene
					//boost::shared_ptr<pose> bestPose(new pose( accumulatorParallelAux[omp_get_thread_num()][p][a],model->modelToScene(model->modelCloud->points[p],transformSceneToGlobal,static_cast<float>(a)*pointPair::angleStep-PI ) ));


					//bestPoses.push_back(bestPose);
					bestPosesAux[omp_get_thread_num()].push_back(pose( bestPoseVotes,model->modelToScene(bestPosePoint,transformSceneToGlobal,static_cast<float>(bestPoseAlpha)*pointPair::angleStep-PI) ));
					//std::cout << bestPosesAux[omp_get_thread_num()].size() <<" " <<omp_get_thread_num()<< std::endl;
				}
			}
		}
	}

	std::cout << "Done" << std::endl;


	for(int i=0; i<omp_get_num_procs(); ++i)
	{
		for(unsigned int j=0; j<bestPosesAux[i].size(); ++j)
			bestPoses.push_back(bestPosesAux[i][j]);
	}
	std::cout << "\thypothesis number: " << bestPoses.size() << std::endl << std::endl;

	if(bestPoses.size()==0)
	{
		clusters.clear();
		return clusters;
	}

	
	//////////////////////
	// Compute clusters //
	//////////////////////
Tac();
	std::cout << "\tCompute clusters... ";
Tic();
	clusters=poseClustering(bestPoses);
Tac();
	std::cout << "Done" << std::endl;

	return clusters;
}
Пример #12
0
int main(int argc, char *argv[]){
    if(argc>1){
        CloudPtr cloud (new Cloud);
        ColorCloudPtr color_cloud (new ColorCloud);
        if (pcl::io::loadPCDFile(argv[1], *cloud) == -1) //* load the file
        {
            PCL_ERROR ("Couldn't read file.\n");
            return -1;
        }
        for(int i = 0; i<cloud->size(); i++){
            Point p1 = cloud->points[i];
            ColorPoint p2;
            p2.x = p1.x;
            p2.y = p1.y;
            p2.z = p1.z;
            p2.r = 0;
            p2.g = 0;
            p2.b = 0;
            color_cloud->push_back(p2);
        }
        
        float centroid[3];
        calculateCentroid(cloud,centroid);


        pcl::PolygonMesh pm;
        pcl::ConvexHull<ColorPoint> chull;
        chull.setInputCloud(color_cloud);
        chull.reconstruct(pm);

        pcl::fromROSMsg(pm.cloud,*color_cloud);
        vector<float> distances(color_cloud->size(),999999);

        for(int i = 0; i<pm.polygons.size(); i++){
            int i0 = pm.polygons[i].vertices[0];
            int i1 = pm.polygons[i].vertices[1];
            int i2 = pm.polygons[i].vertices[2];
            ColorPoint p0 = color_cloud->points[i0];
            ColorPoint p1 = color_cloud->points[i1];
            ColorPoint p2 = color_cloud->points[i2];

            Eigen::Vector3f v0;
            Eigen::Vector3f v1;
            Eigen::Vector3f v2;
            v0 << p0.x,p0.y,p0.z;
            v1 << p1.x,p1.y,p1.z;
            v2 << p2.x,p2.y,p2.z;
            Eigen::Vector3f normal = (v1-v0).cross(v2-v0).normalized();

            Eigen::Vector3f p;
            p << centroid[0], centroid[1], centroid[2];

            Eigen::Vector3f to_p = p-v0;
            Eigen::Vector3f projected_p = p-(normal* normal.dot(to_p));

            float dist0 = (v1-v0).dot(projected_p-v0)/(v1-v0).norm();
            float dist1 = (v2-v0).dot(projected_p-v0)/(v2-v0).norm();
            distances[i0] = min(distances[i0],(dist0+dist1));
            distances[i1] = min(distances[i1],(dist0+dist1));
            distances[i2] = min(distances[i2],(dist0+dist1));
        }
        float max_dist = *max_element(distances.begin(),distances.end());

        float thresh = 500;
        for(int i = 0; i<color_cloud->size(); i++){
            ColorPoint* p1 = &color_cloud->points[i];
            float color = 255 - distances[i]*(255/max_dist);
            if(distances[i]>thresh)
                color = 0;
            p1->r = color;
            p1->g = 0;
            p1->b = 0;
        }

        chull.setInputCloud(color_cloud);
        chull.reconstruct(pm);

        pcl::io::saveVTKFile("hull.vtk",pm);
    }
}
Пример #13
0
void SaveClustersWorker::doWork(const QString &filename)
{
    bool is_success(false);

    QByteArray ba = filename.toLocal8Bit();
    string* strfilename = new string(ba.data());

    dataLibrary::Status = STATUS_SAVECLUSTERS;

    dataLibrary::start = clock();

    //begin of processing
    //compute centor point and normal
    float nx_all, ny_all, nz_all;
    float curvature_all;
    Eigen::Matrix3f convariance_matrix_all;
    Eigen::Vector4f xyz_centroid_all, plane_parameters_all;
    pcl::compute3DCentroid(*dataLibrary::cloudxyz, xyz_centroid_all);
    pcl::computeCovarianceMatrix(*dataLibrary::cloudxyz, xyz_centroid_all, convariance_matrix_all);
    pcl::solvePlaneParameters(convariance_matrix_all, nx_all, ny_all, nz_all, curvature_all);
    Eigen::Vector3f centroid_all;
    dataLibrary::plane_normal_all(0)=nx_all;
    dataLibrary::plane_normal_all(1)=ny_all;
    dataLibrary::plane_normal_all(2)=nz_all;
    centroid_all(0)=xyz_centroid_all(0);
    centroid_all(1)=xyz_centroid_all(1);
    centroid_all(2)=xyz_centroid_all(2);

    //calculate total surface roughness of outcrop
    float total_distance=0.0;
    for(int i=0; i<dataLibrary::cloudxyz->size(); i++)
    {
        Eigen::Vector3f Q;
        Q(0)=dataLibrary::cloudxyz->at(i).x;
        Q(1)=dataLibrary::cloudxyz->at(i).y;
        Q(2)=dataLibrary::cloudxyz->at(i).z;
        total_distance+=std::abs((Q-centroid_all).dot(dataLibrary::plane_normal_all)/std::sqrt((dataLibrary::plane_normal_all.dot(dataLibrary::plane_normal_all))));
    }
    float roughness=total_distance/dataLibrary::cloudxyz->size();

    //project all points
    pcl::ModelCoefficients::Ptr coefficients_all (new pcl::ModelCoefficients());
    coefficients_all->values.resize(4);
    coefficients_all->values[0] = nx_all;
    coefficients_all->values[1] = ny_all;
    coefficients_all->values[2] = nz_all;
    coefficients_all->values[3] = - (nx_all*xyz_centroid_all[0] + ny_all*xyz_centroid_all[1] + nz_all*xyz_centroid_all[2]);

    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_projected_all (new pcl::PointCloud<pcl::PointXYZ>);
    pcl::ProjectInliers<pcl::PointXYZ> proj_all;
    proj_all.setModelType(pcl::SACMODEL_PLANE);
    proj_all.setInputCloud(dataLibrary::cloudxyz);
    proj_all.setModelCoefficients(coefficients_all);
    proj_all.filter(*cloud_projected_all);

    //compute convex hull
    pcl::ConvexHull<pcl::PointXYZ> chull_all;
    chull_all.setInputCloud(cloud_projected_all);
    chull_all.reconstruct(*dataLibrary::cloud_hull_all);

    /*//compute concave hull
    pcl::ConcaveHull<pcl::PointXYZ> chull_all;
    chull_all.setInputCloud(cloud_projected_all);
    chull_all.setAlpha(0.1);
    chull_all.reconstruct(*dataLibrary::cloud_hull_all);*/

    //compute area
    float area_all = 0.0f;
    int num_points_all = dataLibrary::cloud_hull_all->size();
    int j = 0;
    Eigen::Vector3f va_all, vb_all, res_all;
    res_all(0) = res_all(1) = res_all(2) = 0.0f;
    for(int i = 0; i < num_points_all; i++)
    {
        j = (i+1) % num_points_all;
        va_all = dataLibrary::cloud_hull_all->at(i).getVector3fMap();
        vb_all = dataLibrary::cloud_hull_all->at(j).getVector3fMap();
        res_all += va_all.cross(vb_all);
    }
    area_all = fabs(res_all.dot(dataLibrary::plane_normal_all) * 0.5);

    //initial total length of fracture traces
    float total_length=0.0;
    //initial over estimate length of fracture traces
    float error_length=0.0;
    //initial total displacement
    float total_displacement=0.0;
    //initial mean dip2plane angle
    float total_dip2plane=0.0;
    int inside_num=0;

    string textfilename = strfilename->substr(0, strfilename->size()-4) += "_table.txt";
    string dip_dipdir_file = strfilename->substr(0, strfilename->size()-4) += "_dip_dipdir.txt";
    string dipdir_dip_file = strfilename->substr(0, strfilename->size()-4) += "_dipdir_dip.txt";
    string fracture_intensity = strfilename->substr(0, strfilename->size()-4) += "_fracture_intensity.txt";
    ofstream fout(textfilename.c_str());
    ofstream dip_dipdir_out(dip_dipdir_file.c_str());
    ofstream dipdir_dip_out(dipdir_dip_file.c_str());
    ofstream fracture_intensity_out(fracture_intensity.c_str());
    fout<<"Flag"<<"\t"<<"Number"<<"\t"<<"Points"<<"\t"<<"Direc"<<"\t"<<"Dip"<<"\t"<<"Area"<<"\t"<<"Length"<<"\t"<<"Roughness"<<"\n";

    int num_of_clusters = dataLibrary::clusters.size();
    ofstream fbinaryout(strfilename->c_str(), std::ios::out|std::ios::binary|std::ios::app);
    fbinaryout.write(reinterpret_cast<const char*>(&num_of_clusters), sizeof(num_of_clusters));
    for(int cluster_index = 0; cluster_index < dataLibrary::clusters.size(); cluster_index++)
    {
        pcl::PointCloud<pcl::PointXYZ>::Ptr plane_cloud (new pcl::PointCloud<pcl::PointXYZ>);
        int num_of_points = dataLibrary::clusters[cluster_index].indices.size();
        fbinaryout.write(reinterpret_cast<const char*>(&num_of_points), sizeof(num_of_points));
        float rgb = dataLibrary::cloudxyzrgb_clusters->at(dataLibrary::clusters[cluster_index].indices[0]).rgb;
        fbinaryout.write(reinterpret_cast<const char*>(&rgb), sizeof(rgb));
        float x, y, z;
        for(int j = 0; j < dataLibrary::clusters[cluster_index].indices.size(); j++)
        {
            plane_cloud->push_back(dataLibrary::cloudxyz->at(dataLibrary::clusters[cluster_index].indices[j]));
            x = dataLibrary::cloudxyz->at(dataLibrary::clusters[cluster_index].indices[j]).x;
            y = dataLibrary::cloudxyz->at(dataLibrary::clusters[cluster_index].indices[j]).y;
            z = dataLibrary::cloudxyz->at(dataLibrary::clusters[cluster_index].indices[j]).z;
            fbinaryout.write(reinterpret_cast<const char*>(&x), sizeof(x));
            fbinaryout.write(reinterpret_cast<const char*>(&y), sizeof(y));
            fbinaryout.write(reinterpret_cast<const char*>(&z), sizeof(z));
        }

        //prepare for projecting data onto plane
        float nx, ny, nz;
        float curvature;
        Eigen::Matrix3f convariance_matrix;
        Eigen::Vector4f xyz_centroid, plane_parameters;
        pcl::compute3DCentroid(*plane_cloud, xyz_centroid);
        pcl::computeCovarianceMatrix(*plane_cloud, xyz_centroid, convariance_matrix);
        pcl::solvePlaneParameters(convariance_matrix, nx, ny, nz, curvature);
        Eigen::Vector3f centroid;
        centroid(0)=xyz_centroid(0);
        centroid(1)=xyz_centroid(1);
        centroid(2)=xyz_centroid(2);

        //project data onto plane
        //set plane parameter
        pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients());
        coefficients->values.resize(4);
        coefficients->values[0] = nx;
        coefficients->values[1] = ny;
        coefficients->values[2] = nz;
        coefficients->values[3] = - (nx*xyz_centroid[0] + ny*xyz_centroid[1] + nz*xyz_centroid[2]);
        //projecting
        pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_projected (new pcl::PointCloud<pcl::PointXYZ>);
        pcl::ProjectInliers<pcl::PointXYZ> proj;
        proj.setModelType(pcl::SACMODEL_PLANE);
        proj.setInputCloud(plane_cloud);
        proj.setModelCoefficients(coefficients);
        proj.filter(*cloud_projected);

