BoundingBoxType::Pointer SBImageUtils::GetBoundingBox(ImageType::Pointer image) { ConstIteratorType constIterator(image, image->GetLargestPossibleRegion()); IteratorType iterator(image, image->GetLargestPossibleRegion()); PointSetType::Pointer pointSet = PointSetType::New(); PointsContainerPointer points = pointSet->GetPoints(); int pointCounter=0; for (iterator.GoToBegin(), constIterator.GoToBegin(); !iterator.IsAtEnd(); ++iterator, ++constIterator) { if(constIterator.Value() == 0) { ImageType::IndexType index = constIterator.GetIndex(); PointType point; point[0] = index[0]; point[1] = index[1]; points->InsertElement(pointCounter, point); pointCounter++; } } BoundingBoxType::Pointer boundingBox = BoundingBoxType::New(); boundingBox->SetPoints(points); boundingBox->ComputeBoundingBox(); return boundingBox; }
bool mitk::NavigationDataLandmarkTransformFilter::FindCorrespondentLandmarks(LandmarkPointContainer& sources, const LandmarkPointContainer& targets) const { if (sources.size() < 6 || targets.size() < 6) return false; //throw std::invalid_argument("ICP correspondence finding needs at least 6 landmarks"); /* lots of type definitions */ typedef itk::PointSet<mitk::ScalarType, 3> PointSetType; //typedef itk::BoundingBox<PointSetType::PointIdentifier, PointSetType::PointDimension> BoundingBoxType; typedef itk::EuclideanDistancePointMetric< PointSetType, PointSetType> MetricType; //typedef MetricType::TransformType TransformBaseType; //typedef MetricType::TransformType::ParametersType ParametersType; //typedef TransformBaseType::JacobianType JacobianType; //typedef itk::Euler3DTransform< double > TransformType; typedef itk::VersorRigid3DTransform< double > TransformType; typedef TransformType ParametersType; typedef itk::PointSetToPointSetRegistrationMethod< PointSetType, PointSetType > RegistrationType; /* copy landmarks to itk pointsets for registration */ PointSetType::Pointer sourcePointSet = PointSetType::New(); unsigned int i = 0; for (LandmarkPointContainer::const_iterator it = sources.begin(); it != sources.end(); ++it) { PointSetType::PointType doublePoint; mitk::itk2vtk(*it, doublePoint); // copy mitk::ScalarType point into double point as workaround to ITK 3.10 bug sourcePointSet->SetPoint(i++, doublePoint /**it*/); } i = 0; PointSetType::Pointer targetPointSet = PointSetType::New(); for (LandmarkPointContainer::const_iterator it = targets.begin(); it != targets.end(); ++it) { PointSetType::PointType doublePoint; mitk::itk2vtk(*it, doublePoint); // copy mitk::ScalarType point into double point as workaround to ITK 3.10 bug targetPointSet->SetPoint(i++, doublePoint /**it*/); } /* get centroid and extends of our pointsets */ //BoundingBoxType::Pointer sourceBoundingBox = BoundingBoxType::New(); //sourceBoundingBox->SetPoints(sourcePointSet->GetPoints()); //sourceBoundingBox->ComputeBoundingBox(); //BoundingBoxType::Pointer targetBoundingBox = BoundingBoxType::New(); //targetBoundingBox->SetPoints(targetPointSet->GetPoints()); //targetBoundingBox->ComputeBoundingBox(); TransformType::Pointer transform = TransformType::New(); transform->SetIdentity(); //transform->SetTranslation(targetBoundingBox->GetCenter() - sourceBoundingBox->GetCenter()); itk::LevenbergMarquardtOptimizer::Pointer optimizer = itk::LevenbergMarquardtOptimizer::New(); optimizer->SetUseCostFunctionGradient(false); RegistrationType::Pointer registration = RegistrationType::New(); // Scale the translation components of the Transform in the Optimizer itk::LevenbergMarquardtOptimizer::ScalesType scales(transform->GetNumberOfParameters()); const double translationScale = 5000; //sqrtf(targetBoundingBox->GetDiagonalLength2()) * 1000; // dynamic range of translations const double rotationScale = 1.0; // dynamic range of rotations scales[0] = 1.0 / rotationScale; scales[1] = 1.0 / rotationScale; scales[2] = 1.0 / rotationScale; scales[3] = 1.0 / translationScale; scales[4] = 1.0 / translationScale; scales[5] = 1.0 / translationScale; //scales.Fill(0.01); unsigned long numberOfIterations = 80000; double gradientTolerance = 1e-10; // convergence criterion double valueTolerance = 1e-10; // convergence criterion double epsilonFunction = 1e-10; // convergence criterion optimizer->SetScales( scales ); optimizer->SetNumberOfIterations( numberOfIterations ); optimizer->SetValueTolerance( valueTolerance ); optimizer->SetGradientTolerance( gradientTolerance ); optimizer->SetEpsilonFunction( epsilonFunction ); registration->SetInitialTransformParameters( transform->GetParameters() ); //------------------------------------------------------ // Connect all the components required for Registration //------------------------------------------------------ MetricType::Pointer metric = MetricType::New(); registration->SetMetric( metric ); registration->SetOptimizer( optimizer ); registration->SetTransform( transform ); registration->SetFixedPointSet( targetPointSet ); registration->SetMovingPointSet( sourcePointSet ); try { //registration->StartRegistration(); registration->Update(); } catch( itk::ExceptionObject & e ) { MITK_INFO << "Exception caught during ICP optimization: " << e; return false; //throw e; } MITK_INFO << "ICP successful: Solution = " << transform->GetParameters() << std::endl; MITK_INFO << "Metric value: " << metric->GetValue(transform->GetParameters()); /* find point correspondences */ //mitk::PointLocator::Pointer pointLocator = mitk::PointLocator::New(); // <<- use mitk::PointLocator instead of searching manually? //pointLocator->SetPoints() for (LandmarkPointContainer::const_iterator sourcesIt = sources.begin(); sourcesIt != sources.end(); ++sourcesIt) { } //MetricType::MeasureType closestDistances = metric->GetValue(transform->GetParameters()); //unsigned int index = 0; LandmarkPointContainer sortedSources; for (LandmarkPointContainer::const_iterator targetsIt = targets.begin(); targetsIt != targets.end(); ++targetsIt) { double minDistance = itk::NumericTraits<double>::max(); LandmarkPointContainer::iterator minDistanceIterator = sources.end(); for (LandmarkPointContainer::iterator sourcesIt = sources.begin(); sourcesIt != sources.end(); ++sourcesIt) { TransformInitializerType::LandmarkPointType transformedSource = transform->TransformPoint(*sourcesIt); double dist = targetsIt->EuclideanDistanceTo(transformedSource); MITK_INFO << "target: " << *targetsIt << ", source: " << *sourcesIt << ", transformed source: " << transformedSource << ", dist: " << dist; if (dist < minDistance ) { minDistanceIterator = sourcesIt; minDistance = dist; } } if (minDistanceIterator == sources.end()) return false; MITK_INFO << "minimum distance point is: " << *minDistanceIterator << " (dist: " << targetsIt->EuclideanDistanceTo(transform->TransformPoint(*minDistanceIterator)) << ", minDist: " << minDistance << ")"; sortedSources.push_back(*minDistanceIterator); // this point is assigned sources.erase(minDistanceIterator); // erase it from sources to avoid duplicate assigns } //for (LandmarkPointContainer::const_iterator sortedSourcesIt = sortedSources.begin(); targetsIt != sortedSources.end(); ++targetsIt) sources = sortedSources; return true; }
/* * mexFunction(): entry point for the mex function */ void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) { // interface to deal with input arguments from Matlab enum InputIndexType {IN_TRI, IN_X, IN_RES, IN_SIZE, IN_ORIGIN, InputIndexType_MAX}; MatlabImportFilter::Pointer matlabImport = MatlabImportFilter::New(); matlabImport->ConnectToMatlabFunctionInput(nrhs, prhs); // check the number of input arguments matlabImport->CheckNumberOfArguments(2, InputIndexType_MAX); // register the inputs for this function at the import filter typedef MatlabImportFilter::MatlabInputPointer MatlabInputPointer; MatlabInputPointer inTRI = matlabImport->RegisterInput(IN_TRI, "TRI"); MatlabInputPointer inX = matlabImport->RegisterInput(IN_X, "X"); // (x, y, z) MatlabInputPointer inRES = matlabImport->RegisterInput(IN_RES, "RES"); // (r, c, s) MatlabInputPointer inSIZE = matlabImport->RegisterInput(IN_SIZE, "SIZE"); // (r, c, s) MatlabInputPointer inORIGIN = matlabImport->RegisterInput(IN_ORIGIN, "ORIGIN"); // (x, y, z) // interface to deal with outputs to Matlab enum OutputIndexType {OUT_IM, OutputIndexType_MAX}; MatlabExportFilter::Pointer matlabExport = MatlabExportFilter::New(); matlabExport->ConnectToMatlabFunctionOutput(nlhs, plhs); // check that the number of outputs the user is asking for is valid matlabExport->CheckNumberOfArguments(0, OutputIndexType_MAX); // register the outputs for this function at the export filter typedef MatlabExportFilter::MatlabOutputPointer MatlabOutputPointer; MatlabOutputPointer outIM = matlabExport->RegisterOutput(OUT_IM, "IM"); // if any input point