Пример #1
0
void D1MinusLinearOSI::initializeWorkVectorsForDS(double t, SP::DynamicalSystem ds)
{
  // Get work buffers from the graph
  VectorOfVectors& ds_work_vectors = *_initializeDSWorkVectors(ds);

  // Check dynamical system type
  Type::Siconos dsType = Type::value(*ds);
  assert(dsType == Type::LagrangianLinearTIDS || dsType == Type::LagrangianDS || dsType == Type::NewtonEulerDS);
  
  if(dsType == Type::LagrangianDS || dsType == Type::LagrangianLinearTIDS)
  {
    SP::LagrangianDS lds = std11::static_pointer_cast<LagrangianDS> (ds);
    lds->init_generalized_coordinates(2); // acceleration is required for the ds
    lds->init_inverse_mass(); // invMass required to update post-impact velocity

    ds_work_vectors.resize(D1MinusLinearOSI::WORK_LENGTH);
    ds_work_vectors[D1MinusLinearOSI::RESIDU_FREE].reset(new SiconosVector(lds->dimension()));
    ds_work_vectors[D1MinusLinearOSI::FREE].reset(new SiconosVector(lds->dimension()));
    ds_work_vectors[D1MinusLinearOSI::FREE_TDG].reset(new SiconosVector(lds->dimension()));
    // Update dynamical system components (for memory swap).
    lds->computeForces(t, lds->q(), lds->velocity());
    lds->swapInMemory();
  }
  else if(dsType == Type::NewtonEulerDS)
  {
    SP::NewtonEulerDS neds = std11::static_pointer_cast<NewtonEulerDS> (ds);
    neds->init_inverse_mass(); // invMass required to update post-impact velocity
    ds_work_vectors.resize(D1MinusLinearOSI::WORK_LENGTH);
    ds_work_vectors[D1MinusLinearOSI::RESIDU_FREE].reset(new SiconosVector(neds->dimension()));
    ds_work_vectors[D1MinusLinearOSI::FREE].reset(new SiconosVector(neds->dimension()));
    ds_work_vectors[D1MinusLinearOSI::FREE_TDG].reset(new SiconosVector(neds->dimension()));
    //Compute a first value of the forces to store it in _forcesMemory
    neds->computeForces(t, neds->q(), neds->twist());
    neds->swapInMemory();
  }
  else
    RuntimeException::selfThrow("D1MinusLinearOSI::initialize - not implemented for Dynamical system type: " + dsType);

  for (unsigned int k = _levelMinForInput ; k < _levelMaxForInput + 1; k++)
  {
    ds->initializeNonSmoothInput(k);
  }

}
Пример #2
0
void D1MinusLinearOSI::updateState(const unsigned int level)
{
  DEBUG_PRINTF("\n D1MinusLinearOSI::updateState(const unsigned int level) start for level = %i\n",level);

  for (DSIterator it = OSIDynamicalSystems->begin(); it != OSIDynamicalSystems->end(); ++it)
  {
    // type of the current DS
    Type::Siconos dsType = Type::value(**it);

    /* \warning the following conditional statement should be removed with a MechanicalDS class */
    /* Lagrangian DS*/
    if ((dsType == Type::LagrangianDS) || (dsType == Type::LagrangianLinearTIDS))
    {
      SP::LagrangianDS d = std11::static_pointer_cast<LagrangianDS> (*it);
      SP::SiconosMatrix M = d->mass();
      SP::SiconosVector v = d->velocity();

      DEBUG_PRINT("Position and velocity before update\n");
      DEBUG_EXPR(d->q()->display());
      DEBUG_EXPR(d->velocity()->display());

      /* Add the contribution of the impulse if any */
      if (d->p(1))
      {
        DEBUG_EXPR(d->p(1)->display());
        /* copy the value of the impulse */
        SP::SiconosVector dummy(new SiconosVector(*(d->p(1))));
        /* Compute the velocity jump due to the impulse */
        M->PLUForwardBackwardInPlace(*dummy);
        /* Add the velocity jump to the free velocity */
        *v += *dummy;
      }

      DEBUG_PRINT("Position and velocity after update\n");
      DEBUG_EXPR(d->q()->display());
      DEBUG_EXPR(d->velocity()->display());
    }
    /*  NewtonEuler Systems */
    else if (dsType == Type::NewtonEulerDS)
    {
      SP::NewtonEulerDS d = std11::static_pointer_cast<NewtonEulerDS> (*it);
      SP::SiconosMatrix M(new SimpleMatrix(*(d->mass()))); // we copy the mass matrix to avoid its factorization;
      SP::SiconosVector v = d->velocity(); // POINTER CONSTRUCTOR : contains new velocity
      if (d->p(1))
      {

        // Update the velocity
        SP::SiconosVector dummy(new SiconosVector(*(d->p(1)))); // value = nonsmooth impulse
        M->PLUForwardBackwardInPlace(*dummy); // solution for its velocity equivalent
        *v += *dummy; // add free velocity

        // update \f$ \dot q \f$
        SP::SiconosMatrix T = d->T();
        SP::SiconosVector dotq = d->dotq();
        prod(*T, *v, *dotq, true);

        DEBUG_PRINT("\nRIGHT IMPULSE\n");
        DEBUG_EXPR(d->p(1)->display());
      }
      DEBUG_EXPR(d->q()->display());
      DEBUG_EXPR(d->velocity()->display());
    }
    else
      RuntimeException::selfThrow("D1MinusLinearOSI::computeResidu - not yet implemented for Dynamical system type: " + dsType);

  }

  DEBUG_PRINT("\n D1MinusLinearOSI::updateState(const unsigned int level) end\n");

