void LowessSmoothing::smoothData(const DoubleVector& input_x, const DoubleVector& input_y, DoubleVector& smoothed_output) { if (input_x.size() != input_y.size()) { throw Exception::InvalidValue(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Sizes of x and y values not equal! Aborting... ", String(input_x.size())); } // unable to smooth over 2 or less data points (we need at least 3) if (input_x.size() <= 2) { smoothed_output = input_y; return; } Size input_size = input_y.size(); // const Size q = floor( input_size * alpha ); const Size q = (window_size_ < input_size) ? static_cast<Size>(window_size_) : input_size - 1; DoubleVector distances(input_size, 0.0); DoubleVector sortedDistances(input_size, 0.0); for (Size outer_idx = 0; outer_idx < input_size; ++outer_idx) { // Compute distances. // Size inner_idx = 0; for (Size inner_idx = 0; inner_idx < input_size; ++inner_idx) { distances[inner_idx] = std::fabs(input_x[outer_idx] - input_x[inner_idx]); sortedDistances[inner_idx] = distances[inner_idx]; } // Sort distances in order from smallest to largest. std::sort(sortedDistances.begin(), sortedDistances.end()); // Compute weigths. std::vector<double> weigths(input_size, 0); for (Size inner_idx = 0; inner_idx < input_size; ++inner_idx) { weigths.at(inner_idx) = tricube_(distances[inner_idx], sortedDistances[q]); } //calculate regression Math::QuadraticRegression qr; std::vector<double>::const_iterator w_begin = weigths.begin(); qr.computeRegressionWeighted(input_x.begin(), input_x.end(), input_y.begin(), w_begin); //smooth y-values double rt = input_x[outer_idx]; smoothed_output.push_back(qr.eval(rt)); } return; }
void TOFCalibration::calculateCalibCoeffs_(MSExperiment<> & calib_spectra) { // flight times are needed later calib_peaks_ft_ = calib_spectra; // convert flight times of peaks into m/z values applyTOFConversion_(calib_spectra); std::vector<std::vector<unsigned int> > monoiso_peaks; getMonoisotopicPeaks_(calib_spectra, monoiso_peaks); startProgress(0, calib_spectra.size(), "quadratic fitting of calibrant spectra"); // do the quadratic fitting for each calibration spectra separately for (unsigned int spec = 0; spec < calib_spectra.size(); ++spec) { std::vector<unsigned int> monoiso_peaks_scan; std::vector<double> exp_masses; // match the m/z-values to the expected masses matchMasses_(calib_spectra, monoiso_peaks, monoiso_peaks_scan, exp_masses, spec); // the actual quadratic fitting part Size n = exp_masses.size(); if (n < 3) { continue; } // matrix containing the observations std::vector<double> x; // vector containing the expected masses std::vector<double> y; for (Size i = 0; i < n; i++) { // get the flight time double xi = ((calib_peaks_ft_.begin() + spec)->begin() + monoiso_peaks_scan[i])->getMZ(); x.push_back(xi); y.push_back(exp_masses[i]); } Math::QuadraticRegression qr; qr.computeRegression(x.begin(), x.end(), y.begin()); #ifdef DEBUG_CALIBRATION std::cout << "chi^2: " << qr.getChiSquared() << std::endl;//DEBUG std::cout << "a: " << qr.getA() << "b: " << qr.getB() << "c: " << qr.getC() << std::endl;//DEBUG #endif // store the coefficients coeff_quad_fit_.push_back(qr.getA()); coeff_quad_fit_.push_back(qr.getB()); coeff_quad_fit_.push_back(qr.getC()); // determine the errors in ppm for (Size p = 0; p < n; ++p) { #ifdef DEBUG_CALIBRATION std::cout << exp_masses[p] << "\t" << mQ_(calib_peaks_ft_[spec][monoiso_peaks_scan[p]].getMZ(), spec) - exp_masses[p] << std::endl; #endif errors_[exp_masses[p]].push_back((mQ_(calib_peaks_ft_[spec][monoiso_peaks_scan[p]].getMZ(), spec) - exp_masses[p])); } setProgress(spec); } endProgress(); if (coeff_quad_fit_.empty()) { String mess = String("Data can't be calibrated, not enough reference masses found: ") + coeff_quad_fit_.size() / 3; throw Exception::UnableToCalibrate(__FILE__, __LINE__, __PRETTY_FUNCTION__, "UnableToCalibrate", mess.c_str()); } averageErrors_(); averageCoefficients_(); }
