void Player::intersectedWall(const sf::FloatRect &intersection) { if (intersection.intersects(vert_rect)) { if (intersection.top > boundingBox.top + boundingBox.height / 2) { boundingBox.top -= intersection.height; } if (intersection.top < boundingBox.top + boundingBox.height / 2) { boundingBox.top += intersection.height; } } if (intersection.intersects(horz_rect)) { if (intersection.left < boundingBox.left + boundingBox.width / 2) { boundingBox.left += intersection.width; } if (intersection.left > boundingBox.left + boundingBox.width / 2) { boundingBox.left -= intersection.width; } } updateCross(); }
bool Game::isCollision(sf::FloatRect box1, sf::FloatRect box2) { bool collision = false; if (box1.intersects(box2)) collision = true; return collision; }
std::vector<std::shared_ptr<tgd::Entity>> QuadTree::retrieve(sf::FloatRect bounds, sf::Uint16 searchDepth) { searchDepth = mLevel; std::vector<std::shared_ptr<tgd::Entity>> foundObjects; sf::Int16 index = getIndex(bounds); //recursively add objects of child node if bounds is full contained if(!mChildren.empty() && index != -1) { foundObjects = mChildren[index]->retrieve(bounds, searchDepth); } else { //add all objects of child nodes which intersect test area for(auto& child : mChildren) { if(bounds.intersects(child->mBounds)) { std::vector<std::shared_ptr<tgd::Entity>> childObjects = child->retrieve(bounds, searchDepth); foundObjects.insert(foundObjects.end(), childObjects.begin(), childObjects.end()); } } } //and append objects in this node foundObjects.insert(foundObjects.end(), mObjects.begin(), mObjects.end()); return foundObjects; }
std::vector<xy::Entity> DynamicTreeSystem::query(sf::FloatRect area, std::uint64_t filter) const { Detail::FixedStack<std::int32_t, 256> stack; stack.push(m_root); std::vector<xy::Entity> retVal; retVal.reserve(256); while (stack.size() > 0) { auto treeID = stack.pop(); if (treeID == TreeNode::Null) { continue; } const auto& node = m_nodes[treeID]; if (area.intersects(node.fatBounds)) { //TODO it would be nice to precache the filter fetch, but it would miss changes at the component level if (node.isLeaf() && node.entity.isValid() && (node.entity.getComponent<BroadphaseComponent>().m_filterFlags & filter)) { //we have a candidate, stash retVal.push_back(node.entity); } else { stack.push(node.childA); stack.push(node.childB); } } } return retVal; }
std::vector<MapObject*> QuadTreeNode::Retrieve(const sf::FloatRect& bounds, sf::Uint16& searchDepth) { searchDepth = m_level; std::vector<MapObject*> foundObjects; sf::Int16 index = m_GetIndex(bounds); //recursively add objects of child node if bounds is fully contained if(!m_children.empty() && index != -1) { foundObjects = m_children[index]->Retrieve(bounds, searchDepth); } else { //add all objects of child nodes which intersect test area for(auto& child : m_children) { if(bounds.intersects(child->m_bounds)) { std::vector<MapObject*> childObjects = child->Retrieve(bounds, searchDepth); foundObjects.insert(foundObjects.end(), childObjects.begin(), childObjects.end()); } } } //and append objects in this node foundObjects.insert(foundObjects.end(), m_objects.begin(), m_objects.end()); m_debugShape.setOutlineColor(sf::Color::Red); return foundObjects; }
bool CollisionCell::checkCollisionsWithin(std::vector<WorldObject *> *_outputCollisions, sf::FloatRect _bounds) { bool collision = false; for (unsigned int i = 0; i < m_TouchingWorldObjects.size(); i += 1) { if (_bounds.intersects(m_TouchingWorldObjects.at(i)->getBounds())) { bool present = false; for (unsigned int j = 0; j < _outputCollisions->size(); j += 1) { if (_outputCollisions->at(j) == m_TouchingWorldObjects.at(i)) { present = true; break; } } if (!present) { collision = true; _outputCollisions->push_back(m_TouchingWorldObjects.at(i)); } } } return collision; }
bool TalkingSprite::intersects(sf::FloatRect rect) const { for (auto && it: collisionBoxList) { if (rect.intersects(it)) { return true; } } return false; }