}
double D1MinusLinearOSI::computeResiduHalfExplicitAccelerationLevel()
{
  DEBUG_BEGIN("\n D1MinusLinearOSI::computeResiduHalfExplicitAccelerationLevel()\n");

  double t = _simulation->nextTime(); // end of the time step
  double told = _simulation->startingTime(); // beginning of the time step
  double h = _simulation->timeStep(); // time step length

  SP::OneStepNSProblems allOSNS  = _simulation->oneStepNSProblems(); // all OSNSP
  SP::Topology topo =  _simulation->nonSmoothDynamicalSystem()->topology();
  SP::InteractionsGraph indexSet2 = topo->indexSet(2);

  /**************************************************************************************************************
   *  Step 1-  solve a LCP at acceleration level for lambda^+_{k} for the last set indices
   *   if index2 is empty we should skip this step
   **************************************************************************************************************/

  DEBUG_PRINT("\nEVALUATE LEFT HAND SIDE\n");

  DEBUG_EXPR(std::cout<< "allOSNS->empty()   " << std::boolalpha << allOSNS->empty() << std::endl << std::endl);
  DEBUG_EXPR(std::cout<< "allOSNS->size()   "  << allOSNS->size() << std::endl << std::endl);

// -- LEFT SIDE --
  DynamicalSystemsGraph::VIterator dsi, dsend;
  for (std11::tie(dsi, dsend) = _dynamicalSystemsGraph->vertices(); dsi != dsend; ++dsi)
  {
    if (!checkOSI(dsi)) continue;
    SP::DynamicalSystem ds = _dynamicalSystemsGraph->bundle(*dsi);

    Type::Siconos dsType = Type::value(*ds);
    SP::SiconosVector accFree;
    SP::SiconosVector work_tdg;
    SP::SiconosMatrix Mold;
    DEBUG_EXPR((*it)->display());

    if ((dsType == Type::LagrangianDS) || (dsType == Type::LagrangianLinearTIDS))
    {
      SP::LagrangianDS d = std11::static_pointer_cast<LagrangianDS> (ds);
      accFree = d->workspace(DynamicalSystem::free); /* POINTER CONSTRUCTOR : will contain
                                                       * the acceleration without contact force */
      accFree->zero();

      // get left state from memory
      SP::SiconosVector qold = d->qMemory()->getSiconosVector(0);
      SP::SiconosVector vold = d->velocityMemory()->getSiconosVector(0); // right limit
      Mold = d->mass();

      DEBUG_EXPR(accFree->display());
      DEBUG_EXPR(qold->display());
      DEBUG_EXPR(vold->display());
      DEBUG_EXPR(Mold->display());

      if (! d->workspace(DynamicalSystem::free_tdg))
      {
        d->allocateWorkVector(DynamicalSystem::free_tdg, d->dimension()) ;
      }
      work_tdg = d->workspace(DynamicalSystem::free_tdg);
      work_tdg->zero();
      DEBUG_EXPR(work_tdg->display());

      if (d->forces())
      {
        d->computeForces(told, qold, vold);
        DEBUG_EXPR(d->forces()->display());

        *accFree += *(d->forces());
      }
      Mold->PLUForwardBackwardInPlace(*accFree); // contains left (right limit) acceleration without contact force
      d->addWorkVector(accFree,DynamicalSystem::free_tdg); // store the value in WorkFreeFree
    }
    else if(dsType == Type::NewtonEulerDS)
    {
      SP::NewtonEulerDS d = std11::static_pointer_cast<NewtonEulerDS> (ds);
      accFree = d->workspace(DynamicalSystem::free); // POINTER CONSTRUCTOR : contains acceleration without contact force
      accFree->zero();

      // get left state from memory
      SP::SiconosVector qold = d->qMemory()->getSiconosVector(0);
      SP::SiconosVector vold = d->velocityMemory()->getSiconosVector(0); // right limit
      //Mold = d->mass();
      assert(!d->mass()->isPLUInversed());
      Mold.reset(new SimpleMatrix(*(d->mass()))); // we copy the mass matrix to avoid its factorization
      DEBUG_EXPR(accFree->display());
      DEBUG_EXPR(qold->display());
      DEBUG_EXPR(vold->display());
      DEBUG_EXPR(Mold->display());

      if (! d->workspace(DynamicalSystem::free_tdg))
      {
        d->allocateWorkVector(DynamicalSystem::free_tdg, d->dimension()) ;
      }

      work_tdg = d->workspace(DynamicalSystem::free_tdg);
      work_tdg->zero();
      DEBUG_EXPR(work_tdg->display());

      if (d->forces())
      {
        d->computeForces(told, qold, vold);
        DEBUG_EXPR(d->forces()->display());

        *accFree += *(d->forces());
      }
      Mold->PLUForwardBackwardInPlace(*accFree); // contains left (right limit) acceleration without contact force

      d->addWorkVector(accFree,DynamicalSystem::free_tdg); // store the value in WorkFreeFree

    }
    else
    {
      RuntimeException::selfThrow("D1MinusLinearOSI::computeResidu - not yet implemented for Dynamical system type: " + dsType);
    }


    DEBUG_PRINT("accFree contains right limit acceleration at  t^+_k with contact force :\n");
    DEBUG_EXPR(accFree->display());
    DEBUG_PRINT("work_tdg contains right limit acceleration at t^+_k without contact force :\n");
    DEBUG_EXPR(work_tdg->display());

