void ElementTreeModel::setMesh(MeshLib::Mesh const& mesh) { this->clearView(); QList<QVariant> mesh_name; mesh_name << "Name:" << QString::fromStdString(mesh.getName()) << "" << "" << ""; TreeItem* name_item = new TreeItem(mesh_name, _rootItem); _rootItem->appendChild(name_item); QList<QVariant> nodes_number; nodes_number << "#Nodes: " << QString::number(mesh.getNumberOfNodes()) << "" << ""; TreeItem* nodes_item = new TreeItem(nodes_number, _rootItem); _rootItem->appendChild(nodes_item); QList<QVariant> elements_number; elements_number << "#Elements: " << QString::number(mesh.getNumberOfElements()) << "" << ""; TreeItem* elements_item = new TreeItem(elements_number, _rootItem); _rootItem->appendChild(elements_item); const std::array<QString, 7> n_element_names = {{ "Lines:", "Triangles:", "Quads:", "Tetrahedra:", "Hexahedra:", "Pyramids:", "Prisms:" }}; const std::array<unsigned, 7>& n_element_types (MeshLib::MeshInformation::getNumberOfElementTypes(mesh)); for (std::size_t i=0; i<n_element_types.size(); ++i) { if (n_element_types[i]) { QList<QVariant> elements_number; elements_number << n_element_names[i] << QString::number(n_element_types[i]) << "" << ""; TreeItem* type_item = new TreeItem(elements_number, elements_item); elements_item->appendChild(type_item); } } QList<QVariant> bounding_box; bounding_box << "Bounding Box" << "" << "" << ""; TreeItem* aabb_item = new TreeItem(bounding_box, _rootItem); _rootItem->appendChild(aabb_item); const GeoLib::AABB aabb (MeshLib::MeshInformation::getBoundingBox(mesh)); auto const& min = aabb.getMinPoint(); auto const& max = aabb.getMaxPoint(); QList<QVariant> min_aabb; min_aabb << "Min:" << QString::number(min[0], 'f') << QString::number(min[1], 'f') << QString::number(min[2], 'f'); TreeItem* min_item = new TreeItem(min_aabb, aabb_item); aabb_item->appendChild(min_item); QList<QVariant> max_aabb; max_aabb << "Max:" << QString::number(max[0], 'f') << QString::number(max[1], 'f') << QString::number(max[2], 'f'); TreeItem* max_item = new TreeItem(max_aabb, aabb_item); aabb_item->appendChild(max_item); QList<QVariant> edges; edges << "Edge Length: " << "[" + QString::number(mesh.getMinEdgeLength(), 'f') + "," << QString::number(mesh.getMaxEdgeLength(), 'f') + "]" << ""; TreeItem* edge_item = new TreeItem(edges, _rootItem); _rootItem->appendChild(edge_item); std::vector<std::string> const& vec_names (mesh.getProperties().getPropertyVectorNames()); for (std::size_t i=0; i<vec_names.size(); ++i) { QList<QVariant> array_info; array_info << QString::fromStdString(vec_names[i]) + ": "; auto vec_bounds (MeshLib::MeshInformation::getValueBounds<int>(mesh, vec_names[i])); if (vec_bounds.second != std::numeric_limits<int>::max()) array_info << "[" + QString::number(vec_bounds.first) + "," << QString::number(vec_bounds.second) + "]" << ""; else { auto vec_bounds (MeshLib::MeshInformation::getValueBounds<double>(mesh, vec_names[i])); if (vec_bounds.second != std::numeric_limits<double>::max()) array_info << "[" + QString::number(vec_bounds.first) + "," << QString::number(vec_bounds.second) + "]" << ""; } if (array_info.size() == 1) array_info << "[ ?" << "? ]" << ""; TreeItem* vec_item = new TreeItem(array_info, _rootItem); _rootItem->appendChild(vec_item); } reset(); }
