/*

Cost: n comparisons, for a quintic Bezier curve with n-spline sections

                Comp    Div     Mult        Add      Assignments
Cost            3*n+2                       1*n      3                         
        
*/
int SegmentedQuinticBezierToolkit::calcIndex(double x, 
                                             const SimTK::Matrix& bezierPtsX)
{
    int idx = 0;
    bool flag_found = false;

    for(int i=0; i<bezierPtsX.ncol(); i++){
        if( x >= bezierPtsX(0,i) && x < bezierPtsX(5,i) ){
            idx = i;
            i = bezierPtsX.ncol();
            flag_found = true;
        }
    }

    //Check if the value x is identically the last point
    if(flag_found == false && x == bezierPtsX(5,bezierPtsX.ncol()-1)){
        idx = bezierPtsX.ncol()-1;
        flag_found = true;
    }

    SimTK_ERRCHK_ALWAYS( (flag_found == true), 
        "SegmentedQuinticBezierToolkit::calcIndex", 
        "Error: A value of x was used that is not within the Bezier curve set.");

    return idx;
}
/**
  This function will print cvs file of the matrix 
  data

  @params data: A matrix of data
  @params filename: The name of the file to print
  */
void printMatrixToFile( const SimTK::Matrix& data, const std::string& filename)
{
    ofstream datafile;
    datafile.open(filename.c_str());

    for(int i = 0; i < data.nrow(); i++){
        for(int j = 0; j < data.ncol(); j++){
            if(j<data.ncol()-1)
                datafile << data(i,j) << ",";
            else
                datafile << data(i,j) << "\n";
        }   
    }
    datafile.close();
}
Пример #3
0
/**
* This function will print cvs file of the column vector col0 and the matrix data
*
* @params col0: A vector that must have the same number of rows as the data matrix
*               This column vector is printed as the first column
* @params data: A matrix of data
* @params filename: The name of the file to print
*/
void printMatrixToFile(SimTK::Vector col0,SimTK::Matrix data, string filename){
    ofstream datafile;
    datafile.open(filename.c_str());

    for(int i = 0; i < data.nrow(); i++){
        datafile << col0(i) << ",";
        for(int j = 0; j < data.ncol(); j++){
            if(j<data.ncol()-1)
                datafile << data(i,j) << ",";
            else
                datafile << data(i,j) << "\n";
        }   
    }
    datafile.close();
} 
/**
* This function will print cvs file of the column vector col0 and the matrix data
*
* @params col0: A vector that must have the same number of rows as the data matrix
*               This column vector is printed as the first column
* @params data: A matrix of data
* @params filename: The name of the file to print
*/
void SegmentedQuinticBezierToolkit::
    printMatrixToFile(const SimTK::Vector& col0, 
    const SimTK::Matrix& data, std::string& filename)
{
    
    ofstream datafile;
    datafile.open(filename.c_str());

    for(int i = 0; i < data.nrow(); i++){
        datafile << col0(i) << ",";
        for(int j = 0; j < data.ncol(); j++){
            if(j<data.ncol()-1)
                datafile << data(i,j) << ",";
            else
                datafile << data(i,j) << "\n";
        }   
    }
    datafile.close();
} 
void SegmentedQuinticBezierToolkit::
    printBezierSplineFitCurves(const SimTK::Function_<double>& curveFit, 
    SimTK::Matrix& ctrlPts, SimTK::Vector& xVal, SimTK::Vector& yVal, 
    std::string& filename)
{
        std::string caller = "printBezierSplineFitCurves";
        int nbezier =  int(ctrlPts.ncol()/2.0);
        int rows = NUM_SAMPLE_PTS*nbezier - (nbezier-1);

        SimTK::Vector y1Val(rows);
        SimTK::Vector y2Val(rows);

        SimTK::Vector ySVal(rows);
        SimTK::Vector y1SVal(rows);
        SimTK::Vector y2SVal(rows);

        SimTK::Matrix printMatrix(rows,6);