        //generate a concave or convex
        pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_hull (new pcl::PointCloud<pcl::PointXYZ>);
        pcl::ConvexHull<pcl::PointXYZ> chull;
        chull.setInputCloud(cloud_projected);
        chull.reconstruct(*cloud_hull);

        //calculate polygon area
        Eigen::Vector3f normal;
        normal(0) = nx;
        normal(1) = ny;
        normal(2) = nz;

        float area = 0.0f;
        int num_points = cloud_hull->size();
        int j = 0;
        Eigen::Vector3f va, vb, res;
        res(0) = res(1) = res(2) = 0.0f;
        for(int i = 0; i < num_points; i++)
        {
            j = (i+1) % num_points;
            va = cloud_hull->at(i).getVector3fMap();
            vb = cloud_hull->at(j).getVector3fMap();
            res += va.cross(vb);
        }
        area = fabs(res.dot(normal) * 0.5);

        float dip_direction, dip;

        if(nz < 0.0)
        {
            nx = -nx;
            ny = -ny;
            nz = -nz;
        }

        //Dip Direction
        if(nx == 0.0)
        {
            if((ny > 0.0)||(ny == 0.0))
                dip_direction = 0.0;
            else
                dip_direction = 180.0;
        }
        else if(nx > 0.0)
        {
            dip_direction = 90.0 - atan(ny/nx)*180/M_PI;
        }
        else
        {
            dip_direction = 270.0 - atan(ny/nx)*180/M_PI;
        }
        //dip
        if((nx*nx + ny*ny) == 0.0)
        {
            dip = 0.0;
        }
        else
        {
            dip = 90.0 - atan(fabs(nz)/sqrt((nx*nx + ny*ny)))*180/M_PI;
        }

        //calculate fracture surface roughness
        float fracture_total_distance=0.0;
        for(int j = 0; j < plane_cloud->size(); j++)
        {
            Eigen::Vector3f Q;
            Q(0)=plane_cloud->at(j).x;
            Q(1)=plane_cloud->at(j).y;
            Q(2)=plane_cloud->at(j).z;
            fracture_total_distance+=std::abs((Q-centroid).dot(normal)/std::sqrt((normal.dot(normal))));
        }
        float fracture_roughness=fracture_total_distance/plane_cloud->size();

        float length;
        bool flag = dataLibrary::CheckClusters(dataLibrary::plane_normal_all, centroid_all, dataLibrary::cloud_hull_all, normal, centroid, cloud_projected, cluster_index, length, false);
        fout<<flag<<"\t"<<cluster_index+1<<"\t"<<dataLibrary::clusters[cluster_index].indices.size()<<"\t"<<dip_direction<<"\t"<<dip<<"\t"<<area<<"\t"<<length<<"\t"<<fracture_roughness<<"\n";

        //calculate displacement
        Eigen::Vector3f line_direction = normal.cross(dataLibrary::plane_normal_all.cross(normal));
        if((line_direction(0) == 0)&&(line_direction(1) == 0)&&(line_direction(2) == 0))
        {
            total_displacement+=0.0;
        }
        else
        {
            if(flag)
            {
                float max_value, min_value;
                int max_index, min_index;
                Eigen::Vector3f point;
                point(0) = cloud_projected->at(0).x;
                point(1) = cloud_projected->at(0).y;
                point(2) = cloud_projected->at(0).z;
                float mod_line_direction = std::sqrt(line_direction.dot(line_direction));
                max_value = min_value = line_direction.dot(point - centroid)/mod_line_direction;
                max_index = min_index = 0;
                for(int i=1; i<cloud_projected->size(); i++)
                {
                    Eigen::Vector3f point;
                    point(0) = cloud_projected->at(i).x;
                    point(1) = cloud_projected->at(i).y;
                    point(2) = cloud_projected->at(i).z;

                    float value = line_direction.dot(point - centroid)/mod_line_direction;

                    if(max_value<value)
                    {
                        max_value = value;
                        max_index = i;
                    }
                    if(min_value>value)
                    {
                        min_value = value;
                        min_index = i;
                    }
                }
                float alpha = std::acos(std::abs(dataLibrary::plane_normal_all.dot(normal)/(std::sqrt(dataLibrary::plane_normal_all.dot(dataLibrary::plane_normal_all))*std::sqrt(normal.dot(normal)))));
                total_dip2plane+=alpha*360.0/TWOPI;
                inside_num+=1;
                float tangent_alpha = std::tan(alpha);
                float height_max = std::abs(dataLibrary::plane_normal_all.dot(cloud_projected->at(max_index).getVector3fMap()-centroid_all)/std::sqrt(dataLibrary::plane_normal_all.dot(dataLibrary::plane_normal_all)));
                float height_min = std::abs(dataLibrary::plane_normal_all.dot(cloud_projected->at(min_index).getVector3fMap()-centroid_all)/std::sqrt(dataLibrary::plane_normal_all.dot(dataLibrary::plane_normal_all)));
                float displacement_max = height_max/tangent_alpha;
                float displacement_min = height_min/tangent_alpha;
                total_displacement += (displacement_max+displacement_min)/2.0;
            }
        }

        if(flag)
        {
            total_length += length;
            dip_dipdir_out<<dip<<"\t"<<dip_direction<<"\n";
            dipdir_dip_out<<dip_direction<<"\t"<<dip<<"\n";

            dataLibrary::out_dips.push_back(dip);
            dataLibrary::out_dip_directions.push_back(dip_direction);

            dataLibrary::selectedPatches.push_back(cluster_index);
        }
        else
        {
            error_length += length;
        }
        fbinaryout.write(reinterpret_cast<const char*>(&dip), sizeof(dip));
        fbinaryout.write(reinterpret_cast<const char*>(&dip_direction), sizeof(dip_direction));
        fbinaryout.write(reinterpret_cast<const char*>(&area), sizeof(area));
    }
    fracture_intensity_out<<"Outcrop surface roughness:"<<"\t"<<roughness<<"\n";
    fracture_intensity_out<<"Total area:"<<"\t"<<area_all<<"\n";
    fracture_intensity_out<<"Percentage of displacement errors:"<<"\t"<<total_displacement/total_length*100<<" \%\n";
    fracture_intensity_out<<"Percentage of over estimated errors:"<<"\t"<<error_length/total_length*100<<" \%\n";
    fracture_intensity_out<<"Mean dip to plane angle:"<<"\t"<<total_dip2plane/inside_num<<"\n";
    fracture_intensity_out<<"Fracture Density:"<<"\t"<<total_length/area_all;
    fout<<flush;
    fout.close();
    dip_dipdir_out<<flush;
    dip_dipdir_out.close();
    dipdir_dip_out<<flush;
    dipdir_dip_out.close();
    fracture_intensity_out<<flush;
    fracture_intensity_out.close();
    fbinaryout.close();

    //save outcrop convex hull and fracture traces
    Eigen::Vector3f V_x = dataLibrary::cloud_hull_all->at(1).getVector3fMap() - dataLibrary::cloud_hull_all->at(0).getVector3fMap();
    Eigen::Vector3f V_y = dataLibrary::plane_normal_all.cross(V_x);
    std::vector<Eigen::Vector2f> convex_hull_all_2d;
    dataLibrary::projection322(V_x, V_y, dataLibrary::cloud_hull_all, convex_hull_all_2d);

    string hull_traces = strfilename->substr(0, strfilename->size()-4) += "_convex_hull&fracture_traces.txt";
    ofstream hull_traces_out(hull_traces.c_str());
    hull_traces_out<<"hull\t"<<dataLibrary::cloud_hull_all->points.size()<<"\t"<<dataLibrary::plane_normal_all(0)<<"\t"<<dataLibrary::plane_normal_all(1)<<"\t"<<dataLibrary::plane_normal_all(2)<<"\n";
    for(int i=0; i<dataLibrary::cloud_hull_all->points.size(); i++)
    {
        hull_traces_out<<dataLibrary::cloud_hull_all->points[i].x<<"\t"<<dataLibrary::cloud_hull_all->points[i].y<<"\t"<<dataLibrary::cloud_hull_all->points[i].z<<"\t"<<convex_hull_all_2d[i](0)<<"\t"<<convex_hull_all_2d[i](1)<<"\n";
    }
    hull_traces_out<<"traces\n";
    Eigen::Vector3f point_in_begin, point_in_end;
    Eigen::Vector2f point_out_begin, point_out_end;
    for(int i=0; i<dataLibrary::Lines.size(); i++)
    {
        point_in_begin(0)=dataLibrary::Lines[i].begin.x;
        point_in_begin(1)=dataLibrary::Lines[i].begin.y;
        point_in_begin(2)=dataLibrary::Lines[i].begin.z;
        point_in_end(0)=dataLibrary::Lines[i].end.x;
        point_in_end(1)=dataLibrary::Lines[i].end.y;
        point_in_end(2)=dataLibrary::Lines[i].end.z;

        dataLibrary::projection322(V_x, V_y, point_in_begin, point_out_begin);
        dataLibrary::projection322(V_x, V_y, point_in_end, point_out_end);

        hull_traces_out<<dataLibrary::Lines[i].begin.x<<"\t"<<dataLibrary::Lines[i].begin.y<<"\t"<<dataLibrary::Lines[i].begin.z<<"\t"<<dataLibrary::Lines[i].end.x<<"\t"<<dataLibrary::Lines[i].end.y<<"\t"<<dataLibrary::Lines[i].end.z<<"\t"<<point_out_begin(0)<<"\t"<<point_out_begin(1)<<"\t"<<point_out_end(0)<<"\t"<<point_out_end(1)<<"\n";
    }
    hull_traces_out<<flush;
    hull_traces_out.close();

    is_success = true;
    //end of processing

    dataLibrary::finish = clock();

    if(this->getWriteLogMpde()&&is_success)
    {
        std::string log_text = "\tSaving Clusters costs: ";
        std::ostringstream strs;
        strs << (double)(dataLibrary::finish-dataLibrary::start)/CLOCKS_PER_SEC;
        log_text += (strs.str() +" seconds.");
        dataLibrary::write_text_to_log_file(log_text);
    }

    if(!this->getMuteMode()&&is_success)
    {
        emit SaveClustersReady(filename);
    }

    dataLibrary::Status = STATUS_READY;
    emit showReadyStatus();
    delete strfilename;
    if(this->getWorkFlowMode()&&is_success)
    {
        this->Sleep(1000);
        emit GoWorkFlow();
    }
}
Пример #14
0
    bool operator() (const Item& item) {

      dirs_vox.index(0) = item.pos[0];
      dirs_vox.index(1) = item.pos[1];
      dirs_vox.index(2) = item.pos[2];

      if (check_input (item)) {
        for (auto l = Loop(3) (dirs_vox); l; ++l)
          dirs_vox.value() = NAN;
        return true;
      }

      std::vector<Direction> all_peaks;

      for (size_t i = 0; i < size_t(dirs.rows()); i++) {
        Direction p (dirs (i,0), dirs (i,1));
        p.a = Math::SH::get_peak (item.data, lmax, p.v);
        if (std::isfinite (p.a)) {
          for (size_t j = 0; j < all_peaks.size(); j++) {
            if (std::abs (p.v.dot (all_peaks[j].v)) > DOT_THRESHOLD) {
              p.a = NAN;
              break;
            }
          }
        }
        if (std::isfinite (p.a) && p.a >= threshold) 
          all_peaks.push_back (p);
      }

      if (ipeaks_vox) {
        ipeaks_vox->index(0) = item.pos[0];
        ipeaks_vox->index(1) = item.pos[1];
        ipeaks_vox->index(2) = item.pos[2];

        for (int i = 0; i < npeaks; i++) {
          Eigen::Vector3f p;
          ipeaks_vox->index(3) = 3*i;
          for (int n = 0; n < 3; n++) {
            p[n] = ipeaks_vox->value();
            ipeaks_vox->index(3)++;
          }
          p.normalize();

          value_type mdot = 0.0;
          for (size_t n = 0; n < all_peaks.size(); n++) {
            value_type f = std::abs (p.dot (all_peaks[n].v));
            if (f > mdot) {
              mdot = f;
              peaks_out[i] = all_peaks[n];
            }
          }
        }
      }
      else if (true_peaks.size()) {
        for (int i = 0; i < npeaks; i++) {
          value_type mdot = 0.0;
          for (size_t n = 0; n < all_peaks.size(); n++) {
            value_type f = std::abs (all_peaks[n].v.dot (true_peaks[i].v));
            if (f > mdot) {
              mdot = f;
              peaks_out[i] = all_peaks[n];
            }
          }
        }
      }
      else std::partial_sort_copy (all_peaks.begin(), all_peaks.end(), peaks_out.begin(), peaks_out.end());

