bool convertMeshToGeo(const MeshLib::Mesh &mesh, GeoLib::GEOObjects &geo_objects, double eps) { if (mesh.getDimension() != 2) { ERR ("Mesh to geometry conversion is only working for 2D meshes."); return false; } // nodes to points conversion std::string mesh_name(mesh.getName()); { auto points = std::make_unique<std::vector<GeoLib::Point*>>(); points->reserve(mesh.getNumberOfNodes()); for (auto node_ptr : mesh.getNodes()) points->push_back(new GeoLib::Point(*node_ptr, node_ptr->getID())); geo_objects.addPointVec(std::move(points), mesh_name, nullptr, eps); } const std::vector<std::size_t> id_map (geo_objects.getPointVecObj(mesh_name)->getIDMap()); // elements to surface triangles conversion std::string const mat_name ("MaterialIDs"); auto bounds (MeshInformation::getValueBounds<int>(mesh, mat_name)); const unsigned nMatGroups(bounds.second-bounds.first+1); auto sfcs = std::make_unique<std::vector<GeoLib::Surface*>>(); sfcs->reserve(nMatGroups); auto const& points = *geo_objects.getPointVec(mesh_name); for (unsigned i=0; i<nMatGroups; ++i) sfcs->push_back(new GeoLib::Surface(points)); const std::vector<MeshLib::Element*> &elements = mesh.getElements(); const std::size_t nElems (mesh.getNumberOfElements()); MeshLib::PropertyVector<int> const*const materialIds = mesh.getProperties().existsPropertyVector<int>("MaterialIDs") ? mesh.getProperties().getPropertyVector<int>("MaterialIDs") : nullptr; for (unsigned i=0; i<nElems; ++i) { auto surfaceId = !materialIds ? 0 : ((*materialIds)[i] - bounds.first); MeshLib::Element* e (elements[i]); if (e->getGeomType() == MeshElemType::TRIANGLE) (*sfcs)[surfaceId]->addTriangle(id_map[e->getNodeIndex(0)], id_map[e->getNodeIndex(1)], id_map[e->getNodeIndex(2)]); if (e->getGeomType() == MeshElemType::QUAD) { (*sfcs)[surfaceId]->addTriangle(id_map[e->getNodeIndex(0)], id_map[e->getNodeIndex(1)], id_map[e->getNodeIndex(2)]); (*sfcs)[surfaceId]->addTriangle(id_map[e->getNodeIndex(0)], id_map[e->getNodeIndex(2)], id_map[e->getNodeIndex(3)]); } // all other element types are ignored (i.e. lines) } std::for_each(sfcs->begin(), sfcs->end(), [](GeoLib::Surface* sfc){ if (sfc->getNumberOfTriangles()==0) delete sfc; sfc = nullptr;}); auto sfcs_end = std::remove(sfcs->begin(), sfcs->end(), nullptr); sfcs->erase(sfcs_end, sfcs->end()); geo_objects.addSurfaceVec(std::move(sfcs), mesh_name); return true; }
void MeshLayerMapper::addLayerToMesh(const MeshLib::Mesh &dem_mesh, unsigned layer_id, GeoLib::Raster const& raster) { const unsigned pyramid_base[3][4] = { {1, 3, 4, 2}, // Point 4 missing {2, 4, 3, 0}, // Point 5 missing {0, 3, 4, 1}, // Point 6 missing }; std::size_t const nNodes = dem_mesh.getNumberOfNodes(); std::vector<MeshLib::Node*> const& nodes = dem_mesh.getNodes(); int const last_layer_node_offset = layer_id * nNodes; // add nodes for new layer for (std::size_t i=0; i<nNodes; ++i) _nodes.push_back(getNewLayerNode(*nodes[i], *_nodes[last_layer_node_offset + i], raster, _nodes.size())); std::vector<MeshLib::Element*> const& elems = dem_mesh.getElements(); std::size_t const nElems (dem_mesh.getNumberOfElements()); for (std::size_t i=0; i<nElems; ++i) { MeshLib::Element* elem (elems[i]); if (elem->getGeomType() != MeshLib::MeshElemType::TRIANGLE) continue; unsigned node_counter(3), missing_idx(0); std::array<MeshLib::Node*, 6> new_elem_nodes; for (unsigned j=0; j<3; ++j) { new_elem_nodes[j] = _nodes[_nodes[last_layer_node_offset + elem->getNodeIndex(j)]->getID()]; new_elem_nodes[node_counter] = (_nodes[last_layer_node_offset + elem->getNodeIndex(j) + nNodes]); if (new_elem_nodes[j]->getID() != new_elem_nodes[node_counter]->getID()) node_counter++; else missing_idx = j; } switch (node_counter) { case 6: _elements.push_back(new MeshLib::Prism(new_elem_nodes)); _materials.push_back(layer_id); break; case 5: std::array<MeshLib::Node*, 5> pyramid_nodes; pyramid_nodes[0] = new_elem_nodes[pyramid_base[missing_idx][0]]; pyramid_nodes[1] = new_elem_nodes[pyramid_base[missing_idx][1]]; pyramid_nodes[2] = new_elem_nodes[pyramid_base[missing_idx][2]]; pyramid_nodes[3] = new_elem_nodes[pyramid_base[missing_idx][3]]; pyramid_nodes[4] = new_elem_nodes[missing_idx]; _elements.push_back(new MeshLib::Pyramid(pyramid_nodes)); _materials.push_back(layer_id); break; case 4: std::array<MeshLib::Node*, 4> tet_nodes; std::copy(new_elem_nodes.begin(), new_elem_nodes.begin() + node_counter, tet_nodes.begin()); _elements.push_back(new MeshLib::Tet(tet_nodes)); _materials.push_back(layer_id); break; default: continue; } } }