void BarycentricMapperSparseGridTopology<CudaVec3fTypes,CudaVec3fTypes>::applyJT( In::VecDeriv& out, const Out::VecDeriv& in ) { buildTranslate(out.size()); SparseGridMapperCuda3f_applyJT(out.size(), CudaTnb.deviceRead(),CudaTst.deviceRead(),CudaTid.deviceRead(),CudaTVal.deviceRead(), out.deviceWrite(), in.deviceRead()); /* for ( unsigned int i=0;i<map.size();i++ ) { Out::Deriv v = in[i]; const topology::SparseGridTopology::Hexa cube = this->topology->getHexahedron ( map[i].in_index ); const OutReal fx = ( OutReal ) map[i].baryCoords[0]; const OutReal fy = ( OutReal ) map[i].baryCoords[1]; const OutReal fz = ( OutReal ) map[i].baryCoords[2]; out[cube[0]] += v * ( ( 1-fx ) * ( 1-fy ) * ( 1-fz ) ); out[cube[1]] += v * ( ( fx ) * ( 1-fy ) * ( 1-fz ) ); out[cube[3]] += v * ( ( 1-fx ) * ( fy ) * ( 1-fz ) ); out[cube[2]] += v * ( ( fx ) * ( fy ) * ( 1-fz ) ); out[cube[4]] += v * ( ( 1-fx ) * ( 1-fy ) * ( fz ) ); out[cube[5]] += v * ( ( fx ) * ( 1-fy ) * ( fz ) ); out[cube[7]] += v * ( ( 1-fx ) * ( fy ) * ( fz ) ); out[cube[6]] += v * ( ( fx ) * ( fy ) * ( fz ) ); } */ // for ( unsigned int o=0;o<out.size();o++ ) { // for (unsigned n=CudaTst[o];n<CudaTst[o]+CudaTnb[o];n++) { // out[o] += in[CudaTid[n]] * CudaTVal[n]; // } // } }
void BarycentricMapperRegularGridTopology<CudaVec3f1Types,CudaVec3f1Types>::applyJT( In::VecDeriv& out, const Out::VecDeriv& in ) { calcMapT(); if (map.size() == 0) return; unsigned int gridsize[3] = { (unsigned int)topology->getNx(), (unsigned int)topology->getNy(), (unsigned int)topology->getNz() }; unsigned int insize = out.size(); RegularGridMapperCuda3f1_applyJT(insize, maxNOut, gridsize, mapT.deviceRead(), out.deviceWrite(), in.deviceRead()); }
void BarycentricMapperRegularGridTopology<CudaVec3f1Types,CudaVec3f1Types>::applyJ( Out::VecDeriv& out, const In::VecDeriv& in ) { unsigned int gridsize[3] = { (unsigned int)topology->getNx(), (unsigned int)topology->getNy(), (unsigned int)topology->getNz() }; out.fastResize(map.size()); RegularGridMapperCuda3f1_applyJ(map.size(), gridsize, map.deviceRead(), out.deviceWrite(), in.deviceRead()); }
void BarycentricMapperMeshTopology<CudaVec3f1Types,CudaVec3f1Types>::applyJT( In::VecDeriv& out, const Out::VecDeriv& in ) { if (size == 0) return; calcMapT(); MeshMapperCuda3f1_applyPEq(insize, maxNOut, mapT.deviceRead(), out.deviceWrite(), in.deviceRead()); }
void BarycentricMapperMeshTopology<CudaVec3f1Types,CudaVec3f1Types>::applyJ( Out::VecDeriv& out, const In::VecDeriv& in ) { out.fastResize(size); MeshMapperCuda3f1_apply(size, maxNIn, map.deviceRead(), out.deviceWrite(), in.deviceRead()); }
void BarycentricMapperSparseGridTopology<CudaVec3f1Types,CudaVec3f1Types>::applyJT( In::VecDeriv& out, const Out::VecDeriv& in ) { buildTranslate(out.size()); SparseGridMapperCuda3f1_applyJT(out.size(), CudaTnb.deviceRead(),CudaTst.deviceRead(),CudaTid.deviceRead(),CudaTVal.deviceRead(), out.deviceWrite(), in.deviceRead()); }
void BarycentricMapperSparseGridTopology<CudaVec3f1Types,CudaVec3f1Types>::applyJ( Out::VecDeriv& out, const In::VecDeriv& in ) { out.fastResize(map.size()); buildHexa(); SparseGridMapperCuda3f1_applyJ(map.size(), CudaHexa.deviceRead(), map.deviceRead(), out.deviceWrite(), in.deviceRead()); }
void applyJT( In::VecDeriv& out, const Out::VecDeriv& in ) { for(unsigned int i=0; i<out.size(); i++) out[i] += dx[i]*in[i]; }
void applyJ( Out::VecDeriv& out, const In::VecDeriv& in ) { out.resize(in.size()); for(unsigned int i=0; i<out.size(); i++) out[i] = dx[i]*in[i]; }