      int actual_npeaks = std::min (npeaks, (int) all_peaks.size());
      dirs_vox.index(3) = 0;
      for (int n = 0; n < actual_npeaks; n++) {
        dirs_vox.value() = peaks_out[n].a*peaks_out[n].v[0];
        dirs_vox.index(3)++;
        dirs_vox.value() = peaks_out[n].a*peaks_out[n].v[1];
        dirs_vox.index(3)++;
        dirs_vox.value() = peaks_out[n].a*peaks_out[n].v[2];
        dirs_vox.index(3)++;
      }
      for (; dirs_vox.index(3) < 3*npeaks; dirs_vox.index(3)++) dirs_vox.value() = NAN;

      return true;
    }
Пример #15
0
void MainController::run()
{
    while(!pangolin::ShouldQuit() && !((!logReader->hasMore()) && quiet) && !(eFusion->getTick() == end && quiet))
    {
        if(!gui->pause->Get() || pangolin::Pushed(*gui->step))
        {
            if((logReader->hasMore() || rewind) && eFusion->getTick() < end)
            {
                TICK("LogRead");
                if(rewind)
                {
                    if(!logReader->hasMore())
                    {
                        logReader->getBack();
                    }
                    else
                    {
                        logReader->getNext();
                    }

                    if(logReader->rewound())
                    {
                        logReader->currentFrame = 0;
                    }
                }
                else
                {
                    logReader->getNext();
                }
                TOCK("LogRead");

                if(eFusion->getTick() < start)
                {
                    eFusion->setTick(start);
                    logReader->fastForward(start);
                }

                float weightMultiplier = framesToSkip + 1;

                if(framesToSkip > 0)
                {
                    eFusion->setTick(eFusion->getTick() + framesToSkip);
                    logReader->fastForward(logReader->currentFrame + framesToSkip);
                    framesToSkip = 0;
                }

                Eigen::Matrix4f * currentPose = 0;

                if(groundTruthOdometry)
                {
                    currentPose = new Eigen::Matrix4f;
                    currentPose->setIdentity();
                    *currentPose = groundTruthOdometry->getIncrementalTransformation(logReader->timestamp);
                }

                eFusion->processFrame(logReader->rgb, logReader->depth, logReader->timestamp, currentPose, weightMultiplier);

                if(currentPose)
                {
                    delete currentPose;
                }

                if(frameskip && Stopwatch::getInstance().getTimings().at("Run") > 1000.f / 30.f)
                {
                    framesToSkip = int(Stopwatch::getInstance().getTimings().at("Run") / (1000.f / 30.f));
                }
            }
        }
        else
        {
            eFusion->predict();
        }

        TICK("GUI");

        if(gui->followPose->Get())
        {
            pangolin::OpenGlMatrix mv;

            Eigen::Matrix4f currPose = eFusion->getCurrPose();
            Eigen::Matrix3f currRot = currPose.topLeftCorner(3, 3);

            Eigen::Quaternionf currQuat(currRot);
            Eigen::Vector3f forwardVector(0, 0, 1);
            Eigen::Vector3f upVector(0, iclnuim ? 1 : -1, 0);

            Eigen::Vector3f forward = (currQuat * forwardVector).normalized();
            Eigen::Vector3f up = (currQuat * upVector).normalized();

            Eigen::Vector3f eye(currPose(0, 3), currPose(1, 3), currPose(2, 3));

            eye -= forward;

            Eigen::Vector3f at = eye + forward;

            Eigen::Vector3f z = (eye - at).normalized();  // Forward
            Eigen::Vector3f x = up.cross(z).normalized(); // Right
            Eigen::Vector3f y = z.cross(x);

            Eigen::Matrix4d m;
            m << x(0),  x(1),  x(2),  -(x.dot(eye)),
                 y(0),  y(1),  y(2),  -(y.dot(eye)),
                 z(0),  z(1),  z(2),  -(z.dot(eye)),
                    0,     0,     0,              1;

            memcpy(&mv.m[0], m.data(), sizeof(Eigen::Matrix4d));

            gui->s_cam.SetModelViewMatrix(mv);
        }

        gui->preCall();

        std::stringstream stri;
        stri << eFusion->getModelToModel().lastICPCount;
        gui->trackInliers->Ref().Set(stri.str());

        std::stringstream stre;
        stre << (isnan(eFusion->getModelToModel().lastICPError) ? 0 : eFusion->getModelToModel().lastICPError);
        gui->trackRes->Ref().Set(stre.str());

        if(!gui->pause->Get())
        {
            gui->resLog.Log((isnan(eFusion->getModelToModel().lastICPError) ? std::numeric_limits<float>::max() : eFusion->getModelToModel().lastICPError), icpErrThresh);
            gui->inLog.Log(eFusion->getModelToModel().lastICPCount, icpCountThresh);
        }

        Eigen::Matrix4f pose = eFusion->getCurrPose();

        if(gui->drawRawCloud->Get() || gui->drawFilteredCloud->Get())
        {
            eFusion->computeFeedbackBuffers();
        }

        if(gui->drawRawCloud->Get())
        {
            eFusion->getFeedbackBuffers().at(FeedbackBuffer::RAW)->render(gui->s_cam.GetProjectionModelViewMatrix(), pose, gui->drawNormals->Get(), gui->drawColors->Get());
        }

        if(gui->drawFilteredCloud->Get())
        {
            eFusion->getFeedbackBuffers().at(FeedbackBuffer::FILTERED)->render(gui->s_cam.GetProjectionModelViewMatrix(), pose, gui->drawNormals->Get(), gui->drawColors->Get());
        }

        if(gui->drawGlobalModel->Get())
        {
            glFinish();
            TICK("Global");

            if(gui->drawFxaa->Get())
            {
                gui->drawFXAA(gui->s_cam.GetProjectionModelViewMatrix(),
                              gui->s_cam.GetModelViewMatrix(),
                              eFusion->getGlobalModel().model(),
                              eFusion->getConfidenceThreshold(),
                              eFusion->getTick(),
                              eFusion->getTimeDelta(),
                              iclnuim);
            }
            else
            {
                eFusion->getGlobalModel().renderPointCloud(gui->s_cam.GetProjectionModelViewMatrix(),
                                                           eFusion->getConfidenceThreshold(),
                                                           gui->drawUnstable->Get(),
                                                           gui->drawNormals->Get(),
                                                           gui->drawColors->Get(),
                                                           gui->drawPoints->Get(),
                                                           gui->drawWindow->Get(),
                                                           gui->drawTimes->Get(),
                                                           eFusion->getTick(),
                                                           eFusion->getTimeDelta());
            }
            glFinish();
            TOCK("Global");
        }

        if(eFusion->getLost())
        {
            glColor3f(1, 1, 0);
        }
        else
        {
            glColor3f(1, 0, 1);
        }
        gui->drawFrustum(pose);
        glColor3f(1, 1, 1);

        if(gui->drawFerns->Get())
        {
            glColor3f(0, 0, 0);
            for(size_t i = 0; i < eFusion->getFerns().frames.size(); i++)
            {
                if((int)i == eFusion->getFerns().lastClosest)
                    continue;

                gui->drawFrustum(eFusion->getFerns().frames.at(i)->pose);
            }
            glColor3f(1, 1, 1);
        }

        if(gui->drawDefGraph->Get())
        {
            const std::vector<GraphNode*> & graph = eFusion->getLocalDeformation().getGraph();

            for(size_t i = 0; i < graph.size(); i++)
            {
                pangolin::glDrawCross(graph.at(i)->position(0),
                                      graph.at(i)->position(1),
                                      graph.at(i)->position(2),
                                      0.1);

                for(size_t j = 0; j < graph.at(i)->neighbours.size(); j++)
                {
                    pangolin::glDrawLine(graph.at(i)->position(0),
                                         graph.at(i)->position(1),
                                         graph.at(i)->position(2),
                                         graph.at(graph.at(i)->neighbours.at(j))->position(0),
                                         graph.at(graph.at(i)->neighbours.at(j))->position(1),
                                         graph.at(graph.at(i)->neighbours.at(j))->position(2));
                }
            }
        }

        if(eFusion->getFerns().lastClosest != -1)
        {
            glColor3f(1, 0, 0);
            gui->drawFrustum(eFusion->getFerns().frames.at(eFusion->getFerns().lastClosest)->pose);
            glColor3f(1, 1, 1);
        }

        const std::vector<PoseMatch> & poseMatches = eFusion->getPoseMatches();

        int maxDiff = 0;
        for(size_t i = 0; i < poseMatches.size(); i++)
        {
            if(poseMatches.at(i).secondId - poseMatches.at(i).firstId > maxDiff)
            {
                maxDiff = poseMatches.at(i).secondId - poseMatches.at(i).firstId;
            }
        }

        for(size_t i = 0; i < poseMatches.size(); i++)
        {
            if(gui->drawDeforms->Get())
            {
                if(poseMatches.at(i).fern)
                {
                    glColor3f(1, 0, 0);
                }
                else
                {
                    glColor3f(0, 1, 0);
                }
                for(size_t j = 0; j < poseMatches.at(i).constraints.size(); j++)
                {
                    pangolin::glDrawLine(poseMatches.at(i).constraints.at(j).sourcePoint(0), poseMatches.at(i).constraints.at(j).sourcePoint(1), poseMatches.at(i).constraints.at(j).sourcePoint(2),
                                         poseMatches.at(i).constraints.at(j).targetPoint(0), poseMatches.at(i).constraints.at(j).targetPoint(1), poseMatches.at(i).constraints.at(j).targetPoint(2));
                }
            }
        }
        glColor3f(1, 1, 1);

        eFusion->normaliseDepth(0.3f, gui->depthCutoff->Get());

        for(std::map<std::string, GPUTexture*>::const_iterator it = eFusion->getTextures().begin(); it != eFusion->getTextures().end(); ++it)
        {
            if(it->second->draw)
            {
                gui->displayImg(it->first, it->second);
            }
        }

        eFusion->getIndexMap().renderDepth(gui->depthCutoff->Get());

        gui->displayImg("ModelImg", eFusion->getIndexMap().imageTex());
        gui->displayImg("Model", eFusion->getIndexMap().drawTex());

        std::stringstream strs;
        strs << eFusion->getGlobalModel().lastCount();

        gui->totalPoints->operator=(strs.str());

        std::stringstream strs2;
        strs2 << eFusion->getLocalDeformation().getGraph().size();

        gui->totalNodes->operator=(strs2.str());

        std::stringstream strs3;
        strs3 << eFusion->getFerns().frames.size();

        gui->totalFerns->operator=(strs3.str());

        std::stringstream strs4;
        strs4 << eFusion->getDeforms();

        gui->totalDefs->operator=(strs4.str());

        std::stringstream strs5;
        strs5 << eFusion->getTick() << "/" << logReader->getNumFrames();

        gui->logProgress->operator=(strs5.str());

        std::stringstream strs6;
        strs6 << eFusion->getFernDeforms();

        gui->totalFernDefs->operator=(strs6.str());

        gui->postCall();

        logReader->flipColors = gui->flipColors->Get();
        eFusion->setRgbOnly(gui->rgbOnly->Get());
        eFusion->setPyramid(gui->pyramid->Get());
        eFusion->setFastOdom(gui->fastOdom->Get());
        eFusion->setConfidenceThreshold(gui->confidenceThreshold->Get());
        eFusion->setDepthCutoff(gui->depthCutoff->Get());
        eFusion->setIcpWeight(gui->icpWeight->Get());
        eFusion->setSo3(gui->so3->Get());
        eFusion->setFrameToFrameRGB(gui->frameToFrameRGB->Get());

        resetButton = pangolin::Pushed(*gui->reset);

        if(gui->autoSettings)
        {
            static bool last = gui->autoSettings->Get();

            if(gui->autoSettings->Get() != last)
            {
                last = gui->autoSettings->Get();
                static_cast<LiveLogReader *>(logReader)->setAuto(last);
            }
        }

        Stopwatch::getInstance().sendAll();

        if(resetButton)
        {
            break;
        }

        if(pangolin::Pushed(*gui->save))
        {
            eFusion->savePly();
        }