bool MZTrafoModel::train( std::vector<double> obs_mz, std::vector<double> theo_mz, std::vector<double> weights, MODELTYPE md, bool use_RANSAC ) { coeff_.clear(); if (obs_mz.empty()) { //LOG_ERROR << "Input to calibration model is empty!" << std::endl; return false; } if (use_RANSAC) { if (ransac_params_ == nullptr) { throw Exception::Precondition(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "TrafoModel::train(): no RANSAC parameters were set before calling train(). Internal error!"); } if (!(md == LINEAR || md == QUADRATIC)) { LOG_ERROR << "RANSAC is implemented for LINEAR and QUADRATIC models only! Please disable RANSAC or choose the LINEAR or QUADRATIC model." << std::endl; throw Exception::NotImplemented(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION); } } try { if (md == LINEAR) { if (obs_mz.size() < 2) return false; if (use_RANSAC && (obs_mz.size() > ransac_params_->n)) // with fewer points, RANSAC will fail { std::vector<std::pair<double, double> > r, pairs; for (Size i = 0; i < obs_mz.size(); ++i) { pairs.push_back(std::make_pair(theo_mz[i], obs_mz[i])); } r = Math::RANSAC<Math::RansacModelLinear>().ransac(pairs, *ransac_params_); if (r.size() < 2) { return false; // RANSAC failed } obs_mz.clear(); theo_mz.clear(); for (Size i = 0; i < r.size(); ++i) { theo_mz.push_back(r[i].first); obs_mz.push_back(r[i].second); } } double confidence_interval_P(0.0); Math::LinearRegression lr; lr.computeRegression(confidence_interval_P, theo_mz.begin(), theo_mz.end(), obs_mz.begin(), false); coeff_.push_back(lr.getIntercept()); coeff_.push_back(lr.getSlope()); coeff_.push_back(0.0); } else if (md == LINEAR_WEIGHTED) { if (obs_mz.size() < 2) return false; double confidence_interval_P(0.0); Math::LinearRegression lr; lr.computeRegressionWeighted(confidence_interval_P, theo_mz.begin(), theo_mz.end(), obs_mz.begin(), weights.begin(), false); coeff_.push_back(lr.getIntercept()); coeff_.push_back(lr.getSlope()); coeff_.push_back(0.0); } else if (md == QUADRATIC) { if (obs_mz.size() < 3) return false; if (use_RANSAC && (obs_mz.size() > ransac_params_->n)) // with fewer points, RANSAC will fail { std::vector<std::pair<double, double> > r, pairs; for (Size i = 0; i < obs_mz.size(); ++i) { pairs.push_back(std::make_pair(theo_mz[i], obs_mz[i])); } r = Math::RANSAC<Math::RansacModelQuadratic>().ransac(pairs, *ransac_params_); obs_mz.clear(); theo_mz.clear(); for (Size i = 0; i < r.size(); ++i) { theo_mz.push_back(r[i].first); obs_mz.push_back(r[i].second); } } // Quadratic fit Math::QuadraticRegression qr; qr.computeRegression(theo_mz.begin(), theo_mz.end(), obs_mz.begin()); coeff_.push_back(qr.getA()); coeff_.push_back(qr.getB()); coeff_.push_back(qr.getC()); } else if (md == QUADRATIC_WEIGHTED) { if (obs_mz.size() < 3) return false; // Quadratic fit (weighted) Math::QuadraticRegression qr; qr.computeRegressionWeighted(theo_mz.begin(), theo_mz.end(), obs_mz.begin(), weights.begin()); coeff_.push_back(qr.getA()); coeff_.push_back(qr.getB()); coeff_.push_back(qr.getC()); } #ifdef DEBUG_TRAFOMODEL printf("# mz regression parameters: Y = %3.10f + %3.10f X + %3.10f X^2\n", coeff_[0], coeff_[1], coeff_[2]); // print results std::cout << "Calibration details:\n\n"; std::cout << "m/z(theo) m/z(obs) ppm(before) | ppm(after)\n"; std::vector<double> st_ppm_before, st_ppm_after; for (Size i = 0; i < obs_mz.size(); i++) { if (use_ppm_) st_ppm_before.push_back(obs_mz[i]); else st_ppm_before.push_back(Math::getPPM(theo_mz[i], obs_mz[i])); double obs_mz_v = obs_mz[i]; if (use_ppm_) obs_mz_v = Math::ppmToMass(obs_mz_v, theo_mz[i]) + theo_mz[i]; // st_ppm_after.push_back(Math::getPPM(theo_mz[i], predict(obs_mz_v))); // predict() is ppm-aware itself printf("%4.5f %4.5f %2.1f | %2.1f\n", theo_mz[i], obs_mz_v, st_ppm_before.back(), st_ppm_after.back()); } // use median and MAD to ignore outliers double m = Math::median(st_ppm_before.begin(), st_ppm_before.end()); std::cout << "ppm before: median = " << m << " MAD = " << Math::MAD(st_ppm_before.begin(), st_ppm_before.end(), m) << "\n"; m = Math::median(st_ppm_after.begin(), st_ppm_after.end()); std::cout << "ppm after : median = " << m << " MAD = " << Math::MAD(st_ppm_after.begin(), st_ppm_after.end(), m) << "\n"; #endif return true; } catch (Exception::BaseException& /*e*/) { //LOG_ERROR << "Exception during model fitting: " << e.getMessage() << std::endl; return false; } }