/** * Calculate indices derived from Qball or tensor images */ int DiffusionIndices(int argc, char* argv[]) { ctkCommandLineParser parser; parser.setArgumentPrefix("--", "-"); parser.addArgument("input", "i", ctkCommandLineParser::String, "input image (tensor, Q-ball or FSL/MRTrix SH-coefficient image)", us::Any(), false); parser.addArgument("index", "idx", ctkCommandLineParser::String, "index (fa, gfa, ra, ad, rd, ca, l2, l3, md)", us::Any(), false); parser.addArgument("outFile", "o", ctkCommandLineParser::String, "output file", us::Any(), false); map<string, us::Any> parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; string inFileName = us::any_cast<string>(parsedArgs["input"]); string index = us::any_cast<string>(parsedArgs["index"]); string outFileName = us::any_cast<string>(parsedArgs["outFile"]); string ext = itksys::SystemTools::GetFilenameLastExtension(outFileName); if (ext.empty()) outFileName += ".nrrd"; try { // load input image const std::string s1="", s2=""; std::vector<mitk::BaseData::Pointer> infile = mitk::BaseDataIO::LoadBaseDataFromFile( inFileName, s1, s2, false ); if( boost::algorithm::ends_with(inFileName, ".qbi") && index=="gfa" ) { typedef itk::Vector<float, QBALL_ODFSIZE> OdfVectorType; typedef itk::Image<OdfVectorType,3> ItkQballImageType; mitk::QBallImage::Pointer mitkQballImage = dynamic_cast<mitk::QBallImage*>(infile.at(0).GetPointer()); ItkQballImageType::Pointer itk_qbi = ItkQballImageType::New(); mitk::CastToItkImage<ItkQballImageType>(mitkQballImage, itk_qbi); typedef itk::DiffusionQballGeneralizedFaImageFilter<float,float,QBALL_ODFSIZE> GfaFilterType; GfaFilterType::Pointer gfaFilter = GfaFilterType::New(); gfaFilter->SetInput(itk_qbi); gfaFilter->SetComputationMethod(GfaFilterType::GFA_STANDARD); gfaFilter->Update(); MITK_INFO << "Writing " << outFileName; itk::ImageFileWriter< itk::Image<float,3> >::Pointer fileWriter = itk::ImageFileWriter< itk::Image<float,3> >::New(); fileWriter->SetInput(gfaFilter->GetOutput()); fileWriter->SetFileName(outFileName); fileWriter->Update(); } else if( boost::algorithm::ends_with(inFileName, ".dti") ) { typedef itk::Image< itk::DiffusionTensor3D<float>, 3 > ItkTensorImage; mitk::TensorImage::Pointer mitkTensorImage = dynamic_cast<mitk::TensorImage*>(infile.at(0).GetPointer()); ItkTensorImage::Pointer itk_dti = ItkTensorImage::New(); mitk::CastToItkImage<ItkTensorImage>(mitkTensorImage, itk_dti); typedef itk::TensorDerivedMeasurementsFilter<float> MeasurementsType; MeasurementsType::Pointer measurementsCalculator = MeasurementsType::New(); measurementsCalculator->SetInput(itk_dti.GetPointer() ); if(index=="fa") measurementsCalculator->SetMeasure(MeasurementsType::FA); else if(index=="ra") measurementsCalculator->SetMeasure(MeasurementsType::RA); else if(index=="ad") measurementsCalculator->SetMeasure(MeasurementsType::AD); else if(index=="rd") measurementsCalculator->SetMeasure(MeasurementsType::RD); else if(index=="ca") measurementsCalculator->SetMeasure(MeasurementsType::CA); else if(index=="l2") measurementsCalculator->SetMeasure(MeasurementsType::L2); else if(index=="l3") measurementsCalculator->SetMeasure(MeasurementsType::L3); else if(index=="md") measurementsCalculator->SetMeasure(MeasurementsType::MD); else { MITK_WARN << "No valid diffusion index for input image (tensor image) defined"; return EXIT_FAILURE; } measurementsCalculator->Update(); MITK_INFO << "Writing " << outFileName; itk::ImageFileWriter< itk::Image<float,3> >::Pointer fileWriter = itk::ImageFileWriter< itk::Image<float,3> >::New(); fileWriter->SetInput(measurementsCalculator->GetOutput()); fileWriter->SetFileName(outFileName); fileWriter->Update(); } else MITK_INFO << "Diffusion index " << index << " not supported for supplied file type."; } catch (itk::ExceptionObject e) { MITK_INFO << e; return EXIT_FAILURE; } catch (std::exception e) { MITK_INFO << e.what(); return EXIT_FAILURE; } catch (...) { MITK_INFO << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; }