        TOCK("GUI");
    }
}
Пример #16
0
template <typename PointSource, typename PointTarget, typename NormalT, typename Scalar> float
pcl::registration::FPCSInitialAlignment <PointSource, PointTarget, NormalT, Scalar>::segmentToSegmentDist (
  const std::vector <int> &base_indices,
  float (&ratio)[2])
{
  // get point vectors
  Eigen::Vector3f u = target_->points[base_indices[1]].getVector3fMap () - target_->points[base_indices[0]].getVector3fMap ();
  Eigen::Vector3f v = target_->points[base_indices[3]].getVector3fMap () - target_->points[base_indices[2]].getVector3fMap ();
  Eigen::Vector3f w = target_->points[base_indices[0]].getVector3fMap () - target_->points[base_indices[2]].getVector3fMap ();

  // calculate segment distances
  float a = u.dot (u);
  float b = u.dot (v);
  float c = v.dot (v);
  float d = u.dot (w);
  float e = v.dot (w);
  float D = a * c - b * b;
  float sN = 0.f, sD = D;
  float tN = 0.f, tD = D;

  // check segments
  if (D < small_error_)
  {
    sN = 0.f;
    sD = 1.f;
    tN = e;
    tD = c;
  }
  else
  {
    sN = (b * e - c * d);
    tN = (a * e - b * d);

    if (sN < 0.f)
    {
      sN = 0.f;
      tN = e;
      tD = c;
    }
    else if (sN > sD)
    {
      sN = sD;
      tN = e + b;
      tD = c;
    }
  }

  if (tN < 0.f)
  {
    tN = 0.f;

    if (-d < 0.f)
      sN = 0.f;

    else if (-d > a)
      sN = sD;

    else
    {
      sN = -d;
      sD = a;
    }
  }

  else if (tN > tD)
  {
    tN = tD;

    if ((-d + b) < 0.f)
      sN = 0.f;

    else if ((-d + b) > a)
      sN = sD;

    else
    {
      sN = (-d + b);
      sD = a;
    }
  }

  // set intersection ratios
  ratio[0] = (std::abs (sN) < small_error_) ? 0.f : sN / sD;
  ratio[1] = (std::abs (tN) < small_error_) ? 0.f : tN / tD;

  Eigen::Vector3f x = w + (ratio[0] * u) - (ratio[1] * v);
  return (x.norm ());
}
Пример #17
0
BlockFitter::Result BlockFitter::
go() {
  Result result;
  result.mSuccess = false;

  if (mCloud->size() < 100) return result;

  // voxelize
  LabeledCloud::Ptr cloud(new LabeledCloud());
  pcl::VoxelGrid<pcl::PointXYZL> voxelGrid;
  voxelGrid.setInputCloud(mCloud);
  voxelGrid.setLeafSize(mDownsampleResolution, mDownsampleResolution,
                        mDownsampleResolution);
  voxelGrid.filter(*cloud);
  for (int i = 0; i < (int)cloud->size(); ++i) cloud->points[i].label = i;

  if (mDebug) {
    std::cout << "Original cloud size " << mCloud->size() << std::endl;
    std::cout << "Voxelized cloud size " << cloud->size() << std::endl;
    pcl::io::savePCDFileBinary("cloud_full.pcd", *cloud);
  }

  if (cloud->size() < 100) return result;

  // pose
  cloud->sensor_origin_.head<3>() = mOrigin;
  cloud->sensor_origin_[3] = 1;
  Eigen::Vector3f rz = mLookDir;
  Eigen::Vector3f rx = rz.cross(Eigen::Vector3f::UnitZ());
  Eigen::Vector3f ry = rz.cross(rx);
  Eigen::Matrix3f rotation;
  rotation.col(0) = rx.normalized();
  rotation.col(1) = ry.normalized();
  rotation.col(2) = rz.normalized();
  Eigen::Isometry3f pose = Eigen::Isometry3f::Identity();
  pose.linear() = rotation;
  pose.translation() = mOrigin;

  // ground removal
  if (mRemoveGround) {
    Eigen::Vector4f groundPlane;

    // filter points
    float minZ = mMinGroundZ;
    float maxZ = mMaxGroundZ;
    if ((minZ > 10000) && (maxZ > 10000)) {
      std::vector<float> zVals(cloud->size());
      for (int i = 0; i < (int)cloud->size(); ++i) {
        zVals[i] = cloud->points[i].z;
      }
      std::sort(zVals.begin(), zVals.end());
      minZ = zVals[0]-0.1;
      maxZ = minZ + 0.5;
    }
    LabeledCloud::Ptr tempCloud(new LabeledCloud());
    for (int i = 0; i < (int)cloud->size(); ++i) {
      const Eigen::Vector3f& p = cloud->points[i].getVector3fMap();
      if ((p[2] < minZ) || (p[2] > maxZ)) continue;
      tempCloud->push_back(cloud->points[i]);
    }

    // downsample
    voxelGrid.setInputCloud(tempCloud);
    voxelGrid.setLeafSize(0.1, 0.1, 0.1);
    voxelGrid.filter(*tempCloud);

    if (tempCloud->size() < 100) return result;

    // find ground plane
    std::vector<Eigen::Vector3f> pts(tempCloud->size());
    for (int i = 0; i < (int)tempCloud->size(); ++i) {
      pts[i] = tempCloud->points[i].getVector3fMap();
    }
    const float kGroundPlaneDistanceThresh = 0.01; // TODO: param
    PlaneFitter planeFitter;
    planeFitter.setMaxDistance(kGroundPlaneDistanceThresh);
    planeFitter.setRefineUsingInliers(true);
    auto res = planeFitter.go(pts);
    groundPlane = res.mPlane;
    if (groundPlane[2] < 0) groundPlane = -groundPlane;
    if (mDebug) {
      std::cout << "dominant plane: " << groundPlane.transpose() << std::endl;
      std::cout << "  inliers: " << res.mInliers.size() << std::endl;
    }

    if (std::acos(groundPlane[2]) > 30*M_PI/180) {
      std::cout << "error: ground plane not found!" << std::endl;
      std::cout << "proceeding with full segmentation (may take a while)..." <<
        std::endl;
    }

    else {
      // compute convex hull
      result.mGroundPlane = groundPlane;
      {
        tempCloud.reset(new LabeledCloud());
        for (int i = 0; i < (int)cloud->size(); ++i) {
          Eigen::Vector3f p = cloud->points[i].getVector3fMap();
          float dist = groundPlane.head<3>().dot(p) + groundPlane[3];
          if (std::abs(dist) > kGroundPlaneDistanceThresh) continue;
          p -= (groundPlane.head<3>()*dist);
          pcl::PointXYZL cloudPt;
          cloudPt.getVector3fMap() = p;
          tempCloud->push_back(cloudPt);
        }
        pcl::ConvexHull<pcl::PointXYZL> chull;
        pcl::PointCloud<pcl::PointXYZL> hull;
        chull.setInputCloud(tempCloud);
        chull.reconstruct(hull);
        result.mGroundPolygon.resize(hull.size());
        for (int i = 0; i < (int)hull.size(); ++i) {
          result.mGroundPolygon[i] = hull[i].getVector3fMap();
        }
      }

      // remove points below or near ground
      tempCloud.reset(new LabeledCloud());
      for (int i = 0; i < (int)cloud->size(); ++i) {
        Eigen::Vector3f p = cloud->points[i].getVector3fMap();
        float dist = p.dot(groundPlane.head<3>()) + groundPlane[3];
        if ((dist < mMinHeightAboveGround) ||
            (dist > mMaxHeightAboveGround)) continue;
        float range = (p-mOrigin).norm();
        if (range > mMaxRange) continue;
        tempCloud->push_back(cloud->points[i]);
      }
      std::swap(tempCloud, cloud);
      if (mDebug) {
        std::cout << "Filtered cloud size " << cloud->size() << std::endl;
      }
    }
  }

  // normal estimation
  auto t0 = std::chrono::high_resolution_clock::now();
  if (mDebug) {
    std::cout << "computing normals..." << std::flush;
  }
  RobustNormalEstimator normalEstimator;
  normalEstimator.setMaxEstimationError(0.01);
  normalEstimator.setRadius(0.1);
  normalEstimator.setMaxCenterError(0.02);
  normalEstimator.setMaxIterations(100);
  NormalCloud::Ptr normals(new NormalCloud());
  normalEstimator.go(cloud, *normals);
  if (mDebug) {
    auto t1 = std::chrono::high_resolution_clock::now();
    auto dt = std::chrono::duration_cast<std::chrono::milliseconds>(t1-t0);
    std::cout << "finished in " << dt.count()/1e3 << " sec" << std::endl;
  }

  // filter non-horizontal points
  const float maxNormalAngle = mMaxAngleFromHorizontal*M_PI/180;
  LabeledCloud::Ptr tempCloud(new LabeledCloud());
  NormalCloud::Ptr tempNormals(new NormalCloud());
  for (int i = 0; i < (int)normals->size(); ++i) {
    const auto& norm = normals->points[i];
    Eigen::Vector3f normal(norm.normal_x, norm.normal_y, norm.normal_z);
    float angle = std::acos(normal[2]);
    if (angle > maxNormalAngle) continue;
    tempCloud->push_back(cloud->points[i]);
    tempNormals->push_back(normals->points[i]);
  }
  std::swap(tempCloud, cloud);
  std::swap(tempNormals, normals);

  if (mDebug) {
    std::cout << "Horizontal points remaining " << cloud->size() << std::endl;
    pcl::io::savePCDFileBinary("cloud.pcd", *cloud);
    pcl::io::savePCDFileBinary("robust_normals.pcd", *normals);
  }

  // plane segmentation
  t0 = std::chrono::high_resolution_clock::now();
  if (mDebug) {
    std::cout << "segmenting planes..." << std::flush;
  }
  PlaneSegmenter segmenter;
  segmenter.setData(cloud, normals);
  segmenter.setMaxError(0.05);
  segmenter.setMaxAngle(5);
  segmenter.setMinPoints(100);
  PlaneSegmenter::Result segmenterResult = segmenter.go();
  if (mDebug) {
    auto t1 = std::chrono::high_resolution_clock::now();
    auto dt = std::chrono::duration_cast<std::chrono::milliseconds>(t1-t0);
    std::cout << "finished in " << dt.count()/1e3 << " sec" << std::endl;

    std::ofstream ofs("labels.txt");
    for (const int lab : segmenterResult.mLabels) {
      ofs << lab << std::endl;
    }
    ofs.close();

    ofs.open("planes.txt");
    for (auto it : segmenterResult.mPlanes) {
      auto& plane = it.second;
      ofs << it.first << " " << plane.transpose() << std::endl;
    }
    ofs.close();
  }

  // create point clouds
  std::unordered_map<int,std::vector<Eigen::Vector3f>> cloudMap;
  for (int i = 0; i < (int)segmenterResult.mLabels.size(); ++i) {
    int label = segmenterResult.mLabels[i];
    if (label <= 0) continue;
    cloudMap[label].push_back(cloud->points[i].getVector3fMap());
  }
  struct Plane {
    MatrixX3f mPoints;
    Eigen::Vector4f mPlane;
  };
  std::vector<Plane> planes;
  planes.reserve(cloudMap.size());
  for (auto it : cloudMap) {
    int n = it.second.size();
    Plane plane;
    plane.mPoints.resize(n,3);
    for (int i = 0; i < n; ++i) plane.mPoints.row(i) = it.second[i];
    plane.mPlane = segmenterResult.mPlanes[it.first];
    planes.push_back(plane);
  }

  std::vector<RectangleFitter::Result> results;
  for (auto& plane : planes) {
    RectangleFitter fitter;
    fitter.setDimensions(mBlockDimensions.head<2>());
    fitter.setAlgorithm((RectangleFitter::Algorithm)mRectangleFitAlgorithm);
    fitter.setData(plane.mPoints, plane.mPlane);
    auto result = fitter.go();
    results.push_back(result);
  }

  if (mDebug) {
    std::ofstream ofs("boxes.txt");
    for (int i = 0; i < (int)results.size(); ++i) {
      auto& res = results[i];
      for (auto& p : res.mPolygon) {
        ofs << i << " " << p.transpose() << std::endl;
      }
    }
    ofs.close();

    ofs.open("hulls.txt");
    for (int i = 0; i < (int)results.size(); ++i) {
      auto& res = results[i];
      for (auto& p : res.mConvexHull) {
        ofs << i << " " << p.transpose() << std::endl;
      }
    }
    ofs.close();

    ofs.open("poses.txt");
    for (int i = 0; i < (int)results.size(); ++i) {
      auto& res = results[i];
      auto transform = res.mPose;
      ofs << transform.matrix() << std::endl;
    }
    ofs.close();
  }

  for (int i = 0; i < (int)results.size(); ++i) {
    const auto& res = results[i];
    if (mBlockDimensions.head<2>().norm() > 1e-5) {
      float areaRatio = mBlockDimensions.head<2>().prod()/res.mConvexArea;
      if ((areaRatio < mAreaThreshMin) ||
          (areaRatio > mAreaThreshMax)) continue;
    }