  }


  if (!allOSNS->empty())
  {
    if (indexSet2->size() >0)
    {
      InteractionsGraph::VIterator ui, uiend;
      SP::Interaction inter;
      for (std11::tie(ui, uiend) = indexSet2->vertices(); ui != uiend; ++ui)
      {
        inter = indexSet2->bundle(*ui);
        inter->relation()->computeJach(t, *inter, indexSet2->properties(*ui));
        inter->relation()->computeJacg(told, *inter, indexSet2->properties(*ui));
      }

      if (_simulation->nonSmoothDynamicalSystem()->topology()->hasChanged())
      {
        for (OSNSIterator itOsns = allOSNS->begin(); itOsns != allOSNS->end(); ++itOsns)
        {
          (*itOsns)->setHasBeenUpdated(false);
        }
      }
      assert((*allOSNS)[SICONOS_OSNSP_TS_VELOCITY + 1]);

      if (((*allOSNS)[SICONOS_OSNSP_TS_VELOCITY + 1]->hasInteractions())) // it should be equivalent to indexSet2
      {
        DEBUG_PRINT("We compute lambda^+_{k} \n");
        (*allOSNS)[SICONOS_OSNSP_TS_VELOCITY + 1]->compute(told);
        DEBUG_EXPR((*allOSNS)[SICONOS_OSNSP_TS_VELOCITY + 1]->display());
      }


      // Note Franck : at the time this results in a call to swapInMem of all Interactions of the NSDS
      // So let the simu do this.
      //(*allOSNS)[SICONOS_OSNSP_TS_VELOCITY + 1]->saveInMemory(); // we push y and lambda in Memories
      _simulation->nonSmoothDynamicalSystem()->pushInteractionsInMemory();
      _simulation->nonSmoothDynamicalSystem()->updateInput(_simulation->nextTime(),2);

      for (std11::tie(dsi, dsend) = _dynamicalSystemsGraph->vertices(); dsi != dsend; ++dsi)
      {
        if (!checkOSI(dsi)) continue;
        SP::DynamicalSystem ds = _dynamicalSystemsGraph->bundle(*dsi);

        Type::Siconos dsType = Type::value(*ds);
        if ((dsType == Type::LagrangianDS) || (dsType == Type::LagrangianLinearTIDS))
        {
          SP::LagrangianDS d = std11::static_pointer_cast<LagrangianDS> (ds);
          SP::SiconosVector accFree = d->workspace(DynamicalSystem::free); // POINTER CONSTRUCTOR : contains acceleration without contact force

          SP::SiconosVector dummy(new SiconosVector(*(d->p(2)))); // value = contact force
          SP::SiconosMatrix Mold = d->mass();
          Mold->PLUForwardBackwardInPlace(*dummy);
          *accFree  += *(dummy);

          DEBUG_EXPR(d->p(2)->display());
        }
        else if (dsType == Type::NewtonEulerDS)
        {
          SP::NewtonEulerDS d = std11::static_pointer_cast<NewtonEulerDS> (ds);
          SP::SiconosVector accFree = d->workspace(DynamicalSystem::free); // POINTER CONSTRUCTOR : contains acceleration without contact force

          SP::SiconosVector dummy(new SiconosVector(*(d->p(2)))); // value = contact force
          SP::SiconosMatrix Mold(new SimpleMatrix(*(d->mass())));  // we copy the mass matrix to avoid its factorization
          DEBUG_EXPR(Mold->display());
          Mold->PLUForwardBackwardInPlace(*dummy);
          *accFree  += *(dummy);

          DEBUG_EXPR(d->p(2)->display());

        }
        else
          RuntimeException::selfThrow("D1MinusLinearOSI::computeResidu - not yet implemented for Dynamical system type: " + dsType);

      }
    }
  }

  /**************************************************************************************************************
   *  Step 2 -  compute v_{k,1}
   **************************************************************************************************************/


  DEBUG_PRINT("\n PREDICT RIGHT HAND SIDE\n");

  for (std11::tie(dsi, dsend) = _dynamicalSystemsGraph->vertices(); dsi != dsend; ++dsi)
  {
    if (!checkOSI(dsi)) continue;
    SP::DynamicalSystem ds = _dynamicalSystemsGraph->bundle(*dsi);


    // type of the current DS
    Type::Siconos dsType = Type::value(*ds);
    /* \warning the following conditional statement should be removed with a MechanicalDS class */
    if ((dsType == Type::LagrangianDS) || (dsType == Type::LagrangianLinearTIDS))
    {
      SP::LagrangianDS d = std11::static_pointer_cast<LagrangianDS> (ds);
      SP::SiconosVector accFree = d->workspace(DynamicalSystem::free); // contains acceleration without contact force

      // get left state from memory
      SP::SiconosVector qold = d->qMemory()->getSiconosVector(0);
      SP::SiconosVector vold = d->velocityMemory()->getSiconosVector(0);

      // initialize *it->residuFree and predicted right velocity (left limit)
      SP::SiconosVector residuFree = ds->workspace(DynamicalSystem::freeresidu); // contains residu without nonsmooth effect
      SP::SiconosVector v = d->velocity(); //contains velocity v_{k+1}^- and not free velocity
      residuFree->zero();
      v->zero();

      DEBUG_EXPR(accFree->display());
      DEBUG_EXPR(qold->display());
      DEBUG_EXPR(vold->display());


      *residuFree -= 0.5 * h**accFree;

      *v += h**accFree;
      *v += *vold;

      DEBUG_EXPR(residuFree->display());
      DEBUG_EXPR(v->display());

      SP::SiconosVector q = d->q(); // POINTER CONSTRUCTOR : contains position q_{k+1}
      *q = *qold;

      scal(0.5 * h, *vold + *v, *q, false);
      DEBUG_EXPR(q->display());
    }
    else if (dsType == Type::NewtonEulerDS)
    {
      SP::NewtonEulerDS d = std11::static_pointer_cast<NewtonEulerDS> (ds);
      SP::SiconosVector accFree = d->workspace(DynamicalSystem::free);

      // get left state from memory
      SP::SiconosVector qold = d->qMemory()->getSiconosVector(0);
      SP::SiconosVector vold = d->velocityMemory()->getSiconosVector(0);