void QmitkDiffusionQuantificationView::TensorQuantification( mitk::DataStorage::SetOfObjects::Pointer inImages, int method) { itk::TimeProbe clock; QString status; int nrFiles = inImages->size(); if (!nrFiles) return; mitk::DataStorage::SetOfObjects::const_iterator itemiter( inImages->begin() ); mitk::DataStorage::SetOfObjects::const_iterator itemiterend( inImages->end() ); std::vector<mitk::DataNode::Pointer> nodes; while ( itemiter != itemiterend ) // for all items { typedef float TTensorPixelType; typedef itk::DiffusionTensor3D< TTensorPixelType > TensorPixelType; typedef itk::Image< TensorPixelType, 3 > TensorImageType; mitk::Image* vol = static_cast<mitk::Image*>((*itemiter)->GetData()); TensorImageType::Pointer itkvol = TensorImageType::New(); mitk::CastToItkImage<TensorImageType>(vol, itkvol); std::string nodename; (*itemiter)->GetStringProperty("name", nodename); ++itemiter; // COMPUTE FA clock.Start(); MBI_INFO << "Computing FA "; mitk::StatusBar::GetInstance()->DisplayText(status.sprintf( "Computing FA for %s", nodename.c_str()).toAscii()); typedef itk::Image< TTensorPixelType, 3 > FAImageType; typedef itk::ShiftScaleImageFilter<FAImageType, FAImageType> ShiftScaleFilterType; ShiftScaleFilterType::Pointer multi = ShiftScaleFilterType::New(); multi->SetShift(0.0); multi->SetScale(m_Controls->m_ScaleImageValuesBox->value());//itk::NumericTraits<RealValueType>::max() typedef itk::TensorDerivedMeasurementsFilter<TTensorPixelType> MeasurementsType; if(method == 0) //FA { /* typedef itk::TensorFractionalAnisotropyImageFilter< TensorImageType, FAImageType > FilterType; FilterType::Pointer anisotropyFilter = FilterType::New(); anisotropyFilter->SetInput( itkvol.GetPointer() ); anisotropyFilter->Update(); multi->SetInput(anisotropyFilter->GetOutput()); nodename = QString(nodename.c_str()).append("_FA").toStdString();*/ MeasurementsType::Pointer measurementsCalculator = MeasurementsType::New(); measurementsCalculator->SetInput(itkvol.GetPointer() ); measurementsCalculator->SetMeasure(MeasurementsType::FA); measurementsCalculator->Update(); multi->SetInput(measurementsCalculator->GetOutput()); nodename = QString(nodename.c_str()).append("_FA").toStdString(); } else if(method == 1) //RA { /*typedef itk::TensorRelativeAnisotropyImageFilter< TensorImageType, FAImageType > FilterType; FilterType::Pointer anisotropyFilter = FilterType::New(); anisotropyFilter->SetInput( itkvol.GetPointer() ); anisotropyFilter->Update(); multi->SetInput(anisotropyFilter->GetOutput()); nodename = QString(nodename.c_str()).append("_RA").toStdString();*/ MeasurementsType::Pointer measurementsCalculator = MeasurementsType::New(); measurementsCalculator->SetInput(itkvol.GetPointer() ); measurementsCalculator->SetMeasure(MeasurementsType::RA); measurementsCalculator->Update(); multi->SetInput(measurementsCalculator->GetOutput()); nodename = QString(nodename.c_str()).append("_RA").toStdString(); } else if(method == 2) // AD (Axial diffusivity) { MeasurementsType::Pointer measurementsCalculator = MeasurementsType::New(); measurementsCalculator->SetInput(itkvol.GetPointer() ); measurementsCalculator->SetMeasure(MeasurementsType::AD); measurementsCalculator->Update(); multi->SetInput(measurementsCalculator->GetOutput()); nodename = QString(nodename.c_str()).append("_AD").toStdString(); } else if(method == 3) // RD (Radial diffusivity, (Lambda2+Lambda3)/2 { MeasurementsType::Pointer measurementsCalculator = MeasurementsType::New(); measurementsCalculator->SetInput(itkvol.GetPointer() ); measurementsCalculator->SetMeasure(MeasurementsType::RD); measurementsCalculator->Update(); multi->SetInput(measurementsCalculator->GetOutput()); nodename = QString(nodename.c_str()).append("_RD").toStdString(); } else if(method == 4) // 1-(Lambda2+Lambda3)/(2*Lambda1) { MeasurementsType::Pointer measurementsCalculator = MeasurementsType::New(); measurementsCalculator->SetInput(itkvol.GetPointer() ); measurementsCalculator->SetMeasure(MeasurementsType::CA); measurementsCalculator->Update(); multi->SetInput(measurementsCalculator->GetOutput()); nodename = QString(nodename.c_str()).append("_CA").toStdString(); } else if(method == 5) // MD (Mean Diffusivity, (Lambda1+Lambda2+Lambda3)/3 ) { MeasurementsType::Pointer measurementsCalculator = MeasurementsType::New(); measurementsCalculator->SetInput(itkvol.GetPointer() ); measurementsCalculator->SetMeasure(MeasurementsType::MD); measurementsCalculator->Update(); multi->SetInput(measurementsCalculator->GetOutput()); nodename = QString(nodename.c_str()).append("_MD").toStdString(); } multi->Update(); clock.Stop(); MBI_DEBUG << "took " << clock.GetMeanTime() << "s."; // FA TO DATATREE mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk( multi->GetOutput() ); image->SetVolume( multi->GetOutput()->GetBufferPointer() ); mitk::DataNode::Pointer node=mitk::DataNode::New(); node->SetData( image ); node->SetProperty( "name", mitk::StringProperty::New(nodename) ); nodes.push_back(node); mitk::StatusBar::GetInstance()->DisplayText("Computation complete."); } std::vector<mitk::DataNode::Pointer>::iterator nodeIt; for(nodeIt = nodes.begin(); nodeIt != nodes.end(); ++nodeIt) GetDefaultDataStorage()->Add(*nodeIt); m_MultiWidget->RequestUpdate(); }