    Block block;
    block.mSize << res.mSize[0], res.mSize[1], mBlockDimensions[2];
    block.mPose = res.mPose;
    block.mPose.translation() -=
      block.mPose.rotation().col(2)*mBlockDimensions[2]/2;
    block.mHull = res.mConvexHull;
    result.mBlocks.push_back(block);
  }
  if (mDebug) {
    std::cout << "Surviving blocks: " << result.mBlocks.size() << std::endl;
  }

  result.mSuccess = true;
  return result;
}
void callback(const sensor_msgs::PointCloud2::ConstPtr& msg)
{
    std::string base_frame("base_link");
    
    geometry_msgs::PointStamped pout;
    geometry_msgs::PointStamped pin;
    pin.header.frame_id = msg->header.frame_id;
    pin.point.x = 0; pin.point.y = 0; pin.point.z = 0;
    geometry_msgs::Vector3Stamped vout;
    geometry_msgs::Vector3Stamped vin;
    vin.header.frame_id = base_frame;
    vin.vector.x = 0; vin.vector.y = 0; vin.vector.z = 1;
    
    float height;
    Eigen::Vector3f normal;
    try {
        listener->transformPoint(base_frame, ros::Time(0), pin, msg->header.frame_id, pout);
        height = pout.point.z;
        listener->transformVector(msg->header.frame_id, ros::Time(0), vin, base_frame, vout);
        normal = Eigen::Vector3f(vout.vector.x, vout.vector.y, vout.vector.z);
    }
    catch (tf::TransformException ex) {
        ROS_INFO("%s",ex.what());
        return;
    }
    
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>());
    pcl::fromROSMsg(*msg, *cloud);
	
	Eigen::Vector3f p = -height*normal; // a point in the floor plane
	float d = -p.dot(normal); // = height, d in the plane equation
	
	obstacle_cloud->points.clear();
	obstacle_cloud->points.reserve(cloud->size());
	floor_cloud->points.clear();
	Eigen::Vector3f temp;
	float floor_dist;
	pcl::PointXYZ point;
	for (size_t i = 0; i < cloud->size(); ++i) {
	    
	    /*temp = cloud->points[i].getVector3fMap(); // DEBUG!
	    
	    if (i%640 < 300 && i%640 > 200 && i < 640*200 && i > 640*100) {
	        temp -= 0.06*normal;
	    }*/

        // check signed distance to floor
	    floor_dist = normal.dot(cloud->points[i].getVector3fMap()) + d;
	    //floor_dist = normal.dot(temp) + d; // DEBUG
	    
	    // if enough below, consider a stair point
	    if (floor_dist < below_threshold) {
	        temp = cloud->points[i].getVector3fMap(); // RELEASE
	        point.getVector3fMap() = -(d/normal.dot(temp))*temp + normal*0.11;
	        floor_cloud->points.push_back(point);
	    }
	    else { // add as a normal obstacle or clearing point
	        obstacle_cloud->points.push_back(cloud->points[i]);
	    }
	}

	sensor_msgs::PointCloud2 floor_msg;
    pcl::toROSMsg(*floor_cloud, floor_msg);
	floor_msg.header = msg->header;

	floor_pub.publish(floor_msg);
	
	sensor_msgs::PointCloud2 obstacle_msg;
    pcl::toROSMsg(*obstacle_cloud, obstacle_msg);
	obstacle_msg.header = msg->header;
	
	obstacle_pub.publish(obstacle_msg);
}
  void RegionGrowingMultiplePlaneSegmentation::segment(
    const sensor_msgs::PointCloud2::ConstPtr& msg,
    const sensor_msgs::PointCloud2::ConstPtr& normal_msg)
  {
    boost::mutex::scoped_lock lock(mutex_);
    if (!done_initialization_) {
      return;
    }
    vital_checker_->poke();
    {
      jsk_recognition_utils::ScopedWallDurationReporter r
        = timer_.reporter(pub_latest_time_, pub_average_time_);
      pcl::PointCloud<PointT>::Ptr cloud(new pcl::PointCloud<PointT>);
      pcl::PointCloud<pcl::Normal>::Ptr normal(new pcl::PointCloud<pcl::Normal>);
      pcl::fromROSMsg(*msg, *cloud);
      pcl::fromROSMsg(*normal_msg, *normal);
      // concatenate fields
      pcl::PointCloud<pcl::PointXYZRGBNormal>::Ptr
        all_cloud (new pcl::PointCloud<pcl::PointXYZRGBNormal>);
      pcl::concatenateFields(*cloud, *normal, *all_cloud);
      pcl::PointIndices::Ptr indices (new pcl::PointIndices);
      for (size_t i = 0; i < all_cloud->points.size(); i++) {
        if (!isnan(all_cloud->points[i].x) &&
            !isnan(all_cloud->points[i].y) &&
            !isnan(all_cloud->points[i].z) &&
            !isnan(all_cloud->points[i].normal_x) &&
            !isnan(all_cloud->points[i].normal_y) &&
            !isnan(all_cloud->points[i].normal_z) &&
            !isnan(all_cloud->points[i].curvature)) {
          if (all_cloud->points[i].curvature < max_curvature_) {
            indices->indices.push_back(i);
          }
        }
      }
      pcl::ConditionalEuclideanClustering<pcl::PointXYZRGBNormal> cec (true);
    
      // vector of pcl::PointIndices
      pcl::IndicesClustersPtr clusters (new pcl::IndicesClusters);
      cec.setInputCloud (all_cloud);
      cec.setIndices(indices);
      cec.setClusterTolerance(cluster_tolerance_);
      cec.setMinClusterSize(min_size_);
      //cec.setMaxClusterSize(max_size_);
      {
        boost::mutex::scoped_lock lock2(global_custom_condigion_function_mutex);
        setCondifionFunctionParameter(angular_threshold_, distance_threshold_);
        cec.setConditionFunction(
          &RegionGrowingMultiplePlaneSegmentation::regionGrowingFunction);
        //ros::Time before = ros::Time::now();
        cec.segment (*clusters);
        // ros::Time end = ros::Time::now();
        // ROS_INFO("segment took %f sec", (before - end).toSec());
      }
      // Publish raw cluster information 
      // pcl::IndicesCluster is typdefed as std::vector<pcl::PointIndices>
      jsk_recognition_msgs::ClusterPointIndices ros_clustering_result;
      ros_clustering_result.cluster_indices
        = pcl_conversions::convertToROSPointIndices(*clusters, msg->header);
      ros_clustering_result.header = msg->header;
      pub_clustering_result_.publish(ros_clustering_result);

      // estimate planes
      std::vector<pcl::PointIndices::Ptr> all_inliers;
      std::vector<pcl::ModelCoefficients::Ptr> all_coefficients;
      jsk_recognition_msgs::PolygonArray ros_polygon;
      ros_polygon.header = msg->header;
      for (size_t i = 0; i < clusters->size(); i++) {
        pcl::PointIndices::Ptr plane_inliers(new pcl::PointIndices);
        pcl::ModelCoefficients::Ptr plane_coefficients(new pcl::ModelCoefficients);
        pcl::PointIndices::Ptr cluster = boost::make_shared<pcl::PointIndices>((*clusters)[i]);
        ransacEstimation(cloud, cluster,
                         *plane_inliers, *plane_coefficients);
        if (plane_inliers->indices.size() > 0) {
          jsk_recognition_utils::ConvexPolygon::Ptr convex
            = jsk_recognition_utils::convexFromCoefficientsAndInliers<pcl::PointXYZRGB>(
              cloud, plane_inliers, plane_coefficients);
          if (convex) {
            if (min_area_ > convex->area() || convex->area() > max_area_) {
              continue;
            }
            {
              // check direction consistency of coefficients and convex
              Eigen::Vector3f coefficient_normal(plane_coefficients->values[0],
                                                 plane_coefficients->values[1],
                                                 plane_coefficients->values[2]);
              if (convex->getNormalFromVertices().dot(coefficient_normal) < 0) {
                convex = boost::make_shared<jsk_recognition_utils::ConvexPolygon>(convex->flipConvex());
              }
            }
            // Normal should direct to origin
            {
              Eigen::Vector3f p = convex->getPointOnPlane();
              Eigen::Vector3f n = convex->getNormal();
              if (p.dot(n) > 0) {
                convex = boost::make_shared<jsk_recognition_utils::ConvexPolygon>(convex->flipConvex());
                Eigen::Vector3f new_normal = convex->getNormal();
                plane_coefficients->values[0] = new_normal[0];
                plane_coefficients->values[1] = new_normal[1];
                plane_coefficients->values[2] = new_normal[2];
                plane_coefficients->values[3] = convex->getD();
              }
            }
          
            geometry_msgs::PolygonStamped polygon;
            polygon.polygon = convex->toROSMsg();
            polygon.header = msg->header;
            ros_polygon.polygons.push_back(polygon);
            all_inliers.push_back(plane_inliers);
            all_coefficients.push_back(plane_coefficients);
          }
        }
      }
    
      jsk_recognition_msgs::ClusterPointIndices ros_indices;
      ros_indices.cluster_indices =
        pcl_conversions::convertToROSPointIndices(all_inliers, msg->header);
      ros_indices.header = msg->header;
      pub_inliers_.publish(ros_indices);
      jsk_recognition_msgs::ModelCoefficientsArray ros_coefficients;
      ros_coefficients.header = msg->header;
      ros_coefficients.coefficients =
        pcl_conversions::convertToROSModelCoefficients(
          all_coefficients, msg->header);
      pub_coefficients_.publish(ros_coefficients);
      pub_polygons_.publish(ros_polygon);
    }
  }
Пример #20
0
void run ()
{
  auto in_data_image = Fixel::open_fixel_data_file<float> (argument[0]);
  if (in_data_image.size(2) != 1)
    throw Exception ("Only a single scalar value for each fixel can be output as a track scalar file, "
                     "therefore the input fixel data file must have dimension Nx1x1");

  Header in_index_header = Fixel::find_index_header (Fixel::get_fixel_directory (argument[0]));
  auto in_index_image = in_index_header.get_image<uint32_t>();
  auto in_directions_image = Fixel::find_directions_header (Fixel::get_fixel_directory (argument[0])).get_image<float>().with_direct_io();

  DWI::Tractography::Properties properties;
  DWI::Tractography::Reader<float> reader (argument[1], properties);
  properties.comments.push_back ("Created using fixel2tsf");
  properties.comments.push_back ("Source fixel image: " + Path::basename (argument[0]));
  properties.comments.push_back ("Source track file: " + Path::basename (argument[1]));

  DWI::Tractography::ScalarWriter<float> tsf_writer (argument[2], properties);

  float angular_threshold = get_option_value ("angle", DEFAULT_ANGULAR_THRESHOLD);
  const float angular_threshold_dp = cos (angular_threshold * (Math::pi / 180.0));

  const size_t num_tracks = properties["count"].empty() ? 0 : to<int> (properties["count"]);

  DWI::Tractography::Mapping::TrackMapperBase mapper (in_index_image);
  mapper.set_use_precise_mapping (true);

  ProgressBar progress ("mapping fixel values to streamline points", num_tracks);
  DWI::Tractography::Streamline<float> tck;

