Пример #1
0
// [[Rcpp::export]]
Rcpp::IntegerMatrix quantileNorm(Rcpp::IntegerMatrix mat, Rcpp::IntegerVector ref, int nthreads=1, int seed=13){
    if (mat.nrow() != ref.length()) Rcpp::stop("incompatible arrays...");
    if (!std::is_sorted(ref.begin(), ref.end())) Rcpp::stop("ref must be sorted");
    int ncol = mat.ncol();
    int nrow = mat.nrow();
    //allocate new matrix
    Rcpp::IntegerMatrix res(nrow, ncol);
    Mat<int> oldmat = asMat(mat); 
    Mat<int> newmat = asMat(res);
    Vec<int> ref2 = asVec(ref);
    //allocate a seed for each column
    std::seed_seq sseq{seed};
    std::vector<std::uint32_t> seeds(ncol);
    sseq.generate(seeds.begin(), seeds.end());
    
    #pragma omp parallel num_threads(nthreads)
    {
        std::vector<std::pair<int, int> > storage(nrow);//pairs <value, index>
        #pragma omp for 
        for (int col = 0; col < ncol; ++col){
            std::mt19937 gen(seeds[col]);
            qtlnorm(oldmat.getCol(col), ref2, newmat.getCol(col), storage, gen);
        }
    }
    
    res.attr("dimnames") = mat.attr("dimnames");
    return res;
}
Пример #2
0
void CEnv::SetData(Rcpp::IntegerMatrix x_, Rcpp::IntegerMatrix mcz_) {
	int J = x_.nrow();
	int n = x_.ncol();
	int nZeroMC = mcz_.ncol();
	if (mcz_.nrow() != J) { // no mcz
		nZeroMC = 0; 
	}
  	
	intvec x = Rcpp::as<intvec>(x_);
	intvec mcz = Rcpp::as<intvec>(mcz_);
  
	Rcpp::List something(x_.attr("levels"));
	intvec levels(something.size());
	for (unsigned int i = 0; i < levels.size(); i++) {
		SEXP exp = something[i];
		Rcpp::CharacterVector v(exp);
		levels[i] = v.size();
		//Rprintf( "%d\n", levels[i]) ;
	}
	SetData(x, J, n, mcz, nZeroMC, levels);	
}
Пример #3
0
// [[Rcpp::export]]
Rcpp::NumericMatrix CramersV_DF(Rcpp::IntegerMatrix dm, bool Bias_Cor) {
  int iCol = dm.ncol();
  int i=0,j=0;
  
  Rcpp::NumericMatrix ResCV(iCol,iCol);
  
  for (i=0;i<iCol;i++){
    for (j=i;j<iCol;j++){
        if(i==j) {ResCV(i,j)=1;}
        else {
          ResCV(i,j) = CramersV_C((IntegerVector)dm(_,i),(IntegerVector)dm(_,j),(bool)Bias_Cor);
          ResCV(j,i) = ResCV(i,j);
        }
    }
  }

  Rcpp::List dimnms = Rcpp::List::create(VECTOR_ELT(dm.attr("dimnames"), 1),
                                         VECTOR_ELT(dm.attr("dimnames"), 1));
  ResCV.attr("dimnames")=dimnms;

  return ResCV;
}
Пример #4
0
/* This function specifically checks whether the observed data is consistent with the *pedigree*. It assumes that every observed value in the finals is already valid - That is, every observed value contained in the finals is also listed as a possibility in the hetData object
*/
void estimateRFCheckFunnels(Rcpp::IntegerMatrix finals, Rcpp::IntegerMatrix founders, Rcpp::List hetData, Rcpp::S4 pedigree, std::vector<int>& intercrossingGenerations, std::vector<std::string>& warnings, std::vector<std::string>& errors, std::vector<funnelType>& allFunnels, std::vector<funnelType>& lineFunnels)
{
	Rcpp::CharacterVector pedigreeLineNames = Rcpp::as<Rcpp::CharacterVector>(pedigree.slot("lineNames"));

	//We make a copy of the pedigree line names and sort it (otherwise the std::find relating to pedigreeLineNames is prohibitive)
	std::vector<pedigreeLineStruct> sortedLineNames;
	sortPedigreeLineNames(pedigreeLineNames, sortedLineNames);

	Rcpp::IntegerVector mother = Rcpp::as<Rcpp::IntegerVector>(pedigree.slot("mother"));
	Rcpp::IntegerVector father = Rcpp::as<Rcpp::IntegerVector>(pedigree.slot("father"));
	bool warnImproperFunnels = Rcpp::as<bool>(pedigree.slot("warnImproperFunnels"));

