Пример #1
0
void run ()
{

  Image::Header H_in (argument[0]);
  DWI::Tractography::ACT::verify_5TT_image (H_in);
  Image::Buffer<float> in (H_in);

  Image::Header H_out (in);
  H_out.set_ndim (3);
  H_out.datatype() = DataType::Float32;

  Options
  opt = get_options ("bg");   const float bg_multiplier   = opt.size() ? opt[0][0] : VALUE_DEFAULT_BG;
  opt = get_options ("cgm");  const float cgm_multiplier  = opt.size() ? opt[0][0] : VALUE_DEFAULT_CGM;
  opt = get_options ("sgm");  const float sgm_multiplier  = opt.size() ? opt[0][0] : VALUE_DEFAULT_SGM;
  opt = get_options ("wm");   const float wm_multiplier   = opt.size() ? opt[0][0] : VALUE_DEFAULT_WM;
  opt = get_options ("csf");  const float csf_multiplier  = opt.size() ? opt[0][0] : VALUE_DEFAULT_CSF;
  opt = get_options ("path"); const float path_multiplier = opt.size() ? opt[0][0] : VALUE_DEFAULT_PATH;

  Image::Buffer<float> out (argument[1], H_out);
  auto v_in = in.voxel();
  auto v_out = out.voxel();

  auto f = [&] (decltype(v_in)& in, decltype(v_out)& out) {
    const DWI::Tractography::ACT::Tissues t (in);
    const float bg = 1.0 - (t.get_cgm() + t.get_sgm() + t.get_wm() + t.get_csf() + t.get_path());
    out.value() = (bg_multiplier * bg) + (cgm_multiplier * t.get_cgm()) + (sgm_multiplier * t.get_sgm()) 
      + (wm_multiplier * t.get_wm()) + (csf_multiplier * t.get_csf()) + (path_multiplier * t.get_path());
  };
  Image::ThreadedLoop (v_out, 0, 3).run (f, v_in, v_out);

}
Пример #2
0
void run () 
{

  Image::Header H (argument[0]);

  Image::Info info (H);
  info.set_ndim (3);
  Image::BufferScratch<bool> mask (info);
  auto v_mask = mask.voxel();

  std::string mask_path;
  Options opt = get_options ("mask");
  if (opt.size()) {
    mask_path = std::string(opt[0][0]);
    Image::Buffer<bool> in (mask_path);
    if (!Image::dimensions_match (H, in, 0, 3))
      throw Exception ("Input mask image does not match DWI");
    if (!(in.ndim() == 3 || (in.ndim() == 4 && in.dim(3) == 1)))
      throw Exception ("Input mask image must be a 3D image");
    auto v_in = in.voxel();
    Image::copy (v_in, v_mask, 0, 3);
  } else {
    for (auto l = Image::LoopInOrder (v_mask) (v_mask); l; ++l) 
      v_mask.value() = true;
  }

  DWI::CSDeconv<float>::Shared shared (H);

  const size_t lmax = DWI::lmax_for_directions (shared.DW_dirs);
  if (lmax < 4)
    throw Exception ("Cannot run dwi2response with lmax less than 4");
  shared.lmax = lmax;

  Image::BufferPreload<float> dwi (H, Image::Stride::contiguous_along_axis (3));
  DWI::Directions::Set directions (1281);

  Math::Vector<float> response (lmax/2+1);
  response.zero();

  {
    // Initialise response function
    // Use lmax = 2, get the DWI intensity mean and standard deviation within the mask and
    //   use these as the first two coefficients
    auto v_dwi = dwi.voxel();
    double sum = 0.0, sq_sum = 0.0;
    size_t count = 0;
    Image::LoopInOrder loop (dwi, "initialising response function... ", 0, 3);
    for (auto l = loop (v_dwi, v_mask); l; ++l) {
      if (v_mask.value()) {
        for (size_t volume_index = 0; volume_index != shared.dwis.size(); ++volume_index) {
          v_dwi[3] = shared.dwis[volume_index];
          const float value = v_dwi.value();
          sum += value;
          sq_sum += Math::pow2 (value);
          ++count;
        }
      }
    }
    response[0] = sum / double (count);
    response[1] = - 0.5 * std::sqrt ((sq_sum / double(count)) - Math::pow2 (response[0]));
    // Account for scaling in SH basis
    response *= std::sqrt (4.0 * Math::pi);
  }
  INFO ("Initial response function is [" + str(response, 2) + "]");