  Transform transform (in_index_image);
  Eigen::Vector3 voxel_pos;

  while (reader (tck)) {
    SetVoxelDir dixels;
    mapper (tck, dixels);
    vector<float> scalars (tck.size(), 0.0);
    for (size_t p = 0; p < tck.size(); ++p) {
      voxel_pos = transform.scanner2voxel * tck[p].cast<default_type> ();
      for (SetVoxelDir::const_iterator d = dixels.begin(); d != dixels.end(); ++d) {
        if ((int)round(voxel_pos[0]) == (*d)[0] && (int)round(voxel_pos[1]) == (*d)[1] && (int)round(voxel_pos[2]) == (*d)[2]) {
          assign_pos_of (*d).to (in_index_image);
          Eigen::Vector3f dir = d->get_dir().cast<float>();
          dir.normalize();
          float largest_dp = 0.0;
          int32_t closest_fixel_index = -1;

          in_index_image.index(3) = 0;
          uint32_t num_fixels_in_voxel = in_index_image.value();
          in_index_image.index(3) = 1;
          uint32_t offset = in_index_image.value();

          for (size_t fixel = 0; fixel < num_fixels_in_voxel; ++fixel) {
            in_directions_image.index(0) = offset + fixel;
            float dp = std::abs (dir.dot (Eigen::Vector3f (in_directions_image.row(1))));
            if (dp > largest_dp) {
              largest_dp = dp;
              closest_fixel_index = fixel;
            }
          }
          if (largest_dp > angular_threshold_dp) {
            in_data_image.index(0) = offset + closest_fixel_index;
            scalars[p] = in_data_image.value();
          } else {
            scalars[p] = 0.0;
          }
          break;
        }
      }
    }
    tsf_writer (scalars);
    progress++;
  }
}
Пример #21
0
template <typename PointInT, typename PointOutT, typename PointRFT> void
pcl::UniqueShapeContext<PointInT, PointOutT, PointRFT>::computePointDescriptor (size_t index, /*float rf[9],*/ std::vector<float> &desc)
{
  pcl::Vector3fMapConst origin = input_->points[(*indices_)[index]].getVector3fMap ();

  const Eigen::Vector3f x_axis (frames_->points[index].x_axis[0],
                                frames_->points[index].x_axis[1],
                                frames_->points[index].x_axis[2]);
  //const Eigen::Vector3f& y_axis = frames_->points[index].y_axis.getNormalVector3fMap ();
  const Eigen::Vector3f normal (frames_->points[index].z_axis[0],
                                frames_->points[index].z_axis[1],
                                frames_->points[index].z_axis[2]);

  // Find every point within specified search_radius_
  std::vector<int> nn_indices;
  std::vector<float> nn_dists;
  const size_t neighb_cnt = searchForNeighbors ((*indices_)[index], search_radius_, nn_indices, nn_dists);
  // For each point within radius
  for (size_t ne = 0; ne < neighb_cnt; ne++)
  {
    if (pcl::utils::equal(nn_dists[ne], 0.0f))
      continue;
    // Get neighbours coordinates
    Eigen::Vector3f neighbour = surface_->points[nn_indices[ne]].getVector3fMap ();

    // ----- Compute current neighbour polar coordinates -----

    // Get distance between the neighbour and the origin
    float r = std::sqrt (nn_dists[ne]);

    // Project point into the tangent plane
    Eigen::Vector3f proj;
    pcl::geometry::project (neighbour, origin, normal, proj);
    proj -= origin;

    // Normalize to compute the dot product
    proj.normalize ();

    // Compute the angle between the projection and the x axis in the interval [0,360]
    Eigen::Vector3f cross = x_axis.cross (proj);
    float phi = rad2deg (std::atan2 (cross.norm (), x_axis.dot (proj)));
    phi = cross.dot (normal) < 0.f ? (360.0f - phi) : phi;
    /// Compute the angle between the neighbour and the z axis (normal) in the interval [0, 180]
    Eigen::Vector3f no = neighbour - origin;
    no.normalize ();
    float theta = normal.dot (no);
    theta = pcl::rad2deg (acosf (std::min (1.0f, std::max (-1.0f, theta))));

    /// Bin (j, k, l)
    size_t j = 0;
    size_t k = 0;
    size_t l = 0;

    /// Compute the Bin(j, k, l) coordinates of current neighbour
    for (size_t rad = 1; rad < radius_bins_ + 1; rad++)
    {
      if (r <= radii_interval_[rad])
      {
        j = rad - 1;
        break;
      }
    }

    for (size_t ang = 1; ang < elevation_bins_ + 1; ang++)
    {
      if (theta <= theta_divisions_[ang])
      {
        k = ang - 1;
        break;
      }
    }

    for (size_t ang = 1; ang < azimuth_bins_ + 1; ang++)
    {
      if (phi <= phi_divisions_[ang])
      {
        l = ang - 1;
        break;
      }
    }

    /// Local point density = number of points in a sphere of radius "point_density_radius_" around the current neighbour
    std::vector<int> neighbour_indices;
    std::vector<float> neighbour_didtances;
    float point_density = static_cast<float> (searchForNeighbors (*surface_, nn_indices[ne], point_density_radius_, neighbour_indices, neighbour_didtances));
    /// point_density is always bigger than 0 because FindPointsWithinRadius returns at least the point itself
    float w = (1.0f / point_density) * volume_lut_[(l*elevation_bins_*radius_bins_) +
                                                   (k*radius_bins_) +
                                                   j];

    assert (w >= 0.0);
    if (w == std::numeric_limits<float>::infinity ())
      PCL_ERROR ("Shape Context Error INF!\n");
    if (w != w)
      PCL_ERROR ("Shape Context Error IND!\n");
    /// Accumulate w into correspondant Bin(j,k,l)
    desc[(l*elevation_bins_*radius_bins_) + (k*radius_bins_) + j] += w;

    assert (desc[(l*elevation_bins_*radius_bins_) + (k*radius_bins_) + j] >= 0);
  } // end for each neighbour
}
Пример #22
0
template<typename PointInT, typename PointNT, typename PointOutT> bool
pcl::OURCVFHEstimation<PointInT, PointNT, PointOutT>::sgurf (Eigen::Vector3f & centroid, Eigen::Vector3f & normal_centroid,
                                                               PointInTPtr & processed, std::vector<Eigen::Matrix4f, Eigen::aligned_allocator<Eigen::Matrix4f> > & transformations,
                                                               PointInTPtr & grid, pcl::PointIndices & indices)
{

  Eigen::Vector3f plane_normal;
  plane_normal[0] = -centroid[0];
  plane_normal[1] = -centroid[1];
  plane_normal[2] = -centroid[2];
  Eigen::Vector3f z_vector = Eigen::Vector3f::UnitZ ();
  plane_normal.normalize ();
  Eigen::Vector3f axis = plane_normal.cross (z_vector);
  double rotation = -asin (axis.norm ());
  axis.normalize ();

  Eigen::Affine3f transformPC (Eigen::AngleAxisf (static_cast<float> (rotation), axis));

  grid->points.resize (processed->points.size ());
  for (size_t k = 0; k < processed->points.size (); k++)
    grid->points[k].getVector4fMap () = processed->points[k].getVector4fMap ();

  pcl::transformPointCloud (*grid, *grid, transformPC);

  Eigen::Vector4f centroid4f (centroid[0], centroid[1], centroid[2], 0);
  Eigen::Vector4f normal_centroid4f (normal_centroid[0], normal_centroid[1], normal_centroid[2], 0);

  centroid4f = transformPC * centroid4f;
  normal_centroid4f = transformPC * normal_centroid4f;

  Eigen::Vector3f centroid3f (centroid4f[0], centroid4f[1], centroid4f[2]);

  Eigen::Vector4f farthest_away;
  pcl::getMaxDistance (*grid, indices.indices, centroid4f, farthest_away);
  farthest_away[3] = 0;

  float max_dist = (farthest_away - centroid4f).norm ();

  pcl::demeanPointCloud (*grid, centroid4f, *grid);

  Eigen::Matrix4f center_mat;
  center_mat.setIdentity (4, 4);
  center_mat (0, 3) = -centroid4f[0];
  center_mat (1, 3) = -centroid4f[1];
  center_mat (2, 3) = -centroid4f[2];

  Eigen::Matrix3f scatter;
  scatter.setZero ();
  float sum_w = 0.f;

  //for (int k = 0; k < static_cast<intgrid->points[k].getVector3fMap ();> (grid->points.size ()); k++)
  for (int k = 0; k < static_cast<int> (indices.indices.size ()); k++)
  {
    Eigen::Vector3f pvector = grid->points[indices.indices[k]].getVector3fMap ();
    float d_k = (pvector).norm ();
    float w = (max_dist - d_k);
    Eigen::Vector3f diff = (pvector);
    Eigen::Matrix3f mat = diff * diff.transpose ();
    scatter = scatter + mat * w;
    sum_w += w;
  }

  scatter /= sum_w;

  Eigen::JacobiSVD <Eigen::MatrixXf> svd (scatter, Eigen::ComputeFullV);
  Eigen::Vector3f evx = svd.matrixV ().col (0);
  Eigen::Vector3f evy = svd.matrixV ().col (1);
  Eigen::Vector3f evz = svd.matrixV ().col (2);
  Eigen::Vector3f evxminus = evx * -1;
  Eigen::Vector3f evyminus = evy * -1;
  Eigen::Vector3f evzminus = evz * -1;

  float s_xplus, s_xminus, s_yplus, s_yminus;
  s_xplus = s_xminus = s_yplus = s_yminus = 0.f;

  //disambiguate rf using all points
  for (int k = 0; k < static_cast<int> (grid->points.size ()); k++)
  {
    Eigen::Vector3f pvector = grid->points[k].getVector3fMap ();
    float dist_x, dist_y;
    dist_x = std::abs (evx.dot (pvector));
    dist_y = std::abs (evy.dot (pvector));

    if ((pvector).dot (evx) >= 0)
      s_xplus += dist_x;
    else
      s_xminus += dist_x;

    if ((pvector).dot (evy) >= 0)
      s_yplus += dist_y;
    else
      s_yminus += dist_y;

  }

  if (s_xplus < s_xminus)
    evx = evxminus;

  if (s_yplus < s_yminus)
    evy = evyminus;

  //select the axis that could be disambiguated more easily
  float fx, fy;
  float max_x = static_cast<float> (std::max (s_xplus, s_xminus));
  float min_x = static_cast<float> (std::min (s_xplus, s_xminus));
  float max_y = static_cast<float> (std::max (s_yplus, s_yminus));
  float min_y = static_cast<float> (std::min (s_yplus, s_yminus));

  fx = (min_x / max_x);
  fy = (min_y / max_y);

  Eigen::Vector3f normal3f = Eigen::Vector3f (normal_centroid4f[0], normal_centroid4f[1], normal_centroid4f[2]);
  if (normal3f.dot (evz) < 0)
    evz = evzminus;

  //if fx/y close to 1, it was hard to disambiguate
  //what if both are equally easy or difficult to disambiguate, namely fy == fx or very close

  float max_axis = std::max (fx, fy);
  float min_axis = std::min (fx, fy);

  if ((min_axis / max_axis) > axis_ratio_)
  {
    PCL_WARN("Both axis are equally easy/difficult to disambiguate\n");

    Eigen::Vector3f evy_copy = evy;
    Eigen::Vector3f evxminus = evx * -1;
    Eigen::Vector3f evyminus = evy * -1;

    if (min_axis > min_axis_value_)
    {
      //combination of all possibilities
      evy = evx.cross (evz);
      Eigen::Matrix4f trans = createTransFromAxes (evx, evy, evz, transformPC, center_mat);
      transformations.push_back (trans);

      evx = evxminus;
      evy = evx.cross (evz);
      trans = createTransFromAxes (evx, evy, evz, transformPC, center_mat);
      transformations.push_back (trans);

      evx = evy_copy;
      evy = evx.cross (evz);
      trans = createTransFromAxes (evx, evy, evz, transformPC, center_mat);
      transformations.push_back (trans);

      evx = evyminus;
      evy = evx.cross (evz);
      trans = createTransFromAxes (evx, evy, evz, transformPC, center_mat);
      transformations.push_back (trans);

    }
    else
    {
      //1-st case (evx selected)
      evy = evx.cross (evz);
      Eigen::Matrix4f trans = createTransFromAxes (evx, evy, evz, transformPC, center_mat);
      transformations.push_back (trans);

      //2-nd case (evy selected)
      evx = evy_copy;
      evy = evx.cross (evz);
      trans = createTransFromAxes (evx, evy, evz, transformPC, center_mat);
      transformations.push_back (trans);
    }
  }
  else
  {
    if (fy < fx)
    {
      evx = evy;
      fx = fy;
    }

    evy = evx.cross (evz);
    Eigen::Matrix4f trans = createTransFromAxes (evx, evy, evz, transformPC, center_mat);
    transformations.push_back (trans);

  }

  return true;
}
Пример #23
0
template <typename PointInT, typename PointOutT> void
pcl::MovingLeastSquares<PointInT, PointOutT>::computeMLSPointNormal (int index,
                                                                     const PointCloudIn &input,
                                                                     const std::vector<int> &nn_indices,
                                                                     std::vector<float> &nn_sqr_dists,
                                                                     PointCloudOut &projected_points,
                                                                     NormalCloud &projected_points_normals)
{
  // Compute the plane coefficients
  //pcl::computePointNormal<PointInT> (*input_, nn_indices, model_coefficients, curvature);
  EIGEN_ALIGN16 Eigen::Matrix3f covariance_matrix;
  Eigen::Vector4f xyz_centroid;