        SimTK::Vector tmp(1);
        std::vector<int> deriv1(1);
        std::vector<int> deriv2(2);

        deriv1[0] = 0;
        deriv2[0] = 0;
        deriv2[1] = 0;
        double u = 0;
        int oidx = 0;
        int offset = 0;
        for(int j=0; j < nbezier ; j++)
        {
            if(j > 0){
                offset = 1;
            }

            for(int i=0; i<NUM_SAMPLE_PTS-offset; i++)
            {
              oidx = i + j*NUM_SAMPLE_PTS - offset*(j-1);

              u = ( (double)(i+offset) )/( (double)(NUM_SAMPLE_PTS-1) );
              y1Val(oidx) = calcQuinticBezierCurveDerivDYDX(u,
                  ctrlPts(2*j),ctrlPts(2*j+1),1);
              y2Val(oidx) = calcQuinticBezierCurveDerivDYDX(u,
                  ctrlPts(2*j),ctrlPts(2*j+1),2);

              tmp(0) = xVal(oidx);
              ySVal(oidx) = curveFit.calcValue( tmp );

          
              y1SVal(oidx) = curveFit.calcDerivative(deriv1,tmp);
              y2SVal(oidx) = curveFit.calcDerivative(deriv2,tmp);
             

              printMatrix(oidx,0) = yVal(oidx);
              printMatrix(oidx,1) = y1Val(oidx);
              printMatrix(oidx,2) = y2Val(oidx);
              printMatrix(oidx,3) = ySVal(oidx);
              printMatrix(oidx,4) = y1SVal(oidx);
              printMatrix(oidx,5) = y2SVal(oidx);
            }
        }
        printMatrixToFile(xVal,printMatrix,filename);

}
/**
  @param timeV A nx1 time vector to integrate along, which must monotonic 
  and increasing
  @param xM    A nxm matrix of row vectors, each corresponding to the row vector
  that should be applied to yF at time t
  @param yF    A function
  @param ic    The initial condition for the integral
  @param intAcc The accuracy of the integral
  @returns an nx2 matrix, time in column 0, integral of y in column 1
  */
SimTK::Matrix calcFunctionTimeIntegral( 
        const SimTK::Vector& timeV,
        const SimTK::Matrix& xM, 
        const MuscleFirstOrderActivationDynamicModel& yF,
        double ic, 
        int dim, 
        double startTime, 
        double endTime,
        double intAcc)
{
    SimTK::Matrix intXY(timeV.size(),2);

    //Populate FunctionData
    FunctionData fdata(yF);
    fdata.m_ic      = ic;
    fdata.m_intDim  = dim;
    fdata.m_tmpXV      = SimTK::Vector(xM.ncol());
    fdata.m_tmpXV = 0;

    SimTK::Array_< SimTK::Spline_<double> > splinedInput(xM.ncol());

    //Now spline xM over time
    for(int i=0; i<xM.ncol(); i++){        

        splinedInput[i] = SimTK::SplineFitter<Real>::
            fitForSmoothingParameter(1,timeV,xM(i),0).getSpline();
    }
    fdata.m_splinedInput = splinedInput;
    //FunctionData is now completely built


    //Set up system
    //double startTime = timeV(0);
    //double endTime   = timeV(timeV.nelt()-1);   
    MySystem sys(fdata);
    State initState = sys.realizeTopology();
    initState.setTime(startTime);


    RungeKuttaMersonIntegrator integ(sys);
    integ.setAccuracy(intAcc);
    integ.setFinalTime(endTime);
    integ.setReturnEveryInternalStep(false);
    integ.initialize(initState);

    int idx = 0;    
    double nextTimeInterval = 0;
    Integrator::SuccessfulStepStatus status;

    while (idx < timeV.nelt()) {      
        nextTimeInterval = timeV(idx);

        status=integ.stepTo(nextTimeInterval);

        // Use this for variable step output.
        //status = integ.stepTo(Infinity);

        if (status == Integrator::EndOfSimulation)
            break;

        const State& state = integ.getState();

        intXY(idx,0) = nextTimeInterval;
        intXY(idx,1) = (double)state.getZ()[0];                        

        idx++;

    }

    //cout << "Integrated Solution"<<endl;
    //cout << intXY << endl;


    //intXY.resizeKeep(idx,2);
    return intXY;
}