      // initialize *it->residuFree and predicted right velocity (left limit)
      SP::SiconosVector residuFree = ds->workspace(DynamicalSystem::freeresidu); // contains residu without nonsmooth effect
      SP::SiconosVector v = d->velocity(); //contains velocity v_{k+1}^- and not free velocity
      residuFree->zero();
      v->zero();

      DEBUG_EXPR(accFree->display());
      DEBUG_EXPR(qold->display());
      DEBUG_EXPR(vold->display());


      *residuFree -= 0.5 * h**accFree;

      *v += h**accFree;
      *v += *vold;

      DEBUG_EXPR(residuFree->display());
      DEBUG_EXPR(v->display());

      //first step consists in computing  \dot q.
      //second step consists in updating q.
      //
      SP::SiconosMatrix T = d->T();
      SP::SiconosVector dotq = d->dotq();
      prod(*T, *v, *dotq, true);

      SP::SiconosVector dotqold = d->dotqMemory()->getSiconosVector(0);

      SP::SiconosVector q = d->q(); // POINTER CONSTRUCTOR : contains position q_{k+1}
      *q = *qold;

      scal(0.5 * h, *dotqold + *dotq, *q, false);
      DEBUG_PRINT("new q before normalizing\n");
      DEBUG_EXPR(q->display());
      //q[3:6] must be normalized
      d->normalizeq();
      d->computeT();
      DEBUG_PRINT("new q after normalizing\n");
      DEBUG_EXPR(q->display());



    }
    else
      RuntimeException::selfThrow("D1MinusLinearOSI::computeResidu - not yet implemented for Dynamical system type: " + dsType);


    /** At this step, we obtain
     * \f[
     * \begin{cases}
     * v_{k,0} = \mbox{\tt vold} \\
     * q_{k,0} = qold \\
     * F_{k,+} = F(told,qold,vold) \\
     * Work_{freefree} =  M^{-1}_k (F^+_{k})  \mbox{stored in work_tdg} \\
     * Work_{free} =  M^{-1}_k (P^+_{2,k}+F^+_{k})  \mbox{stored in accFree} \\
     * R_{free} = -h/2 * M^{-1}_k (P^+_{2,k}+F^+_{k})  \mbox{stored in ResiduFree} \\
     * v_{k,1} = v_{k,0} + h * M^{-1}_k (P^+_{2,k}+F^+_{k})  \mbox{stored in v} \\
     * q_{k,1} = q_{k,0} + \frac{h}{2} (v_{k,0} + v_{k,1}) \mbox{stored in q} \\
     * \end{cases}
     * \f]
     **/
  }

  DEBUG_PRINT("\n DECIDE STRATEGY\n");
  /** Decide of the strategy impact or smooth multiplier.
   *  Compute _isThereImpactInTheTimeStep
   */
  _isThereImpactInTheTimeStep = false;
  if (!allOSNS->empty())
  {

    for (unsigned int level = _simulation->levelMinForOutput();
         level < _simulation->levelMaxForOutput(); level++)
    {
      _simulation->nonSmoothDynamicalSystem()->updateOutput(_simulation->nextTime(),level);
    }
    _simulation->updateIndexSets();

    SP::Topology topo =  _simulation->nonSmoothDynamicalSystem()->topology();
    SP::InteractionsGraph indexSet3 = topo->indexSet(3);

    if (indexSet3->size() > 0)
    {
      _isThereImpactInTheTimeStep = true;
      DEBUG_PRINT("There is an impact in the step. indexSet3->size() > 0. _isThereImpactInTheTimeStep = true;\n");
    }
    else
    {
      _isThereImpactInTheTimeStep = false;
      DEBUG_PRINT("There is no  impact in the step. indexSet3->size() = 0. _isThereImpactInTheTimeStep = false;\n");
    }
  }


  /* If _isThereImpactInTheTimeStep = true;
   * we recompute residuFree by removing the contribution of the nonimpulsive contact forces.
   * We add the contribution of the external forces at the end
   * of the time--step
   * If _isThereImpactInTheTimeStep = false;
   * we recompute residuFree by adding   the contribution of the external forces at the end
   * and the contribution of the nonimpulsive contact forces that are computed by solving the osnsp.
   */
  if (_isThereImpactInTheTimeStep)
  {

    DEBUG_PRINT("There is an impact in the step. indexSet3->size() > 0.  _isThereImpactInTheTimeStep = true\n");
    for (std11::tie(dsi, dsend) = _dynamicalSystemsGraph->vertices(); dsi != dsend; ++dsi)
    {
      if (!checkOSI(dsi)) continue;
      SP::DynamicalSystem ds = _dynamicalSystemsGraph->bundle(*dsi);

      // type of the current DS
      Type::Siconos dsType = Type::value(*ds);
      /* \warning the following conditional statement should be removed with a MechanicalDS class */
      if ((dsType == Type::LagrangianDS) || (dsType == Type::LagrangianLinearTIDS))
      {
        SP::LagrangianDS d = std11::static_pointer_cast<LagrangianDS> (ds);
        SP::SiconosVector residuFree = d->workspace(DynamicalSystem::freeresidu);
        SP::SiconosVector v = d->velocity();
        SP::SiconosVector q = d->q();
        SP::SiconosVector qold = d->qMemory()->getSiconosVector(0);
        SP::SiconosVector vold = d->velocityMemory()->getSiconosVector(0); // right limit

        SP::SiconosMatrix M = d->mass(); // POINTER CONSTRUCTOR : contains mass matrix

        //residuFree->zero();
        //v->zero();
        SP::SiconosVector work_tdg = d->workspace(DynamicalSystem::free_tdg);
        assert(work_tdg);
        *residuFree =  - 0.5 * h**work_tdg;


        d->computeMass();
        DEBUG_EXPR(M->display());
        if (d->forces())
        {
          d->computeForces(t, q, v);
          *work_tdg = *(d->forces());
          DEBUG_EXPR(d->forces()->display());
        }

