Пример #1
0
/**
 * Sort the m_blocks vector in reverse post order.  This enforces that
 * m_blocks will be a topological order in case the region is acyclic.
 * All region arcs are taken into account, including retranslation arcs.
 */
void RegionDesc::sortBlocks() {
  RegionDesc::BlockIdSet visited;
  RegionDesc::BlockIdVec reverse;

  postOrderSort(entry()->id(), visited, reverse);
  assertx(m_blocks.size() == reverse.size());

  // Update `m_blocks' vector.
  m_blocks.clear();
  auto size = reverse.size();
  for (size_t i = 0; i < size; i++) {
    m_blocks.push_back(block(reverse[size - i - 1]));
  }
}
Пример #2
0
/*
 * Perform a DFS starting at block `bid', storing the post-order in
 * `outVec'.
 */
void RegionDesc::postOrderSort(RegionDesc::BlockId     bid,
                               RegionDesc::BlockIdSet& visited,
                               RegionDesc::BlockIdVec& outVec) {
  if (visited.count(bid)) return;
  visited.insert(bid);

  if (auto nextRetr = nextRetrans(bid)) {
    postOrderSort(nextRetr.value(), visited, outVec);
  }
  for (auto succ : succs(bid)) {
    postOrderSort(succ, visited, outVec);
  }
  outVec.push_back(bid);
}
Пример #3
0
/**
 * Sort the m_blocks vector in reverse post order.  This enforces that
 * m_blocks will be a topological order in case the region is acyclic.
 * All region arcs are taken into account, including retranslation arcs.
 */
void RegionDesc::sortBlocks() {
  RegionDesc::BlockIdSet visited;
  RegionDesc::BlockIdVec reverse;

  postOrderSort(entry()->id(), visited, reverse);
  assertx(m_blocks.size() >= reverse.size());

  // Remove unreachable blocks from `m_data'.
  for (auto it = m_blocks.begin(); it != m_blocks.end();) {
    auto bid = (*it)->id();
    if (visited.count(bid) == 0) {
      it = deleteBlock(it);
    } else {
      it++;
    }
  }

  // Update `m_blocks' vector.
  m_blocks.clear();
  auto size = reverse.size();
  for (size_t i = 0; i < size; i++) {
    m_blocks.push_back(block(reverse[size - i - 1]));
  }
}