/* * Converts all segments in all paths to Geom::LineSegment or Geom::HLineSegment or * Geom::VLineSegment or Geom::CubicBezier. */ Geom::PathVector pathv_to_linear_and_cubic_beziers( Geom::PathVector const &pathv ) { Geom::PathVector output; for (Geom::PathVector::const_iterator pit = pathv.begin(); pit != pathv.end(); ++pit) { output.push_back( Geom::Path() ); output.back().start( pit->initialPoint() ); output.back().close( pit->closed() ); for (Geom::Path::const_iterator cit = pit->begin(); cit != pit->end_open(); ++cit) { if (is_straight_curve(*cit)) { Geom::LineSegment l(cit->initialPoint(), cit->finalPoint()); output.back().append(l); } else { Geom::BezierCurve const *curve = dynamic_cast<Geom::BezierCurve const *>(&*cit); if (curve && curve->order() == 3) { Geom::CubicBezier b((*curve)[0], (*curve)[1], (*curve)[2], (*curve)[3]); output.back().append(b); } else { // convert all other curve types to cubicbeziers Geom::Path cubicbezier_path = Geom::cubicbezierpath_from_sbasis(cit->toSBasis(), 0.1); output.back().append(cubicbezier_path); } } } } return output; }
static void sp_path_convert_to_guides(SPItem *item) { SPPath *path = SP_PATH(item); if (!path->_curve) { return; } std::list<std::pair<Geom::Point, Geom::Point> > pts; Geom::Affine const i2dt(path->i2dt_affine()); Geom::PathVector const & pv = path->_curve->get_pathvector(); for(Geom::PathVector::const_iterator pit = pv.begin(); pit != pv.end(); ++pit) { for(Geom::Path::const_iterator cit = pit->begin(); cit != pit->end_default(); ++cit) { // only add curves for straight line segments if( is_straight_curve(*cit) ) { pts.push_back(std::make_pair(cit->initialPoint() * i2dt, cit->finalPoint() * i2dt)); } } } sp_guide_pt_pairs_to_guides(item->document, pts); }
/* * Converts all segments in all paths to Geom::LineSegment. There is an intermediate * stage where some may be converted to beziers. maxdisp is the maximum displacement from * the line segment to the bezier curve; ** maxdisp is not used at this moment **. * * This is NOT a terribly fast method, but it should give a solution close to the one with the * fewest points. */ Geom::PathVector pathv_to_linear( Geom::PathVector const &pathv, double /*maxdisp*/) { Geom::PathVector output; Geom::PathVector tmppath = pathv_to_linear_and_cubic_beziers(pathv); // Now all path segments are either already lines, or they are beziers. for (Geom::PathVector::const_iterator pit = tmppath.begin(); pit != tmppath.end(); ++pit) { output.push_back( Geom::Path() ); output.back().start( pit->initialPoint() ); output.back().close( pit->closed() ); for (Geom::Path::const_iterator cit = pit->begin(); cit != pit->end_open(); ++cit) { if (is_straight_curve(*cit)) { Geom::LineSegment ls(cit->initialPoint(), cit->finalPoint()); output.back().append(ls); } else { /* all others must be Bezier curves */ Geom::BezierCurve const *curve = dynamic_cast<Geom::BezierCurve const *>(&*cit); Geom::CubicBezier b((*curve)[0], (*curve)[1], (*curve)[2], (*curve)[3]); std::vector<Geom::Point> bzrpoints = b.points(); Geom::Point A = bzrpoints[0]; Geom::Point B = bzrpoints[1]; Geom::Point C = bzrpoints[2]; Geom::Point D = bzrpoints[3]; std::vector<Geom::Point> pointlist; pointlist.push_back(A); recursive_bezier4( A[X], A[Y], B[X], B[Y], C[X], C[Y], D[X], D[Y], pointlist, 0); pointlist.push_back(D); Geom::Point r1 = pointlist[0]; for (unsigned int i=1; i<pointlist.size();i++){ Geom::Point prev_r1 = r1; r1 = pointlist[i]; Geom::LineSegment ls(prev_r1, r1); output.back().append(ls); } pointlist.clear(); } } } return output; }