        M->PLUForwardBackwardInPlace(*work_tdg); // contains right (left limit) acceleration without contact force
        *residuFree -= 0.5 * h**work_tdg;
        DEBUG_EXPR(residuFree->display());
      }
      else if (dsType == Type::NewtonEulerDS)
      {
        SP::NewtonEulerDS d = std11::static_pointer_cast<NewtonEulerDS> (ds);
        SP::SiconosVector residuFree = d->workspace(DynamicalSystem::freeresidu);
        SP::SiconosVector v = d->velocity();
        SP::SiconosVector q = d->q();
        SP::SiconosVector qold = d->qMemory()->getSiconosVector(0);
        SP::SiconosVector vold = d->velocityMemory()->getSiconosVector(0); // right limit

        SP::SiconosMatrix M(new SimpleMatrix(*(d->mass()))); // we copy the mass matrix to avoid its factorization;
        DEBUG_EXPR(M->display());

        //residuFree->zero();
        v->zero();
        SP::SiconosVector work_tdg = d->workspace(DynamicalSystem::free_tdg);
        assert(work_tdg);
        *residuFree = 0.5 * h**work_tdg;
        work_tdg->zero();

        if (d->forces())
        {
          d->computeForces(t, q, v);
          *work_tdg += *(d->forces());
        }

        M->PLUForwardBackwardInPlace(*work_tdg); // contains right (left limit) acceleration without contact force
        *residuFree -= 0.5 * h**work_tdg;
        DEBUG_EXPR(residuFree->display());
      }
      else
        RuntimeException::selfThrow("D1MinusLinearOSI::computeResidu - not yet implemented for Dynamical system type: " + dsType);
    }
  }
  else
  {
    DEBUG_PRINT("There is no  impact in the step. indexSet3->size() = 0. _isThereImpactInTheTimeStep = false;\n");
    // -- RIGHT SIDE --
    // calculate acceleration without contact force

    for (std11::tie(dsi, dsend) = _dynamicalSystemsGraph->vertices(); dsi != dsend; ++dsi)
    {
      if (!checkOSI(dsi)) continue;
      SP::DynamicalSystem ds = _dynamicalSystemsGraph->bundle(*dsi);

    
      // type of the current DS
      Type::Siconos dsType = Type::value(*ds);
      /* \warning the following conditional statement should be removed with a MechanicalDS class */
      if ((dsType == Type::LagrangianDS) || (dsType == Type::LagrangianLinearTIDS))
      {

        SP::LagrangianDS d = std11::static_pointer_cast<LagrangianDS> (ds);
        SP::SiconosVector accFree = d->workspace(DynamicalSystem::free); // POINTER CONSTRUCTOR : contains acceleration without contact force
        accFree->zero();
        // get right state from memory
        SP::SiconosVector q = d->q(); // contains position q_{k+1}
        SP::SiconosVector v = d->velocity(); // contains velocity v_{k+1}^- and not free velocity
        SP::SiconosMatrix M = d->mass(); // POINTER CONSTRUCTOR : contains mass matrix

        DEBUG_EXPR(accFree->display());
        DEBUG_EXPR(q->display());
        DEBUG_EXPR(v->display());
        // Lagrangian Nonlinear Systems
        if (dsType == Type::LagrangianDS || dsType == Type::LagrangianLinearTIDS)
        {
          d->computeMass();

          DEBUG_EXPR(M->display());
          if (d->forces())
          {
            d->computeForces(t, q, v);
            *accFree += *(d->forces());
          }
        }
        else
          RuntimeException::selfThrow
          ("D1MinusLinearOSI::computeResidu - not yet implemented for Dynamical system type: " + dsType);

        M->PLUForwardBackwardInPlace(*accFree); // contains right (left limit) acceleration without contact force
        DEBUG_PRINT("accFree contains left limit acceleration at  t^-_{k+1} without contact force :\n");
        DEBUG_EXPR(accFree->display());
       }
      else if (dsType == Type::NewtonEulerDS)
      {
        SP::NewtonEulerDS d = std11::static_pointer_cast<NewtonEulerDS> (ds);
        SP::SiconosVector accFree = d->workspace(DynamicalSystem::free); // POINTER CONSTRUCTOR : contains acceleration without contact force
        accFree->zero();
        // get right state from memory
        SP::SiconosVector q = d->q(); // contains position q_{k+1}
        SP::SiconosVector v = d->velocity(); // contains velocity v_{k+1}^- and not free velocity
        SP::SiconosMatrix M(new SimpleMatrix(*(d->mass()))); // we copy the mass matrix to avoid its factorization;

        DEBUG_EXPR(accFree->display());
        DEBUG_EXPR(q->display());
        DEBUG_EXPR(v->display());

        if (d->forces())
        {
          d->computeForces(t, q, v);
          *accFree += *(d->forces());
        }

        M->PLUForwardBackwardInPlace(*accFree); // contains right (left limit) acceleration without contact force
        DEBUG_PRINT("accFree contains left limit acceleration at  t^-_{k+1} without contact force :\n");
        DEBUG_EXPR(accFree->display());
      }
      else
        RuntimeException::selfThrow("D1MinusLinearOSI::computeResidu - not yet implemented for Dynamical system type: " + dsType);