  // Algorithm termination options
  opt = get_options ("max_iters");
  const size_t max_iters = opt.size() ? int(opt[0][0]) : DWI2RESPONSE_DEFAULT_MAX_ITERS;
  opt = get_options ("max_change");
  const float max_change = 0.01 * (opt.size() ? float(opt[0][0]) : DWI2RESPONSE_DEFAULT_MAX_CHANGE);

  // Should all voxels (potentially within a user-specified mask) be tested at every iteration?
  opt = get_options ("test_all");
  const bool reset_mask = opt.size();

  // Single-fibre voxel selection options
  opt = get_options ("volume_ratio");
  const float volume_ratio = opt.size() ? float(opt[0][0]) : DWI2RESPONSE_DEFAULT_VOLUME_RATIO;
  opt = get_options ("dispersion_multiplier");
  const float dispersion_multiplier = opt.size() ? float(opt[0][0]) : DWI2RESPONSE_DEFAULT_DISPERSION_MULTIPLIER;
  opt = get_options ("integral_multiplier");
  const float integral_multiplier = opt.size() ? float(opt[0][0]) : DWI2RESPONSE_DEFAULT_INTEGRAL_STDEV_MULTIPLIER;

  SFThresholds thresholds (volume_ratio); // Only threshold the lobe volume ratio for now; other two are not yet used

  size_t total_iter = 0;
  bool first_pass = true;
  size_t prev_sf_count = 0;
  {
    bool iterate = true;
    size_t iter = 0;
    ProgressBar progress ("optimising response function... ");
    do {

      ++iter;

      {
        MR::LogLevelLatch latch (0);
        shared.set_response (response);
        shared.init();
      }

      ++progress;

      if (reset_mask) {
        if (mask_path.size()) {
          Image::Buffer<bool> in (mask_path);
          auto v_in = in.voxel();
          Image::copy (v_in, v_mask, 0, 3);
        } else {
          for (auto l = Image::LoopInOrder(v_mask) (v_mask); l; ++l)
            v_mask.value() = true;
        }
        ++progress;
      }

      std::vector<FODSegResult> seg_results;
      {
        FODCalcAndSeg processor (dwi, mask, shared, directions, lmax, seg_results);
        Image::ThreadedLoop loop (mask, 0, 3);
        loop.run (processor);
      }

      ++progress;

      if (!first_pass)
        thresholds.update (seg_results, dispersion_multiplier, integral_multiplier, iter);

      ++progress;

      Response output (lmax);
      mask.zero();
      {
        SFSelector selector (seg_results, thresholds, mask);
        ResponseEstimator estimator (dwi, shared, lmax, output);
        Thread::run_queue (selector, FODSegResult(), Thread::multi (estimator));
      }
      if (!output.get_count())
        throw Exception ("Cannot estimate response function; all voxels have been excluded from selection");
      const Math::Vector<float> new_response = output.result();
      const size_t sf_count = output.get_count();

      ++progress;

      if (App::log_level >= 2)
        std::cerr << "\n";
      INFO ("Iteration " + str(iter) + ", " + str(sf_count) + " SF voxels, new response function: [" + str(new_response, 2) + "]");

      if (sf_count == prev_sf_count) {
        INFO ("terminating due to convergence of single-fibre voxel selection");
        iterate = false;
      }
      if (iter == max_iters) {
        INFO ("terminating due to completing maximum number of iterations");
        iterate = false;
      }
      bool rf_changed = false;
      for (size_t i = 0; i != response.size(); ++i) {
        if (std::abs ((new_response[i] - response[i]) / new_response[i]) > max_change)
          rf_changed = true;
      }
      if (!rf_changed) {
        INFO ("terminating due to negligible changes in the response function coefficients");
        iterate = false;
      }

      if (!iterate && first_pass) {
        iterate = true;
        first_pass = false;
        INFO ("commencing second-pass of response function estimation");
        total_iter = iter;
        iter = 0;
      }

      response = new_response;
      prev_sf_count = sf_count;

      //v_mask.save ("mask_pass_" + str(first_pass?1:2) + "_iter_" + str(iter) + ".mif");

    } while (iterate);

    total_iter += iter;

  }

  CONSOLE ("final response function: [" + str(response, 2) + "] (reached after " + str(total_iter) + " iterations using " + str(prev_sf_count) + " voxels)");
  response.save (argument[1]);

  opt = get_options ("sf");
  if (opt.size())
    v_mask.save (std::string (opt[0][0]));

}