bool Level::boundsCheck(sf::FloatRect& bounds) { for (int i = 0; i < activeTiles.size(); ++i) { if (bounds.intersects(activeTiles[i].getGlobalBounds())) return true; } return false; }
bool WorldObjects::Intersects(const sf::FloatRect & bounds) { for (int i = 0; i < Count(); ++i) { if (bounds.intersects(objects[i]->getGlobalBounds())) return true; } return false; }
void Quadtree::queryRegion(std::vector<QuadtreeOccupant*> &result, const sf::FloatRect ®ion) { // Query outside root elements for (std::unordered_set<QuadtreeOccupant*>::iterator it = _outsideRoot.begin(); it != _outsideRoot.end(); it++) { QuadtreeOccupant* oc = *it; sf::FloatRect r = oc->getAABB(); if (oc != nullptr && region.intersects(oc->getAABB())) // Intersects, add to list result.push_back(oc); } std::list<QuadtreeNode*> open; open.push_back(_pRootNode.get()); while (!open.empty()) { // Depth-first (results in less memory usage), remove objects from open list QuadtreeNode* pCurrent = open.back(); open.pop_back(); if (region.intersects(pCurrent->_region)) { for (std::unordered_set<QuadtreeOccupant*>::iterator it = pCurrent->_occupants.begin(); it != pCurrent->_occupants.end(); it++) { QuadtreeOccupant* oc = *it; if (oc != nullptr && region.intersects(oc->getAABB())) // Visible, add to list result.push_back(oc); } // Add children to open list if they intersect the region if (pCurrent->_hasChildren) for (int i = 0; i < 4; i++) if (pCurrent->_children[i]->getNumOccupantsBelow() != 0) open.push_back(pCurrent->_children[i].get()); } } }
void MapLayer::cull(sf::FloatRect bounds){ if (m_type == MapLayerType::TileLayer){ int tilePatchCount = m_tilePatches.size(); for (int i = 0; i < tilePatchCount; i++){ if (bounds.intersects(m_tilePatches[i].aabb)) m_tilePatches[i].visible = true; else m_tilePatches[i].visible = false; } sf::RectangleShape test; test.setSize(sf::Vector2f(bounds.width, bounds.height)); test.setFillColor(sf::Color(255, 0,0, 25)); test.setOutlineColor(sf::Color::Magenta); test.setOutlineThickness(8.f); test.setPosition(bounds.left, bounds.top); testShapes.back() = test; } }
//private sf::Vector3f PlayerController::getManifold(const sf::FloatRect& worldRect) { sf::FloatRect overlap; sf::FloatRect playerBounds = m_entity->getComponent<lm::CollisionComponent>()->globalBounds(); //we know we intersect, but we want the overlap worldRect.intersects(playerBounds, overlap); auto collisionNormal = sf::Vector2f(worldRect.left + (worldRect.width / 2.f), worldRect.top + (worldRect.height / 2.f)) - m_entity->getPosition(); sf::Vector3f manifold; if (overlap.width < overlap.height) { manifold.x = (collisionNormal.x < 0) ? 1.f : -1.f; manifold.z = overlap.width; } else { manifold.y = (collisionNormal.y < 0) ? 1.f : -1.f; manifold.z = overlap.height; } return manifold; }
void stateUpdate() { while(server.hasGameStarted()) { float elapsedTime = deltaClock.getElapsedTime().asMilliseconds(); float ballElapsedTime = ballClock.getElapsedTime().asMilliseconds(); ballSendTimer += elapsedTime; ballClock.restart(); if(elapsedTime >= 16.6) { deltaClock.restart(); //Update the ball's position. ballRect = sf::FloatRect(ballRect.left + ballVelocity.x, ballRect.top + ballVelocity.y, ballRect.width, ballRect.height); } //Check for paddle collisions. if(ballRect.intersects(onePaddleRect) && ballVelocity.x < 0) { ballVelocity.x *= (-1.0f); std::cout << "Ball rebound off Paddle One." << std::endl; ballCollisionDetected = true; } else if(ballRect.intersects(twoPaddleRect) && ballVelocity.x > 0) { ballVelocity.x *= (-1.0f); std::cout << "Ball rebound off Paddle Two." << std::endl; ballCollisionDetected = true; } checkBounds(); //Check and manage points for both players. if(ballRect.left <= LEFT_WALL + 3 && ballVelocity.x < 0) { server.sendAll("3 2"); player2Points++; std::cout << "Player 2 Score update: " << player2Points << std::endl; //Send the end game message if player 2 wins. if(player2Points >= MAX_POINTS) { server.sendAll("4 2"); server.stopGame(); std::cout << "Player Two win with points." << std::endl; } ballRect = sf::FloatRect(SCREEN_WIDTH/2, SCREEN_HEIGHT/2, BALL_WIDTH, BALL_HEIGHT); ballCollisionDetected = true; } if(ballRect.left + ballRect.width >= SCREEN_WIDTH - 3 && ballVelocity.x > 0) { server.sendAll("3 1"); player1Points++; std::cout << "Player 1 Score update: " << player1Points << std::endl; //Send the end game message if player 1 wins. if(player1Points >= MAX_POINTS) { server.sendAll("4 1"); server.stopGame(); std::cout << "Player One win with points." << std::endl; } ballRect = sf::FloatRect(SCREEN_WIDTH/2, SCREEN_HEIGHT/2, BALL_WIDTH, BALL_HEIGHT); ballCollisionDetected = true; std::cout << "Collided" << std::endl; } if(ballCollisionDetected || ballSendTimer >= (1/60)) { ballSendTimer = 0; std::time_t rawtime; std::time(&rawtime); //Send the ball packet. std::stringstream ballPacketStringStream; ballPacketStringStream << "1 " << ballRect.left << " " << ballRect.top << " " << ballVelocity.x << " " << ballVelocity.y << " " << (rawtime - ((playerOneLag + playerTwoLag)/2)); server.sendAll(ballPacketStringStream.str()); ballCollisionDetected = false; } } }
bool AABBCollision(const sf::FloatRect& box1, const sf::FloatRect& box2) { return box1.intersects(box2); }
bool Button::intersects(const sf::FloatRect& boundingBox) const { return boundingBox.intersects(getBoundingBox()); }
bool Game::onCollision(sf::FloatRect rect1, sf::FloatRect rect2) { return rect1.intersects(rect2); }
sf::Vector2f MapCollider::tryMove(sf::Vector2f position, sf::Vector2f velocity, sf::FloatRect collisionBox) { sf::Vector2f newPos = position; int oldX = newPos.x; int oldY = newPos.y; //check if box is outside of the screen. if (newPos.x - collisionBox.width / 2 < 0) { newPos.x = collisionBox.width / 2; } if (newPos.y - collisionBox.height / 2 < 0) { newPos.y = collisionBox.height / 2; } if (newPos.x + collisionBox.width / 2 > mMap->getWidth() * tileSize) { newPos.x = (mMap->getWidth() * tileSize) - collisionBox.width / 2; } if (newPos.y + collisionBox.height / 2 > mMap->getHeight() * tileSize) { newPos.y = (mMap->getHeight() * tileSize) - collisionBox.height / 2; } collisionBox.left = newPos.x - collisionBox.width / 2; collisionBox.top = newPos.y - collisionBox.height / 2; for (int iterY = (newPos.y - collisionBox.height / 2) / tileSize; iterY < (newPos.y + collisionBox.height / 2) / tileSize; iterY++) { for (int iterX = (newPos.x- collisionBox.width / 2) / tileSize; iterX < (newPos.x + collisionBox.width / 2) / tileSize; iterX++) { //If tile is outside of the collisionMap, ignore that tile if (iterX < 0 || iterX >= mMap->getWidth() || iterY < 0 || iterY >= mMap->getHeight()) continue; if ((*mMap)[iterX][iterY].getCollibable() == false) continue; sf::FloatRect tileBox = getRectFromTile(iterX, iterY); sf::FloatRect interRect; if (collisionBox.intersects(tileBox, interRect)) { sf::Vector2f distance = distanceRectToRect(tileBox, collisionBox); sf::Vector2f major = getMajorVector(distance); //this tile is an internal edge if the next tile is also collidable. //if this tile is NOT such a tile, then handle collision. int nextTileX = iterX + major.x; int nextTileY = iterY + major.y; if ((*mMap)[nextTileX][nextTileY].getCollibable() == false) { //do not be tempted to use interRect, it won't move the position excactly right. if (major.x < -.5) { newPos.x = tileBox.left - collisionBox.width / 2; collisionBox.left = newPos.x - collisionBox.width / 2; } else if (major.x > .5) { newPos.x = tileBox.left + tileBox.width + collisionBox.width / 2; collisionBox.left = newPos.x - collisionBox.width / 2; } else if (major.y < -.5) { newPos.y = tileBox.top - collisionBox.height / 2; collisionBox.top = newPos.y - collisionBox.height / 2; } else if (major.y > .5) { newPos.y = tileBox.top + tileBox.height + collisionBox.height / 2; collisionBox.top = newPos.y - collisionBox.height / 2; } } } } } return newPos; }