    }

    // solve a LCP at acceleration level only for contacts which have been active at the beginning of the time-step
    if (!allOSNS->empty())
    {
      // for (unsigned int level = _simulation->levelMinForOutput(); level < _simulation->levelMaxForOutput(); level++)
      // {
      //   _simulation->updateOutput(level);
      // }
      // _simulation->updateIndexSets();
      DEBUG_PRINT("We compute lambda^-_{k+1} \n");
      InteractionsGraph::VIterator ui, uiend;
      SP::Interaction inter;
      for (std11::tie(ui, uiend) = indexSet2->vertices(); ui != uiend; ++ui)
      {
        inter = indexSet2->bundle(*ui);
        inter->relation()->computeJach(t, *inter, indexSet2->properties(*ui));
        inter->relation()->computeJacg(t, *inter, indexSet2->properties(*ui));
      }
      if (_simulation->nonSmoothDynamicalSystem()->topology()->hasChanged())
      {
        for (OSNSIterator itOsns = allOSNS->begin(); itOsns != allOSNS->end(); ++itOsns)
        {
          (*itOsns)->setHasBeenUpdated(false);
        }
      }

      if (((*allOSNS)[SICONOS_OSNSP_TS_VELOCITY + 1]->hasInteractions()))
      {
        (*allOSNS)[SICONOS_OSNSP_TS_VELOCITY + 1]->compute(t);
        DEBUG_EXPR((*allOSNS)[SICONOS_OSNSP_TS_VELOCITY + 1]->display(););
        _simulation->nonSmoothDynamicalSystem()->updateInput(_simulation->nextTime(),2);
      }
Пример #4
0
void KernelTest::t6()
{
  SP::Model bouncingBall = Siconos::load("BouncingBall1.xml");

  try
  {
    double T = bouncingBall->finalT();
    double t0 = bouncingBall->t0();
    double h = bouncingBall->simulation()->timeStep();
    int N = (int)((T - t0) / h); // Number of time steps

    SP::DynamicalSystemsGraph dsg = 
      bouncingBall->nonSmoothDynamicalSystem()->topology()->dSG(0);

    SP::LagrangianDS ball = std11::static_pointer_cast<LagrangianDS>
      (dsg->bundle(*(dsg->begin())));

    SP::TimeStepping s = std11::static_pointer_cast<TimeStepping>(bouncingBall->simulation());
    SP::Interaction inter;
    InteractionsGraph::VIterator ui, uiend;
    SP::InteractionsGraph indexSet0 = bouncingBall->nonSmoothDynamicalSystem()->topology()->indexSet(0);
    for (std11::tie(ui, uiend) = indexSet0->vertices(); ui != uiend; ++ui)
      inter = indexSet0->bundle(*ui);


    // --- Get the values to be plotted ---
    // -> saved in a matrix dataPlot
    unsigned int outputSize = 5;
    SimpleMatrix dataPlot(N + 1, outputSize);



    SP::SiconosVector q = ball->q();
    SP::SiconosVector v = ball->velocity();
    SP::SiconosVector p = ball->p(1);
    SP::SiconosVector lambda = inter->lambda(1);

    dataPlot(0, 0) = bouncingBall->t0();
    dataPlot(0, 1) = (*q)(0);
    dataPlot(0, 2) = (*v)(0);
    dataPlot(0, 3) = (*p)(0);
    dataPlot(0, 4) = (*lambda)(0);
    // --- Time loop ---
    cout << "====> Start computation ... " << endl << endl;
    // ==== Simulation loop - Writing without explicit event handling =====
    int k = 1;
    boost::progress_display show_progress(N);

    boost::timer time;
    time.restart();

    while (s->hasNextEvent())
    {
      s->computeOneStep();

      // --- Get values to be plotted ---
      dataPlot(k, 0) =  s->nextTime();
      dataPlot(k, 1) = (*q)(0);
      dataPlot(k, 2) = (*v)(0);
      dataPlot(k, 3) = (*p)(0);
      dataPlot(k, 4) = (*lambda)(0);
      s->nextStep();
      ++show_progress;
      k++;
    }
    cout << endl << "End of computation - Number of iterations done: " << k - 1 << endl;
    cout << "Computation Time " << time.elapsed()  << endl;

    // --- Output files ---
    cout << "====> Output file writing ..." << endl;
    dataPlot.resize(k, outputSize);
    ioMatrix::write("result.dat", "ascii", dataPlot, "noDim");
    // Comparison with a reference file
    SimpleMatrix dataPlotRef(dataPlot);
    dataPlotRef.zero();
    ioMatrix::read("result.ref", "ascii", dataPlotRef);

    if ((dataPlot - dataPlotRef).normInf() > 1e-12)
    {
      std::cout << 
        "Warning. The results is rather different from the reference file :" 
                << 
        (dataPlot - dataPlotRef).normInf()
                <<
        std::endl;
      CPPUNIT_ASSERT(false);
    }

  }

  catch (SiconosException e)
  {
    cout << e.report() << endl;
    CPPUNIT_ASSERT(false);
  }
  catch (...)
  {
    cout << "Exception caught in BouncingBallTS.cpp" << endl;
    CPPUNIT_ASSERT(false);

  }


}
Пример #5
0
void SchatzmanPaoliOSI::updateState(const unsigned int level)
{

  double h = simulationLink->timeStep();

  double RelativeTol = simulationLink->relativeConvergenceTol();
  bool useRCC = simulationLink->useRelativeConvergenceCriteron();
  if (useRCC)
    simulationLink->setRelativeConvergenceCriterionHeld(true);

  DSIterator it;
  SP::SiconosMatrix W;
  for (it = OSIDynamicalSystems->begin(); it != OSIDynamicalSystems->end(); ++it)
  {
    SP::DynamicalSystem ds = *it;
    W = WMap[ds->number()];
    // Get the DS type

    Type::Siconos dsType = Type::value(*ds);