  // Estimate the XYZ centroid
  pcl::compute3DCentroid (input, nn_indices, xyz_centroid);
  //pcl::compute3DCentroid (input, nn_indices, xyz_centroid);

  pcl::computeCovarianceMatrix (input, nn_indices, xyz_centroid, covariance_matrix);
  // Compute the 3x3 covariance matrix

  EIGEN_ALIGN16 Eigen::Vector3f::Scalar eigen_value;
  EIGEN_ALIGN16 Eigen::Vector3f eigen_vector;
  Eigen::Vector4f model_coefficients;
  pcl::eigen33 (covariance_matrix, eigen_value, eigen_vector);
  //model_coefficients.head<3> () = eigen_vector;
  model_coefficients[0] = eigen_vector[0];
  model_coefficients[1] = eigen_vector[1];
  model_coefficients[2] = eigen_vector[2];
  model_coefficients[3] = 0;
  model_coefficients[3] = -1 * model_coefficients.dot (xyz_centroid);

  // Projected query point
  Eigen::Vector3f point = input[(*indices_)[index]].getVector3fMap ();
  float distance = point.dot (model_coefficients.head<3> ()) + model_coefficients[3];
  point -= distance * model_coefficients.head<3> ();

  float curvature = covariance_matrix.trace ();
  // Compute the curvature surface change
  if (curvature != 0)
    curvature = fabsf (eigen_value / curvature);


  // Get a copy of the plane normal easy access
  Eigen::Vector3d plane_normal = model_coefficients.head<3> ().cast<double> ();
  // Vector in which the polynomial coefficients will be put
  Eigen::VectorXd c_vec;
  // Local coordinate system (Darboux frame)
  Eigen::Vector3d v (0.0f, 0.0f, 0.0f), u (0.0f, 0.0f, 0.0f);



  // Perform polynomial fit to update point and normal
  ////////////////////////////////////////////////////
  if (polynomial_fit_ && static_cast<int> (nn_indices.size ()) >= nr_coeff_)
  {
    // Update neighborhood, since point was projected, and computing relative
    // positions. Note updating only distances for the weights for speed
    std::vector<Eigen::Vector3d> de_meaned (nn_indices.size ());
    for (size_t ni = 0; ni < nn_indices.size (); ++ni)
    {
      de_meaned[ni][0] = input_->points[nn_indices[ni]].x - point[0];
      de_meaned[ni][1] = input_->points[nn_indices[ni]].y - point[1];
      de_meaned[ni][2] = input_->points[nn_indices[ni]].z - point[2];
      nn_sqr_dists[ni] = static_cast<float> (de_meaned[ni].dot (de_meaned[ni]));
    }

    // Allocate matrices and vectors to hold the data used for the polynomial fit
    Eigen::VectorXd weight_vec (nn_indices.size ());
    Eigen::MatrixXd P (nr_coeff_, nn_indices.size ());
    Eigen::VectorXd f_vec (nn_indices.size ());
    Eigen::MatrixXd P_weight; // size will be (nr_coeff_, nn_indices.size ());
    Eigen::MatrixXd P_weight_Pt (nr_coeff_, nr_coeff_);

    // Get local coordinate system (Darboux frame)
    v = plane_normal.unitOrthogonal ();
    u = plane_normal.cross (v);

    // Go through neighbors, transform them in the local coordinate system,
    // save height and the evaluation of the polynome's terms
    double u_coord, v_coord, u_pow, v_pow;
    for (size_t ni = 0; ni < nn_indices.size (); ++ni)
    {
      // (re-)compute weights
      weight_vec (ni) = exp (-nn_sqr_dists[ni] / sqr_gauss_param_);

      // transforming coordinates
      u_coord = de_meaned[ni].dot (u);
      v_coord = de_meaned[ni].dot (v);
      f_vec (ni) = de_meaned[ni].dot (plane_normal);

      // compute the polynomial's terms at the current point
      int j = 0;
      u_pow = 1;
      for (int ui = 0; ui <= order_; ++ui)
      {
        v_pow = 1;
        for (int vi = 0; vi <= order_ - ui; ++vi)
        {
          P (j++, ni) = u_pow * v_pow;
          v_pow *= v_coord;
        }
        u_pow *= u_coord;
      }
    }

    // Computing coefficients
    P_weight = P * weight_vec.asDiagonal ();
    P_weight_Pt = P_weight * P.transpose ();
    c_vec = P_weight * f_vec;
    P_weight_Pt.llt ().solveInPlace (c_vec);
  }

  switch (upsample_method_)
  {
    case (NONE):
    {
      Eigen::Vector3d normal = plane_normal;

      if (polynomial_fit_ && static_cast<int> (nn_indices.size ()) >= nr_coeff_ && pcl_isfinite (c_vec[0]))
      {
        point += (c_vec[0] * plane_normal).cast<float> ();

        // Compute tangent vectors using the partial derivates evaluated at (0,0) which is c_vec[order_+1] and c_vec[1]
        if (compute_normals_)
          normal = plane_normal - c_vec[order_ + 1] * u - c_vec[1] * v;
      }

      PointOutT aux;
      aux.x = point[0];
      aux.y = point[1];
      aux.z = point[2];
      projected_points.push_back (aux);

      if (compute_normals_)
      {
        pcl::Normal aux_normal;
        aux_normal.normal_x = static_cast<float> (normal[0]);
        aux_normal.normal_y = static_cast<float> (normal[1]);
        aux_normal.normal_z = static_cast<float> (normal[2]);
        aux_normal.curvature = curvature;
        projected_points_normals.push_back (aux_normal);
      }

      break;
    }

    case (SAMPLE_LOCAL_PLANE):
    {
      // Uniformly sample a circle around the query point using the radius and step parameters
      for (float u_disp = -static_cast<float> (upsampling_radius_); u_disp <= upsampling_radius_; u_disp += static_cast<float> (upsampling_step_))
        for (float v_disp = -static_cast<float> (upsampling_radius_); v_disp <= upsampling_radius_; v_disp += static_cast<float> (upsampling_step_))
          if (u_disp*u_disp + v_disp*v_disp < upsampling_radius_*upsampling_radius_)
          {
            PointOutT projected_point;
            pcl::Normal projected_normal;
            projectPointToMLSSurface (u_disp, v_disp, u, v, plane_normal, curvature, point, c_vec, 
                                      static_cast<int> (nn_indices.size ()),
                                      projected_point, projected_normal);

            projected_points.push_back (projected_point);
            if (compute_normals_)
              projected_points_normals.push_back (projected_normal);
          }
      break;
    }

    case (RANDOM_UNIFORM_DENSITY):
    {
      // Compute the local point density and add more samples if necessary
      int num_points_to_add = static_cast<int> (floor (desired_num_points_in_radius_ / 2.0 / static_cast<double> (nn_indices.size ())));

      // Just add the query point, because the density is good
      if (num_points_to_add <= 0)
      {
        // Just add the current point
        Eigen::Vector3d normal = plane_normal;
        if (polynomial_fit_ && static_cast<int> (nn_indices.size ()) >= nr_coeff_ && pcl_isfinite (c_vec[0]))
        {
          // Projection onto MLS surface along Darboux normal to the height at (0,0)
          point += (c_vec[0] * plane_normal).cast<float> ();
          // Compute tangent vectors using the partial derivates evaluated at (0,0) which is c_vec[order_+1] and c_vec[1]
          if (compute_normals_)
            normal = plane_normal - c_vec[order_ + 1] * u - c_vec[1] * v;
        }
        PointOutT aux;
        aux.x = point[0];
        aux.y = point[1];
        aux.z = point[2];
        projected_points.push_back (aux);

        if (compute_normals_)
        {
          pcl::Normal aux_normal;
          aux_normal.normal_x = static_cast<float> (normal[0]);
          aux_normal.normal_y = static_cast<float> (normal[1]);
          aux_normal.normal_z = static_cast<float> (normal[2]);
          aux_normal.curvature = curvature;
          projected_points_normals.push_back (aux_normal);
        }
      }
      else
      {
        // Sample the local plane
        for (int num_added = 0; num_added < num_points_to_add;)
        {
          float u_disp = (*rng_uniform_distribution_) (),
                v_disp = (*rng_uniform_distribution_) ();
          // Check if inside circle; if not, try another coin flip
          if (u_disp * u_disp + v_disp * v_disp > search_radius_ * search_radius_/4)
            continue;


          PointOutT projected_point;
          pcl::Normal projected_normal;
          projectPointToMLSSurface (u_disp, v_disp, u, v, plane_normal, curvature, point, c_vec, 
                                    static_cast<int> (nn_indices.size ()),
                                    projected_point, projected_normal);

          projected_points.push_back (projected_point);
          if (compute_normals_)
            projected_points_normals.push_back (projected_normal);

          num_added ++;
        }
      }
      break;
    }

    case (VOXEL_GRID_DILATION):
    {
      // Take all point pairs and sample space between them in a grid-fashion
      // \note consider only point pairs with increasing indices
      MLSResult result (plane_normal, u, v, c_vec, static_cast<int> (nn_indices.size ()), curvature);
      mls_results_[index] = result;
      break;
    }
  }
}
	Eigen::Vector3f linePlaneIntersection( const Eigen::Vector3f &linePoint, const Eigen::Vector3f &lineDir, const Eigen::Vector3f &planePoint, const Eigen::Vector3f &planeNormal )
	{
		//source: http://en.wikipedia.org/wiki/Line%E2%80%93plane_intersection
		float d=(planePoint-linePoint).dot(planeNormal)/lineDir.dot(planeNormal);
		return linePoint+d*lineDir;
	}
void PointWithNormalStatistcsGenerator::computeNormalsAndSVD(PointWithNormalVector& points, PointWithNormalSVDVector& svds, const Eigen::MatrixXi& indices, 
							     const Eigen::Matrix3f& cameraMatrix, const Eigen::Isometry3f& transform){
  _integralImage.compute(indices,points);
  int q=0;
  int outerStep = _numThreads * _step;
  PixelMapper pixelMapper;
  pixelMapper.setCameraMatrix(cameraMatrix);
  pixelMapper.setTransform(transform);
  Eigen::Isometry3f inverseTransform = transform.inverse();
  #pragma omp parallel
  {
#ifdef _PWN_USE_OPENMP_
    int threadNum = omp_get_thread_num();
#else // _PWN_USE_OPENMP_
    int threadNum = 0; 
    Eigen::SelfAdjointEigenSolver<Eigen::Matrix3f> eigenSolver;
#endif // _PWN_USE_OPENMP_

    for (int c=threadNum; c<indices.cols(); c+=outerStep) {
#ifdef _PWN_USE_OPENMP_
      Eigen::SelfAdjointEigenSolver<Eigen::Matrix3f> eigenSolver;
#endif // _PWN_USE_OPENMP_
      for (int r=0; r<indices.rows(); r+=_step, q++){
	int index  = indices(r,c);
	//cerr << "index("  << r <<"," << c << ")=" << index <<  endl;
	if (index<0)
	  continue;
	// determine the region
	PointWithNormal& point = points[index];
	PointWithNormalSVD& originalSVD = svds[index];
	PointWithNormalSVD svd;
	Eigen::Vector3f normal = point.normal();
	Eigen::Vector3f coord = pixelMapper.projectPoint(point.point()+Eigen::Vector3f(_worldRadius, _worldRadius, 0));
	svd._z=point(2);

	coord.head<2>()*=(1./coord(2));
	int dx = abs(c - coord[0]);
	int dy = abs(r - coord[1]);
	if (dx>_imageRadius)
	  dx = _imageRadius;
	if (dy>_imageRadius)
	  dy = _imageRadius;
	PointAccumulator acc = _integralImage.getRegion(c-dx, c+dx, r-dy, r+dy);
	svd._mean=point.point();
	if (acc.n()>_minPoints){
	  Eigen::Vector3f mean = acc.mean();
	  svd._mean = mean;
	  svd._n = acc.n();
	  Eigen::Matrix3f cov  = acc.covariance();
	  eigenSolver.compute(cov);
	  svd._U=eigenSolver.eigenvectors();
	  svd._singularValues=eigenSolver.eigenvalues();
	  if (svd._singularValues(0) <0)
	    svd._singularValues(0) = 0;
	  /*
	    cerr << "\t svd.singularValues():" << svd.singularValues() << endl;
	    cerr << "\t svd.U():" << endl << svd.U() << endl;
	    //cerr << "\t svd.curvature():" << svd.curvature() << endl;
	
