/// Robust fitting of the HOMOGRAPHY matrix bool Robust_estimation( const sfm::SfM_Data * sfm_data, const shared_ptr<sfm::Regions_Provider> & regions_provider, const Pair pairIndex, const matching::IndMatches & vec_PutativeMatches, matching::IndMatches & geometric_inliers) { using namespace openMVG; using namespace openMVG::robust; geometric_inliers.clear(); // Get back corresponding view index const IndexT iIndex = pairIndex.first; const IndexT jIndex = pairIndex.second; //-- // Get corresponding point regions arrays //-- Mat xI,xJ; MatchesPairToMat(pairIndex, vec_PutativeMatches, sfm_data, regions_provider, xI, xJ); //-- // Robust estimation //-- // Define the AContrario adapted Homography matrix solver typedef ACKernelAdaptor< openMVG::homography::kernel::FourPointSolver, openMVG::homography::kernel::AsymmetricError, UnnormalizerI, Mat3> KernelType; KernelType kernel( xI, sfm_data->GetViews().at(iIndex)->ui_width, sfm_data->GetViews().at(iIndex)->ui_height, xJ, sfm_data->GetViews().at(jIndex)->ui_width, sfm_data->GetViews().at(jIndex)->ui_height, false); // configure as point to point error model. // Robustly estimate the Homography matrix with A Contrario ransac const double upper_bound_precision = Square(m_dPrecision); std::vector<size_t> vec_inliers; const std::pair<double,double> ACRansacOut = ACRANSAC(kernel, vec_inliers, m_stIteration, &m_H, upper_bound_precision); if (vec_inliers.size() > KernelType::MINIMUM_SAMPLES *2.5) { m_dPrecision_robust = ACRansacOut.first; // update geometric_inliers geometric_inliers.reserve(vec_inliers.size()); for ( const size_t & index : vec_inliers) { geometric_inliers.push_back( vec_PutativeMatches[index] ); } return true; } else { vec_inliers.clear(); return false; } return true; }
bool Robust_estimation( const sfm::SfM_Data * sfm_data, const std::shared_ptr<Regions_or_Features_ProviderT> & regions_provider, const Pair pairIndex, const matching::IndMatches & vec_PutativeMatches, matching::IndMatches & geometric_inliers) { using namespace openMVG; using namespace openMVG::robust; geometric_inliers.clear(); // Get back corresponding view index const IndexT iIndex = pairIndex.first; const IndexT jIndex = pairIndex.second; //-- // Reject pair with missing Intrinsic information //-- const sfm::View * view_I = sfm_data->views.at(iIndex).get(); const sfm::View * view_J = sfm_data->views.at(jIndex).get(); // Check that valid cameras can be retrieved for the pair of views const cameras::IntrinsicBase * cam_I = sfm_data->GetIntrinsics().count(view_I->id_intrinsic) ? sfm_data->GetIntrinsics().at(view_I->id_intrinsic).get() : nullptr; const cameras::IntrinsicBase * cam_J = sfm_data->GetIntrinsics().count(view_J->id_intrinsic) ? sfm_data->GetIntrinsics().at(view_J->id_intrinsic).get() : nullptr; if (!cam_I || !cam_J) return false; if ( !isPinhole(cam_I->getType()) || !isPinhole(cam_J->getType())) return false; //-- // Get corresponding point regions arrays //-- Mat xI,xJ; MatchesPairToMat(pairIndex, vec_PutativeMatches, sfm_data, regions_provider, xI, xJ); //-- // Robust estimation //-- // Define the AContrario adapted Essential matrix solver typedef ACKernelAdaptorEssential< openMVG::essential::kernel::FivePointKernel, openMVG::fundamental::kernel::EpipolarDistanceError, UnnormalizerT, Mat3> KernelType; const cameras::Pinhole_Intrinsic * ptrPinhole_I = (const cameras::Pinhole_Intrinsic*)(cam_I); const cameras::Pinhole_Intrinsic * ptrPinhole_J = (const cameras::Pinhole_Intrinsic*)(cam_J); KernelType kernel( xI, sfm_data->GetViews().at(iIndex)->ui_width, sfm_data->GetViews().at(iIndex)->ui_height, xJ, sfm_data->GetViews().at(jIndex)->ui_width, sfm_data->GetViews().at(jIndex)->ui_height, ptrPinhole_I->K(), ptrPinhole_J->K()); // Robustly estimate the Essential matrix with A Contrario ransac const double upper_bound_precision = Square(m_dPrecision); std::vector<size_t> vec_inliers; const std::pair<double,double> ACRansacOut = ACRANSAC(kernel, vec_inliers, m_stIteration, &m_E, upper_bound_precision); if (vec_inliers.size() > KernelType::MINIMUM_SAMPLES *2.5) { m_dPrecision_robust = ACRansacOut.first; // update geometric_inliers geometric_inliers.reserve(vec_inliers.size()); for ( const size_t & index : vec_inliers) { geometric_inliers.push_back( vec_PutativeMatches[index] ); } return true; } else { vec_inliers.clear(); return false; } }