set is empty, the outputs are empty too if (mxIsEmpty(inTRI->pm) || mxIsEmpty(inX->pm)) { matlabExport->CopyEmptyArrayToMatlab(outIM); return; } // get number of rows in inputs X and TRI mwSize nrowsX = mxGetM(inX->pm); mwSize nrowsTRI = mxGetM(inTRI->pm); // instantiate mesh MeshType::Pointer mesh = MeshType::New(); // read vertices PointSetType::Pointer xDef = PointSetType::New(); // default: empty point set PointSetType::Pointer x = PointSetType::New(); x->GetPoints()->CastToSTLContainer() = matlabImport->ReadVectorOfVectorsFromMatlab<PointType::CoordRepType, PointType> (inX, xDef->GetPoints()->CastToSTLContainer()); #ifdef DEBUG std::cout << "Number of X points read = " << x->GetNumberOfPoints() << std::endl; #endif // assertion check if (nrowsX != x->GetNumberOfPoints()) { mexErrMsgTxt(("Input " + inX->name + ": Number of points read different from number of points provided by user").c_str()); } // swap XY coordinates to make them compliant with ITK convention // (see important programming note at the help header above) matlabImport->SwapXYInVectorOfVectors<PointType::CoordRepType, std::vector<PointType> > (x->GetPoints()->CastToSTLContainer(), x->GetNumberOfPoints()); // populate mesh with vertices mesh->SetPoints(x->GetPoints()); // read triangles PointType triDef; triDef.Fill(mxGetNaN()); for (mwIndex i = 0; i < nrowsTRI; ++i) { PointType triangle = matlabImport->ReadRowVectorFromMatlab<CoordType, PointType>(inTRI, i, triDef); // create a triangle cell to read the vertex indices of the current input triangle CellAutoPointer cell; cell.TakeOwnership(new TriangleType); // assign to the 0, 1, 2 elements in the triangle cell the vertex // indices that we have just read. Note that we have to substract // 1 to convert Matlab's index convention 1, 2, 3, ... to C++ // convention 0, 1, 2, ... cell->SetPointId(0, triangle[0] - 1); cell->SetPointId(1, triangle[1] - 1); cell->SetPointId(2, triangle[2] - 1); // insert cell into the mesh mesh->SetCell(i, cell); } #ifdef DEBUG std::cout << "Number of triangles read = " << mesh->GetNumberOfCells() << std::endl; #endif // assertion check if (nrowsTRI != mesh->GetNumberOfCells()) { mexErrMsgTxt(("Input " + inTRI->name + ": Number of triangles read different from number of triangles provided by user").c_str()); } // get user input parameters for the output rasterization ImageType::SpacingType spacingDef; spacingDef.Fill(1.0); ImageType::SpacingType spacing = matlabImport-> ReadRowVectorFromMatlab<ImageType::SpacingValueType, ImageType::SpacingType>(inRES, spacingDef); ImageType::SizeType sizeDef; sizeDef.Fill(10); ImageType::SizeType size = matlabImport-> ReadRowVectorFromMatlab<ImageType::SizeValueType, ImageType::SizeType>(inSIZE, sizeDef); ImageType::PointType originDef; originDef.Fill(0.0); ImageType::PointType origin = matlabImport-> ReadRowVectorFromMatlab<ImageType::PointType::ValueType, ImageType::PointType>(inORIGIN, originDef); // (see important programming note at the help header above) matlabImport->SwapXYInVector<ImageType::PointType::ValueType, ImageType::PointType>(origin); // instantiate rasterization filter MeshFilterType::Pointer meshFilter = MeshFilterType::New(); // smallest voxel side length ImageType::SpacingValueType minSpacing = spacing[0]; for (mwIndex i = 1; i < Dimension; ++i) { minSpacing = std::min(minSpacing, spacing[i]); } // pass input parameters to the filter meshFilter->SetInput(mesh); meshFilter->SetSpacing(spacing); meshFilter->SetSize(size); meshFilter->SetOrigin(origin); meshFilter->SetTolerance(minSpacing / 10.0); meshFilter->SetInsideValue(1); meshFilter->SetOutsideValue(0); ImageType::IndexType start; start.Fill(0); meshFilter->SetIndex(start); // convert image size from itk::Size format to std::vector<mwSize> // so that we can use it in GraftItkImageOntoMatlab std::vector<mwSize> sizeStdVector(Dimension); for (unsigned int i = 0; i < Dimension; ++i) { sizeStdVector[i] = size[i]; } // graft ITK filter output onto Matlab output matlabExport->GraftItkImageOntoMatlab<PixelType, Dimension> (outIM, meshFilter->GetOutput(), sizeStdVector); #ifdef DEBUG std::cout << "Resolution (spacing) = " << meshFilter->GetSpacing() << std::endl; std::cout << "Size = " << meshFilter->GetSize() << std::endl; std::cout << "Origin = " << meshFilter->GetOrigin() << std::endl; #endif // run rasterization meshFilter->Update(); }