	Rcpp::CharacterVector finalNames = Rcpp::as<Rcpp::CharacterVector>(Rcpp::as<Rcpp::List>(finals.attr("dimnames"))[0]);
	Rcpp::CharacterVector markerNames = Rcpp::as<Rcpp::CharacterVector>(Rcpp::as<Rcpp::List>(finals.attr("dimnames"))[1]);
	int nFinals = finals.nrow(), nFounders = founders.nrow(), nMarkers = finals.ncol();

	if(nFounders != 2 && nFounders != 4 && nFounders != 8 && nFounders != 16)
	{
		throw std::runtime_error("Number of founders must be 2, 4, 8, or 16");
	}

	xMajorMatrix<int> foundersToMarkerAlleles(nFounders, nFounders, nMarkers, -1);
	for(int markerCounter = 0; markerCounter < nMarkers; markerCounter++)
	{
		Rcpp::IntegerMatrix currentMarkerHetData = hetData(markerCounter);
		for(int founderCounter1 = 0; founderCounter1 < nFounders; founderCounter1++)
		{
			for(int founderCounter2 = 0; founderCounter2 < nFounders; founderCounter2++)
			{
				int markerAllele1 = founders(founderCounter1, markerCounter);
				int markerAllele2 = founders(founderCounter2, markerCounter);
				for(int hetDataRowCounter = 0; hetDataRowCounter < currentMarkerHetData.nrow(); hetDataRowCounter++)
				{
					if(markerAllele1 == currentMarkerHetData(hetDataRowCounter, 0) && markerAllele2 == currentMarkerHetData(hetDataRowCounter, 1))
					{
						foundersToMarkerAlleles(founderCounter1, founderCounter2, markerCounter) = currentMarkerHetData(hetDataRowCounter, 2);
					}
				}
			}
		}
	}
	std::vector<long> individualsToCheckFunnels;
	for(long finalCounter = 0; finalCounter < nFinals; finalCounter++)
	{
		individualsToCheckFunnels.clear();
		std::string currentLineName = Rcpp::as<std::string>(finalNames(finalCounter));