    // 1 - Lagrangian Systems
    if (dsType == Type::LagrangianDS || dsType == Type::LagrangianLinearTIDS)
    {
      // get dynamical system
      SP::LagrangianDS d = std11::static_pointer_cast<LagrangianDS> (ds);

      //    SiconosVector *vfree = d->velocityFree();
      SP::SiconosVector q = d->q();
      bool baux = dsType == Type::LagrangianDS && useRCC && simulationLink->relativeConvergenceCriterionHeld();
      if (level != LEVELMAX)
      {
        // To compute q, we solve W(q - qfree) = p
        if (d->p(level))
        {
          *q = *d->p(level); // q = p
          W->PLUForwardBackwardInPlace(*q);
        }

        // if (d->boundaryConditions())
        //   for (vector<unsigned int>::iterator
        //        itindex = d->boundaryConditions()->velocityIndices()->begin() ;
        //        itindex != d->boundaryConditions()->velocityIndices()->end();
        //        ++itindex)
        //     v->setValue(*itindex, 0.0);
        *q +=  * ds->workspace(DynamicalSystem::free);

      }
      else
        *q =  * ds->workspace(DynamicalSystem::free);



      // Computation of the velocity

      SP::SiconosVector v = d->velocity();
      SP::SiconosVector q_k_1 = d->qMemory()->getSiconosVector(1); // q_{k-1}

      //  std::cout << "SchatzmanPaoliOSI::updateState - q_k_1 =" <<std::endl;
      // q_k_1->display();
      //  std::cout << "SchatzmanPaoliOSI::updateState - q =" <<std::endl;
      // q->display();

      *v = 1.0 / (2.0 * h) * (*q - *q_k_1);
      //  std::cout << "SchatzmanPaoliOSI::updateState - v =" <<std::endl;
      // v->display();

      // int bc=0;
      // SP::SiconosVector columntmp(new SiconosVector(ds->getDim()));

      // if (d->boundaryConditions())
      // {
      //   for (vector<unsigned int>::iterator  itindex = d->boundaryConditions()->velocityIndices()->begin() ;
      //        itindex != d->boundaryConditions()->velocityIndices()->end();
      //        ++itindex)
      //   {
      //     _WBoundaryConditionsMap[ds]->getCol(bc,*columntmp);
      //     /*\warning we assume that W is symmetric in the Lagrangian case*/
      //     double value = - inner_prod(*columntmp, *v);
      //     value += (d->p(level))->getValue(*itindex);
      //     /* \warning the computation of reactionToBoundaryConditions take into
      //        account the contact impulse but not the external and internal forces.
      //        A complete computation of the residue should be better */
      //     d->reactionToBoundaryConditions()->setValue(bc,value) ;
      //     bc++;
      //   }

      if (baux)
      {
        ds->subWorkVector(q, DynamicalSystem::local_buffer);
        double aux = ((ds->workspace(DynamicalSystem::local_buffer))->norm2()) / (ds->normRef());
        if (aux > RelativeTol)
          simulationLink->setRelativeConvergenceCriterionHeld(false);
      }

    }
    //2 - Newton Euler Systems
    else if (dsType == Type::NewtonEulerDS)
    {
      //  // get dynamical system
      //       SP::NewtonEulerDS d = std11::static_pointer_cast<NewtonEulerDS> (ds);
      //       SP::SiconosVector v = d->velocity();
      // #ifdef SCHATZMANPAOLI_NE_DEBUG
      //       std::cout<<"SchatzmanPaoliOSI::updatestate prev v"<<endl;
      //       v->display();
      // #endif

      //       /*d->p has been fill by the Relation->computeInput, it contains
      //            B \lambda _{k+1}*/
      //       *v = *d->p(level); // v = p
      //       d->luW()->PLUForwardBackwardInPlace(*v);

      // #ifdef SCHATZMANPAOLI_NE_DEBUG
      //       std::cout<<"SchatzmanPaoliOSI::updatestate hWB lambda"<<endl;
      //       v->display();
      // #endif

      //       *v +=  * ds->workspace(DynamicalSystem::free);

      // #ifdef SCHATZMANPAOLI_NE_DEBUG
      //       std::cout<<"SchatzmanPaoliOSI::updatestate work free"<<endl;
      //       ds->workspace(DynamicalSystem::free)->display();
      //       std::cout<<"SchatzmanPaoliOSI::updatestate new v"<<endl;
      //       v->display();
      // #endif
      //       //compute q
      //       //first step consists in computing  \dot q.
      //       //second step consists in updating q.
      //       //
      //       SP::SiconosMatrix T = d->T();
      //       SP::SiconosVector dotq = d->dotq();
      //       prod(*T,*v,*dotq,true);
      //       // std::cout<<"SchatzmanPaoliOSI::updateState v"<<endl;
      //       // v->display();
      //       // std::cout<<"SchatzmanPaoliOSI::updateState dotq"<<endl;
      //       // dotq->display();




      //       SP::SiconosVector q = d->q();

      //       //  -> get previous time step state
      //       SP::SiconosVector dotqold = d->dotqMemory()->getSiconosVector(0);
      //       SP::SiconosVector qold = d->qMemory()->getSiconosVector(0);
      //       // *q = *qold + h*(theta * *v +(1.0 - theta)* *vold)
      //       double coeff = h*_theta;
      //       scal(coeff, *dotq, *q) ; // q = h*theta*v
      //       coeff = h*(1-_theta);
      //       scal(coeff,*dotqold,*q,false); // q += h(1-theta)*vold
      //       *q += *qold;
      // #ifdef SCHATZMANPAOLI_NE_DEBUG
      //       std::cout<<"new q before normalizing"<<endl;
      //       q->display();
      // #endif