std::unique_ptr<MeshLib::Mesh> appendLinesAlongPolylines( const MeshLib::Mesh& mesh, const GeoLib::PolylineVec& ply_vec) { // copy existing nodes and elements std::vector<MeshLib::Node*> vec_new_nodes = MeshLib::copyNodeVector(mesh.getNodes()); std::vector<MeshLib::Element*> vec_new_eles = MeshLib::copyElementVector(mesh.getElements(), vec_new_nodes); auto const material_ids = materialIDs(mesh); int const max_matID = material_ids ? *(std::max_element(begin(*material_ids), end(*material_ids))) : 0; std::vector<int> new_mat_ids; const std::size_t n_ply (ply_vec.size()); // for each polyline for (std::size_t k(0); k < n_ply; k++) { const GeoLib::Polyline* ply = (*ply_vec.getVector())[k]; // search nodes on the polyline MeshGeoToolsLib::MeshNodesAlongPolyline mshNodesAlongPoly( mesh, *ply, mesh.getMinEdgeLength() * 0.5, MeshGeoToolsLib::SearchAllNodes::Yes); auto &vec_nodes_on_ply = mshNodesAlongPoly.getNodeIDs(); if (vec_nodes_on_ply.empty()) { std::string ply_name; ply_vec.getNameOfElementByID(k, ply_name); INFO("No nodes found on polyline %s", ply_name.c_str()); continue; } // add line elements for (std::size_t i=0; i<vec_nodes_on_ply.size()-1; i++) { std::array<MeshLib::Node*, 2> element_nodes; element_nodes[0] = vec_new_nodes[vec_nodes_on_ply[i]]; element_nodes[1] = vec_new_nodes[vec_nodes_on_ply[i+1]]; vec_new_eles.push_back( new MeshLib::Line(element_nodes, vec_new_eles.size())); new_mat_ids.push_back(max_matID+k+1); } } // generate a mesh const std::string name = mesh.getName() + "_with_lines"; auto new_mesh = std::make_unique<MeshLib::Mesh>(name, vec_new_nodes, vec_new_eles); auto new_material_ids = new_mesh->getProperties().createNewPropertyVector<int>( "MaterialIDs", MeshLib::MeshItemType::Cell); if (!new_material_ids) { OGS_FATAL("Could not create MaterialIDs cell vector in new mesh."); } new_material_ids->reserve(new_mesh->getNumberOfElements()); if (material_ids != nullptr) { std::copy(begin(*material_ids), end(*material_ids), std::back_inserter(*new_material_ids)); } else { new_material_ids->resize(mesh.getNumberOfElements()); } std::copy(begin(new_mat_ids), end(new_mat_ids), std::back_inserter(*new_material_ids)); return new_mesh; }
std::unique_ptr<MeshLib::Mesh> appendLinesAlongPolylines( const MeshLib::Mesh& mesh, const GeoLib::PolylineVec& ply_vec) { // copy existing nodes and elements std::vector<MeshLib::Node*> vec_new_nodes = MeshLib::copyNodeVector(mesh.getNodes()); std::vector<MeshLib::Element*> vec_new_eles = MeshLib::copyElementVector(mesh.getElements(), vec_new_nodes); std::vector<int> new_mat_ids; { if (mesh.getProperties().existsPropertyVector<int>("MaterialIDs")) { auto ids = mesh.getProperties().getPropertyVector<int>("MaterialIDs"); new_mat_ids.reserve(ids->size()); std::copy(ids->cbegin(), ids->cend(), std::back_inserter(new_mat_ids)); } } int max_matID(0); if (!new_mat_ids.empty()) max_matID = *(std::max_element(new_mat_ids.cbegin(), new_mat_ids.cend())); const std::size_t n_ply (ply_vec.size()); // for each polyline for (std::size_t k(0); k < n_ply; k++) { const GeoLib::Polyline* ply = (*ply_vec.getVector())[k]; // search nodes on the polyline MeshGeoToolsLib::MeshNodesAlongPolyline mshNodesAlongPoly( mesh, *ply, mesh.getMinEdgeLength() * 0.5, MeshGeoToolsLib::SearchAllNodes::Yes); auto &vec_nodes_on_ply = mshNodesAlongPoly.getNodeIDs(); if (vec_nodes_on_ply.empty()) { std::string ply_name; ply_vec.getNameOfElementByID(k, ply_name); INFO("No nodes found on polyline %s", ply_name.c_str()); continue; } // add line elements for (std::size_t i=0; i<vec_nodes_on_ply.size()-1; i++) { std::array<MeshLib::Node*, 2> element_nodes; element_nodes[0] = vec_new_nodes[vec_nodes_on_ply[i]]; element_nodes[1] = vec_new_nodes[vec_nodes_on_ply[i+1]]; vec_new_eles.push_back( new MeshLib::Line(element_nodes, vec_new_eles.size())); new_mat_ids.push_back(max_matID+k+1); } } // generate a mesh const std::string name = mesh.getName() + "_with_lines"; auto new_mesh = std::make_unique<MeshLib::Mesh>(name, vec_new_nodes, vec_new_eles); auto opt_mat_pv = new_mesh->getProperties().createNewPropertyVector<int>( "MaterialIDs", MeshLib::MeshItemType::Cell); if (opt_mat_pv) { auto & mat_pv = *opt_mat_pv; mat_pv.reserve(new_mat_ids.size()); std::copy(new_mat_ids.cbegin(), new_mat_ids.cend(), std::back_inserter(mat_pv)); } return new_mesh; }