		std::vector<pedigreeLineStruct>::iterator findLineName = std::lower_bound(sortedLineNames.begin(), sortedLineNames.end(), pedigreeLineStruct(currentLineName, -1));
		if(findLineName == sortedLineNames.end() || findLineName->lineName != currentLineName)
		{
			std::stringstream ss;
			ss << "Unable to find line number " << finalCounter << " named " << finalNames(finalCounter) << " in pedigree";
			throw std::runtime_error(ss.str().c_str());
		}
		int pedigreeRow = findLineName->index;
		//This vector lists all the founders that are ancestors of the current line. This may comprise any number - E.g. if we have an AIC line descended from funnels 1,2,1,2 and 2,3,2,3 then this vector is going it contain 1,2,3
		std::vector<int> representedFounders;
		if(intercrossingGenerations[finalCounter] == 0)
		{
			individualsToCheckFunnels.push_back(pedigreeRow);
		}
		else
		{
			try
			{
				getAICParentLines(mother, father, pedigreeRow, intercrossingGenerations[finalCounter], individualsToCheckFunnels);
			}
			catch(...)
			{
				std::stringstream ss;
				ss << "Error while attempting to trace intercrossing lines for line " << finalNames(finalCounter);
				errors.push_back(ss.str());
				goto nextLine;
			}
		}
		//Now we know the lines for which we need to check the funnels from the pedigree (note: We don't necessarily have genotype data for all of these, it's purely a pedigree check)
		//Fixed length arrays to store funnels. If we have less than 16 founders then part of this is garbage and we don't use that bit....
		funnelType funnel, copiedFunnel;
		for(std::vector<long>::iterator i = individualsToCheckFunnels.begin(); i != individualsToCheckFunnels.end(); i++)
		{
			try
			{
				getFunnel(*i, mother, father, &(funnel.val[0]), nFounders);
			}
			catch(...)
			{
				std::stringstream ss;
				ss << "Attempting to trace pedigree for line " << finalNames(finalCounter) << ": Unable to get funnel for line " << pedigreeLineNames(*i);
				errors.push_back(ss.str());
				goto nextLine;
			}
			//insert these founders into the vector containing all the represented founders
			representedFounders.insert(representedFounders.end(), &(funnel.val[0]), &(funnel.val[0]) + nFounders);
			//Copy the funnel 
			memcpy(&copiedFunnel, &funnel, sizeof(funnelType));
			std::sort(&(copiedFunnel.val[0]), &(copiedFunnel.val[0]) + nFounders);
			if(std::unique(&(copiedFunnel.val[0]), &(copiedFunnel.val[0]) + nFounders) != &(copiedFunnel.val[0]) + nFounders)
			{
				//If we have intercrossing generations then having repeated founders is an error. Otherwise if warnImproperFunnels is true it's still a warning.
				if(intercrossingGenerations[finalCounter] != 0 || warnImproperFunnels)
				{
					std::stringstream ss;
					ss << "Funnel for line " << pedigreeLineNames(*i) << " contained founders {" << funnel.val[0];
					if(nFounders == 2)
					{
						ss << ", " << funnel.val[1] << "}";
					}
					else if(nFounders == 4)
					{
						ss << ", " << funnel.val[1] << ", " << funnel.val[2] << ", " << funnel.val[3] << "}";
					}
					else if(nFounders == 8)
					{
						ss << ", " << funnel.val[1] << ", " << funnel.val[2] << ", " << funnel.val[3] << ", " << funnel.val[4] << ", " << funnel.val[5] << ", " << funnel.val[6] << ", " << funnel.val[7]<< "}";
					}
					else if (nFounders == 16)
					{
						ss << ", " << funnel.val[1] << ", " << funnel.val[2] << ", " << funnel.val[3] << ", " << funnel.val[4] << ", " << funnel.val[5] << ", " << funnel.val[6] << ", " << funnel.val[7] << ", " << funnel.val[8] << ", " << funnel.val[9] << ", " << funnel.val[10] << ", " << funnel.val[11] << ", " << funnel.val[12] << ", " << funnel.val[13] << ", " << funnel.val[14] << ", " << funnel.val[15] << "}";
					}
					//In this case it's an error
					if(intercrossingGenerations[finalCounter] != 0)
					{
						ss << ". Repeated founders are only allowed with zero generations of intercrossing";
						errors.push_back(ss.str());
					}
					//But if we have zero intercrossing generations then it's only a warning
					else
					{
						ss << ". Did you intend to use all " << nFounders << " founders?";
						warnings.push_back(ss.str());
					}
				}
			}
			allFunnels.push_back(funnel);
		}
		//remove duplicates in representedFounders
		std::sort(representedFounders.begin(), representedFounders.end());
		representedFounders.erase(std::unique(representedFounders.begin(), representedFounders.end()), representedFounders.end());
		//Try and check for inconsistent generations of selfing
		for(std::vector<int>::iterator i = representedFounders.begin(); i != representedFounders.end(); i++)
		{
			if(*i > nFounders)
			{
				std::stringstream ss;
				ss << "Error in pedigree for line number " << finalCounter << " named " << finalNames(finalCounter) << ". Inconsistent number of generations of intercrossing";
				errors.push_back(ss.str());
				goto nextLine;
			}
		}
		//Not having all the founders in the input funnels is more serious if it causes the observed marker data to be impossible. So check for this.
		for(int markerCounter = 0; markerCounter < nMarkers; markerCounter++)
		{
			bool okMarker = false;
			//If observed value is an NA then than's ok, continue
			int value = finals(finalCounter, markerCounter);
			if(value == NA_INTEGER) continue;

			for(std::vector<int>::iterator founderIterator1 = representedFounders.begin(); founderIterator1 != representedFounders.end(); founderIterator1++)
			{
				for(std::vector<int>::iterator founderIterator2 = representedFounders.begin(); founderIterator2 != representedFounders.end(); founderIterator2++)
				{
					//Note that founderIterator comes from representedFounders, which comes from getFunnel - Which returns values starting at 1, not 0. So we have to subtract one. 
					if(finals(finalCounter, markerCounter) == foundersToMarkerAlleles((*founderIterator1)-1, (*founderIterator2)-1, markerCounter))
					{
						okMarker = true;
						break;
					}
				}
			}
			if(!okMarker)
			{
				std::stringstream ss;
				ss << "Data for marker " << markerNames(markerCounter) << " is impossible for individual " << finalNames(finalCounter) << " with given pedigree";
				errors.push_back(ss.str());
				if(errors.size() > 1000) return;
				goto nextLine;
			}
		}
		//In this case individualsToCheckFunnels contains one element => getFunnel was only called once => we can reuse the funnel variable
		if(intercrossingGenerations[finalCounter] == 0)
		{
			orderFunnel(&(funnel.val[0]), nFounders);
			lineFunnels.push_back(funnel);
		}
		else
		{
			//Add a dummy value in lineFunnel
			for(int i = 0; i < 16; i++) funnel.val[i] = 0;
			lineFunnels.push_back(funnel);
		}
	nextLine:
		;
	}
}
Пример #5
0
// [[Rcpp::export]]
XPtrImage magick_image_readbitmap_native(Rcpp::IntegerMatrix x){
  Rcpp::IntegerVector dims(x.attr("dim"));
  return magick_image_bitmap(x.begin(), Magick::CharPixel, 4, dims[1], dims[0]);
}