static std::vector<Geom::Point> approxCurveWithPoints(SPCurve *curve) { // The number of segments to use for not straight curves approximation const unsigned NUM_SEGS = 4; const Geom::PathVector& curve_pv = curve->get_pathvector(); // The structure to hold the output std::vector<Geom::Point> poly_points; // Iterate over all curves, adding the endpoints for linear curves and // sampling the other curves double seg_size = 1.0 / NUM_SEGS; double at; at = 0; Geom::PathVector::const_iterator pit = curve_pv.begin(); while (pit != curve_pv.end()) { Geom::Path::const_iterator cit = pit->begin(); while (cit != pit->end()) { if (cit == pit->begin()) { poly_points.push_back(cit->initialPoint()); } if (dynamic_cast<Geom::CubicBezier const*>(&*cit)) { at += seg_size; if (at <= 1.0 ) poly_points.push_back(cit->pointAt(at)); else { at = 0.0; ++cit; } } else { poly_points.push_back(cit->finalPoint()); ++cit; } } ++pit; } return poly_points; }
/* * sp_svg_write_polygon: Write points attribute for polygon tag. * pathv may only contain paths with only straight line segments * Return value: points attribute string. */ static gchar *sp_svg_write_polygon(Geom::PathVector const & pathv) { Inkscape::SVGOStringStream os; for (Geom::PathVector::const_iterator pit = pathv.begin(); pit != pathv.end(); ++pit) { for (Geom::Path::const_iterator cit = pit->begin(); cit != pit->end_default(); ++cit) { if ( is_straight_curve(*cit) ) { os << cit->finalPoint()[0] << "," << cit->finalPoint()[1] << " "; } else { g_error("sp_svg_write_polygon: polygon path contains non-straight line segments"); } } } return g_strdup(os.str().c_str()); }
Geom::OptRect bounds_exact_transformed(Geom::PathVector const & pv, Geom::Affine const & t) { if (pv.empty()) return Geom::OptRect(); Geom::Point initial = pv.front().initialPoint() * t; Geom::Rect bbox(initial, initial); // obtain well defined bbox as starting point to unionWith for (Geom::PathVector::const_iterator it = pv.begin(); it != pv.end(); ++it) { bbox.expandTo(it->initialPoint() * t); // don't loop including closing segment, since that segment can never increase the bbox for (Geom::Path::const_iterator cit = it->begin(); cit != it->end_open(); ++cit) { Geom::Curve const &c = *cit; unsigned order = 0; if (Geom::BezierCurve const* b = dynamic_cast<Geom::BezierCurve const*>(&c)) { order = b->order(); } if (order == 1) { // line segment bbox.expandTo(c.finalPoint() * t); // TODO: we can make the case for quadratics faster by degree elevating them to // cubic and then taking the bbox of that. } else if (order == 3) { // cubic bezier Geom::CubicBezier const &cubic_bezier = static_cast<Geom::CubicBezier const&>(c); Geom::Point c0 = cubic_bezier[0] * t; Geom::Point c1 = cubic_bezier[1] * t; Geom::Point c2 = cubic_bezier[2] * t; Geom::Point c3 = cubic_bezier[3] * t; cubic_bbox(c0[0], c0[1], c1[0], c1[1], c2[0], c2[1], c3[0], c3[1], bbox); } else { // should handle all not-so-easy curves: Geom::Curve *ctemp = cit->transformed(t); bbox.unionWith( ctemp->boundsExact()); delete ctemp; } } } //return Geom::bounds_exact(pv * t); return bbox; }
Geom::OptRect bounds_exact_transformed(Geom::PathVector const & pv, Geom::Affine const & t) { if (pv.empty()) return Geom::OptRect(); Geom::Point initial = pv.front().initialPoint() * t; Geom::Rect bbox(initial, initial); // obtain well defined bbox as starting point to unionWith for (Geom::PathVector::const_iterator it = pv.begin(); it != pv.end(); ++it) { bbox.expandTo(it->initialPoint() * t); // don't loop including closing segment, since that segment can never increase the bbox for (Geom::Path::const_iterator cit = it->begin(); cit != it->end_open(); ++cit) { Geom::Curve const &c = *cit; if( is_straight_curve(c) ) { bbox.expandTo( c.finalPoint() * t ); } else if(Geom::CubicBezier const *cubic_bezier = dynamic_cast<Geom::CubicBezier const *>(&c)) { Geom::Point c0 = (*cubic_bezier)[0] * t; Geom::Point c1 = (*cubic_bezier)[1] * t; Geom::Point c2 = (*cubic_bezier)[2] * t; Geom::Point c3 = (*cubic_bezier)[3] * t; cubic_bbox( c0[0], c0[1], c1[0], c1[1], c2[0], c2[1], c3[0], c3[1], bbox ); } else { // should handle all not-so-easy curves: Geom::Curve *ctemp = cit->transformed(t); bbox.unionWith( ctemp->boundsExact()); delete ctemp; } } } //return Geom::bounds_exact(pv * t); return bbox; }