	    */
	

	  normal = eigenSolver.eigenvectors().col(0).normalized();
	  if (normal.dot(inverseTransform * mean) > 0.0f)
	    normal =-normal;
	  svd.updateCurvature();
	  //cerr << "n(" << index << ") c:"  << svd.curvature() << endl << point.tail<3>() << endl;
	  if (svd.curvature()>_maxCurvature){
	    //cerr << "region: " << c-dx << " " <<  c+dx << " " <<  r-dx << " " << r+dx << " points: " << acc.n() << endl;
	    normal.setZero();
	  } 
	} else {
	  normal.setZero();
	  svd = PointWithNormalSVD();
	}
	if (svd.n() > originalSVD.n()){
	  originalSVD = svd;
	  point.setNormal(normal);
	}
      } 
    }
  }
}
  bool SnapIt::extractPointsInsidePlanePole(geometry_msgs::PolygonStamped target_plane,
                                            pcl::PointIndices::Ptr inliers,
                                            EigenVector3fVector& points,
                                            Eigen::Vector3f &n,
                                            Eigen::Vector3f &p)
  {
    for (size_t i = 0; i < target_plane.polygon.points.size(); i++) {
      geometry_msgs::PointStamped point_stamped, transformed_point_stamped;
      point_stamped.header = target_plane.header;
      point_stamped.point.x = target_plane.polygon.points[i].x;
      point_stamped.point.y = target_plane.polygon.points[i].y;
      point_stamped.point.z = target_plane.polygon.points[i].z;
      tf_listener_->transformPoint(input_frame_id_, point_stamped, transformed_point_stamped);
      Eigen::Vector3f eigen_points;
      eigen_points[0] = transformed_point_stamped.point.x;
      eigen_points[1] = transformed_point_stamped.point.y;
      eigen_points[2] = transformed_point_stamped.point.z;
      points.push_back(eigen_points);
    }
    
    // create model
    pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients ());
    
    // extract independent 3 points
    Eigen::Vector3f O = points[0];
    Eigen::Vector3f A = points[1];
    for (size_t i = 2; i < points.size(); i++) {
      Eigen::Vector3f B = points[i];
      // check O, A, B on the sampe line or not...
      // OA x OB
      Eigen::Vector3f result = (A - O).cross(B - O);
      if (result.norm() < 1.0e-08) {
        // too small
        continue;
      }
      else {
        result.normalize();
        // big enough
        coefficients->values.resize (4);
        // A(x - ox) + B(y - oy) + C(z - oz) = 0
        // result = (A, B, C)
        coefficients->values[0] = result[0];
        coefficients->values[1] = result[1];
        coefficients->values[2] = result[2];
        coefficients->values[3] = O.dot(result);
        n = result;
        p = O;
      }
    }
    if (coefficients->values.size() != 4) {
      NODELET_ERROR("all the points of target_plane are on a line");
      return false;
    }

    // project input_ to the plane
    pcl::PointCloud<pcl::PointXYZ> cloud_projected;
    pcl::ProjectInliers<pcl::PointXYZ> proj;
    proj.setModelType (pcl::SACMODEL_PLANE);
    proj.setInputCloud (input_);
    proj.setModelCoefficients (coefficients);
    proj.filter (cloud_projected);

    
    // next, check the points inside of the plane or not...
    for (size_t i = 0; i < cloud_projected.points.size(); i++) {
      pcl::PointXYZ point = cloud_projected.points[i];
      Eigen::Vector3f point_vector = point.getVector3fMap();
      if (checkPointInsidePlane(points, n, point_vector)) {
        inliers->indices.push_back(i);
      }
    }
    //ROS_INFO("%lu points inside the plane", inliers->indices.size());
    return true;
  }
Пример #27
0
template<typename PointT> bool
pcl::CropHull<PointT>::rayTriangleIntersect (const PointT& point,
                                             const Eigen::Vector3f& ray,
                                             const Vertices& verts,
                                             const PointCloud& cloud)
{
  // Algorithm here is adapted from:
  // http://softsurfer.com/Archive/algorithm_0105/algorithm_0105.htm#intersect_RayTriangle()
  //
  // Original copyright notice:
  // Copyright 2001, softSurfer (www.softsurfer.com)
  // This code may be freely used and modified for any purpose
  // providing that this copyright notice is included with it.
  //
  assert (verts.vertices.size () == 3);

  const Eigen::Vector3f p = point.getVector3fMap ();
  const Eigen::Vector3f a = cloud[verts.vertices[0]].getVector3fMap ();
  const Eigen::Vector3f b = cloud[verts.vertices[1]].getVector3fMap ();
  const Eigen::Vector3f c = cloud[verts.vertices[2]].getVector3fMap ();
  const Eigen::Vector3f u = b - a;
  const Eigen::Vector3f v = c - a;
  const Eigen::Vector3f n = u.cross (v);
  const float n_dot_ray = n.dot (ray);

  if (std::fabs (n_dot_ray) < 1e-9)
    return (false);

  const float r = n.dot (a - p) / n_dot_ray;

  if (r < 0)
    return (false);

  const Eigen::Vector3f w = p + r * ray - a;
  const float denominator = u.dot (v) * u.dot (v) - u.dot (u) * v.dot (v);
  const float s_numerator = u.dot (v) * w.dot (v) - v.dot (v) * w.dot (u);
  const float s = s_numerator / denominator;
  if (s < 0 || s > 1)
    return (false);

  const float t_numerator = u.dot (v) * w.dot (u) - u.dot (u) * w.dot (v);
  const float t = t_numerator / denominator;
  if (t < 0 || s+t > 1)
    return (false);
  
  return (true);
}
Пример #28
0
float mrpt::pbmap::dist3D_Segment_to_Segment2(Segment S1, Segment S2)
{
	Eigen::Vector3f u = diffPoints(S1.P1, S1.P0);
	Eigen::Vector3f v = diffPoints(S2.P1, S2.P0);
	Eigen::Vector3f w = diffPoints(S1.P0, S2.P0);
	float a = u.dot(u);  // always >= 0
	float b = u.dot(v);
	float c = v.dot(v);  // always >= 0
	float d = u.dot(w);
	float e = v.dot(w);
	float D = a * c - b * b;  // always >= 0
	float sc, sN, sD = D;  // sc = sN / sD, default sD = D >= 0
	float tc, tN, tD = D;  // tc = tN / tD, default tD = D >= 0

	// compute the line parameters of the two closest points
	if (D < SMALL_NUM)
	{  // the lines are almost parallel
		sN = 0.0;  // force using point P0 on segment S1
		sD = 1.0;  // to prevent possible division by 0.0 later
		tN = e;
		tD = c;
	}
	else
	{  // get the closest points on the infinite lines
		sN = (b * e - c * d);
		tN = (a * e - b * d);
		if (sN < 0.0)
		{  // sc < 0 => the s=0 edge is visible
			sN = 0.0;
			tN = e;
			tD = c;
		}
		else if (sN > sD)
		{  // sc > 1 => the s=1 edge is visible
			sN = sD;
			tN = e + b;
			tD = c;
		}
	}

	if (tN < 0.0)
	{  // tc < 0 => the t=0 edge is visible
		tN = 0.0;
		// recompute sc for this edge
		if (-d < 0.0)
			sN = 0.0;
		else if (-d > a)
			sN = sD;
		else
		{
			sN = -d;
			sD = a;
		}
	}
	else if (tN > tD)
	{  // tc > 1 => the t=1 edge is visible
		tN = tD;
		// recompute sc for this edge
		if ((-d + b) < 0.0)
			sN = 0;
		else if ((-d + b) > a)
			sN = sD;
		else
		{
			sN = (-d + b);
			sD = a;
		}
	}
	// finally do the division to get sc and tc
	sc = (fabs(sN) < SMALL_NUM ? 0.0 : sN / sD);
	tc = (fabs(tN) < SMALL_NUM ? 0.0 : tN / tD);

	// get the difference of the two closest points
	Eigen::Vector3f dP = w + (sc * u) - (tc * v);  // = S1(sc) - S2(tc)

	return dP.squaredNorm();  // return the closest distance
}
Пример #29
0
// Returns squared mahalanobis distance
float Reco::mahalanobis_distance (Eigen::Matrix3f cov, Eigen::Vector3f mean, pcl::PointXYZ pt)
{
	Eigen::Vector3f diff (pt.x - mean[0], pt.y - mean[1], pt.z - mean[2]);
	//return diff.dot(cov.inverse() * diff);
	return sqrt(diff.dot(cov.inverse() * diff));
}
/** Estimate monocular visual odometry.
 * @param std::vector<Match> vector with matches
 * @param Eigen::Matrix3f& (output) estimated rotation matrix
 * @param Eigen::Vector3f& (output) estimated translation vector
 * @param bool show optical flow (true), don't show otherwise
 * @param std::vector<Match> output vector with all inlier matches
 * @param std::vector<Eigen::Vector3f> output vector with 3D points, triangulated from all inlier matches
 * @return bool true is motion successfully estimated, false otherwise */
bool MonoOdometer8::estimateMotion(std::vector<Match> matches, Eigen::Matrix3f &R, Eigen::Vector3f &t, bool showOpticalFlow, std::vector<Match> &inlierMatches, std::vector<Eigen::Vector3f> &points3D)
{
    // check number of correspondences
    int N = matches.size();
    if(N < param_odometerMinNumberMatches_)
    {
        // too few matches to compute F
        R = Eigen::Matrix3f::Identity();
        t << 0.0, 0.0, 0.0;
        return false;
    }

    // normalize 2D features
    Eigen::Matrix3f NormTPrev, NormTCurr;
    std::vector<Match> matchesNorm = normalize2DPoints(matches, NormTPrev, NormTCurr);

    Eigen::Matrix3f F, E;
    std::vector<int> inlierIndices;
		
    // RANSAC loop
    for(int j=0; j<param_odometerRansacIters_; j++)
    {
        // get random sample
        std::vector<int> chosenIndices = getRandomSample(matchesNorm.size(), 8);
            
        // compute fundamental matrix
        F = getF(matchesNorm, chosenIndices);
            
        // get inliers
        std::vector<int> inlierIndicesCurr = getInliers(matchesNorm, F);
            
        if(inlierIndicesCurr.size() > inlierIndices.size())
        {
                inlierIndices = inlierIndicesCurr;
        }
    }

    // check number of inliers
    if(inlierIndices.size() < param_odometerMinNumberMatches_)
    {
        R = Eigen::Matrix3f::Identity();
        t << 0.0, 0.0, 0.0;
        return false;
    }

    // compute fundamental matrix out of all inliers
    F = getF(matchesNorm, inlierIndices);

    // save inlier and outlier matches
    std::vector<Match> outlierMatches;
    for(int i=0; i<matches.size(); i++)
    {
        if(elemInVec(inlierIndices, i))
        {
            inlierMatches.push_back(matches[i]);
        }
        else
        {
            outlierMatches.push_back(matches[i]);
        }
    }

    // plot optical flow and print #inliers (for debugging)
    if(showOpticalFlow)
    {
        cv::Mat image(1024, 768, CV_8UC1, cv::Scalar(0));
        cv::Mat of1 = highlightOpticalFlow(image, inlierMatches, cv::Scalar(0, 255, 0));
        cv::Mat of2 = highlightOpticalFlow(of1, outlierMatches, cv::Scalar(0, 0, 255));
        cv::namedWindow("Optical flow", CV_WINDOW_AUTOSIZE);
        cv::imshow("Optical flow", of2);
        cv::waitKey(10);
    }
    
    // denormalize F
    F = NormTCurr.transpose() * F * NormTPrev;
    
    // compute essential matrix E
    E = F2E(F);

    // get rotation and translation and triangulate points
    Eigen::Matrix<float, 4, Eigen::Dynamic> points3DMat;
    E2Rt(E, inlierMatches, R, t, points3DMat);

    // normalize 3D points (force last coordinate to 0)
    for(int j=0; j<points3DMat.cols(); j++)
    {
        Eigen::Vector3f pt = points3DMat.block<3, 1>(0, j);
        double lastCoord = points3DMat(3, j);
        pt = pt / lastCoord;
        if(pt(2) > 0)
        {
            points3D.push_back(pt);
        }
        else
        {
            // remove match if not a valid point
            inlierMatches.erase(inlierMatches.begin() + j);
        }
    }

    // check number of valid points
    if(points3D.size() < param_odometerMinNumberMatches_)
    {
        R = Eigen::Matrix3f::Identity();
        t << 0.0, 0.0, 0.0;
        return false;
    }

    // inforce translation norm to 1
    t = t / sqrt(t.dot(t));

    return true;
}