      //       //q[3:6] must be normalized
      //       d->normalizeq();
      //       dotq->setValue(3,(q->getValue(3)-qold->getValue(3))/h);
      //       dotq->setValue(4,(q->getValue(4)-qold->getValue(4))/h);
      //       dotq->setValue(5,(q->getValue(5)-qold->getValue(5))/h);
      //       dotq->setValue(6,(q->getValue(6)-qold->getValue(6))/h);
      //       d->updateT();
      RuntimeException::selfThrow("SchatzmanPaoliOSI::updateState - not yet implemented for Dynamical system type: " + dsType);
    }
    else RuntimeException::selfThrow("SchatzmanPaoliOSI::updateState - not yet implemented for Dynamical system type: " + dsType);
  }
}
Пример #6
0
void MLCPProjectOnConstraints::postComputeLagrangianR(SP::Interaction inter, unsigned int pos)
{
  SP::LagrangianR  lr = std11::static_pointer_cast<LagrangianR>(inter->relation());
#ifdef MLCPPROJ_DEBUG
  printf("MLCPProjectOnConstraints::postComputeLagrangian inter->y(0)\n");
  inter->y(0)->display();
  printf("MLCPProjectOnConstraints::postComputeLagrangian lr->jachq \n");
  lr->jachq()->display();
  printf("MLCPProjectOnConstraints::postComputeLagrangianR q before update\n");

  
  SP::InteractionsGraph indexSet = simulation()->indexSet(indexSetLevel());
  InteractionsGraph::VDescriptor ui = indexSet->descriptor(inter);
  InteractionsGraph::OEIterator oei, oeiend;
    for(std11::tie(oei, oeiend) = indexSet->out_edges(ui);
        oei != oeiend; ++oei)
    {
      
      SP::LagrangianDS lds =  std11::static_pointer_cast<LagrangianDS>(indexSet->bundle(*oei));
      lds->q()->display();
  }
#endif



  //unsigned int sizeY = inter->nonSmoothLaw()->size();

  // y and lambda vectors
  SP::SiconosVector lambda = inter->lambda(0);
  SP::SiconosVector y = inter->y(0);
  unsigned int sizeY = std11::static_pointer_cast<OSNSMatrixProjectOnConstraints>
    (_M)->computeSizeForProjection(inter);
  // Copy _w/_z values, starting from index pos into y/lambda.

  //setBlock(*_w, y, sizeY, pos, 0);
  setBlock(*_z, lambda, sizeY, pos, 0);

#ifdef MLCPPROJ_DEBUG
  printf("MLCPP lambda of Interaction is pos =%i :\n", pos);
  //  aBuff->display();
  lambda->display();
  unsigned int nslawsize = inter->nonSmoothLaw()->size();
  SP::SiconosVector aBuff(new SiconosVector(nslawsize));
  setBlock(*_z, aBuff, sizeY, pos, 0);
  SP::SiconosMatrix J = lr->jachq();
  SP::SimpleMatrix aux(new SimpleMatrix(*J));
  aux->trans();
  // SP::SiconosVector tmp(new SiconosVector(*(lr->q())));
  // prod(*aux, *aBuff, *(tmp), false);
  // //prod(*aux,*lambda,*(lr->q()),false);
  // std:: std::cout << " tmp =  tmp + J^T * lambda" << std::endl;
  // tmp->display();
#endif



  // // WARNING : Must not be done here. and should be called with the correct time.
  // // compute p(0)
  // inter->computeInput(0.0 ,0);

  // // \warning aBuff should normally be in lambda[0]
  // // The update of the position in DS should be made
  // //  in MoreauJeanOSI::upateState or ProjectedMoreauJeanOSI::updateState
  // SP::SiconosMatrix J=lr->jachq();
  // SP::SimpleMatrix aux(new SimpleMatrix(*J));
  // aux->trans();

  // SP::SiconosVector tmp (new SiconosVector(*(lr->q())));
  // std:: std::cout << " tmp ="<<std::endl;
  // tmp->display();
  // std:: std::cout << " lr->q() ="<<std::endl;
  // lr->q()->display();

  // //prod(*aux,*lambda,*(lr->q()),false);
  // prod(*aux,*aBuff,*(tmp),false);
  // std:: std::cout << " tmp =  tmp + J * lambda"<<std::endl;
  // tmp->display();


  // // The following step should be done on MoreauJeanOSI::upateState or ProjectedMoreauJeanOSI::updateState
  // DSIterator itDS = inter->dynamicalSystemsBegin();
  // while(itDS!=inter->dynamicalSystemsEnd())
  // {
  //   Type::Siconos dsType = Type::value(**itDS);
  //   if((dsType !=Type::LagrangianDS) and
  //      (dsType !=Type::LagrangianLinearTIDS) )
  //   {
  //     RuntimeException::selfThrow("MLCPProjectOnConstraint::postCompute- ds is not of Lagrangian DS type.");
  //   }

  //   SP::LagrangianDS d = std11::static_pointer_cast<LagrangianDS> (*itDS);
  //   SP::SiconosVector q = d->q();

  //   *q +=  *d->p(0);
  //    std::cout << " q=" << std::endl;
  //   q->display();
  //   itDS++;
  // }

  // if ((*lr->q() - *tmp).normInf() > 1e-12)
  // {
  //   RuntimeException::selfThrow("youyou");
  // }

#ifdef MLCPPROJ_DEBUG
  printf("MLCPProjectOnConstraints::postComputeLagrangianR _z\n");
  _z->display();
  printf("MLCPProjectOnConstraints::postComputeLagrangianR updated\n");
  
  VectorOfBlockVectors& DSlink = *(indexSet->properties(ui)).DSlink;
//  (*DSlink[LagrangianR::q0]).display();
//  (lr->q())->display();
#endif



  //RuntimeException::selfThrow("MLCPProjectOnConstraints::postComputeLagrangianR() - not yet implemented");
}