void operator()(CompletionHandler&& completion_handler, tcp::socket& socket, const char* message) const { // The async_write operation has a completion handler signature of: // // void(boost::system::error_code error, std::size n) // // This differs from our operation's signature in that it is also passed // the number of bytes transferred as an argument of type std::size_t. We // will adapt our completion handler to async_write's completion handler // signature by using std::bind, which drops the additional argument. // // However, it is essential to the correctness of our composed operation // that we preserve the executor of the user-supplied completion handler. // The std::bind function will not do this for us, so we must do this by // first obtaining the completion handler's associated executor (defaulting // to the I/O executor - in this case the executor of the socket - if the // completion handler does not have its own) ... auto executor = boost::asio::get_associated_executor( completion_handler, socket.get_executor()); // ... and then binding this executor to our adapted completion handler // using the boost::asio::bind_executor function. boost::asio::async_write(socket, boost::asio::buffer(message, std::strlen(message)), boost::asio::bind_executor(executor, std::bind(std::forward<CompletionHandler>( completion_handler), std::placeholders::_1))); }
auto async_write_messages(tcp::socket& socket, const T& message, std::size_t repeat_count, CompletionToken&& token) // The return type of the initiating function is deduced from the combination // of CompletionToken type and the completion handler's signature. When the // completion token is a simple callback, the return type is always void. // In this example, when the completion token is boost::asio::yield_context // (used for stackful coroutines) the return type would be also be void, as // there is no non-error argument to the completion handler. When the // completion token is boost::asio::use_future it would be std::future<void>. // // In C++14 we can omit the return type as it is automatically deduced from // the return type of boost::asio::async_initiate. { // Encode the message and copy it into an allocated buffer. The buffer will // be maintained for the lifetime of the composed asynchronous operation. std::ostringstream os; os << message; std::unique_ptr<std::string> encoded_message(new std::string(os.str())); // Create a steady_timer to be used for the delay between messages. std::unique_ptr<boost::asio::steady_timer> delay_timer( new boost::asio::steady_timer(socket.get_executor())); // To manage the cycle between the multiple underlying asychronous // operations, our implementation is a state machine. enum { starting, waiting, writing }; // The boost::asio::async_compose function takes: // // - our asynchronous operation implementation, // - the completion token, // - the completion handler signature, and // - any I/O objects (or executors) used by the operation // // It then wraps our implementation, which is implemented here as a state // machine in a lambda, in an intermediate completion handler that meets the // requirements of a conforming asynchronous operation. This includes // tracking outstanding work against the I/O executors associated with the // operation (in this example, this is the socket's executor). // // The first argument to our lambda is a reference to the enclosing // intermediate completion handler. This intermediate completion handler is // provided for us by the boost::asio::async_compose function, and takes care // of all the details required to implement a conforming asynchronous // operation. When calling an underlying asynchronous operation, we pass it // this enclosing intermediate completion handler as the completion token. // // All arguments to our lambda after the first must be defaulted to allow the // state machine to be started, as well as to allow the completion handler to // match the completion signature of both the async_write and // steady_timer::async_wait operations. return boost::asio::async_compose< CompletionToken, void(boost::system::error_code)>( [ // The implementation holds a reference to the socket as it is used for // multiple async_write operations. &socket, // The allocated buffer for the encoded message. The std::unique_ptr // smart pointer is move-only, and as a consequence our lambda // implementation is also move-only. encoded_message = std::move(encoded_message), // The repeat count remaining. repeat_count, // A steady timer used for introducing a delay. delay_timer = std::move(delay_timer), // To manage the cycle between the multiple underlying asychronous // operations, our implementation is a state machine. state = starting ] ( auto& self, const boost::system::error_code& error = {}, std::size_t = 0 ) mutable { if (!error) { switch (state) { case starting: case writing: if (repeat_count > 0) { --repeat_count; state = waiting; delay_timer->expires_after(std::chrono::seconds(1)); delay_timer->async_wait(std::move(self)); return; // Composed operation not yet complete. } break; // Composed operation complete, continue below. case waiting: state = writing; boost::asio::async_write(socket, boost::asio::buffer(*encoded_message), std::move(self)); return; // Composed operation not yet complete. } } // This point is reached only on completion of the entire composed // operation. // Deallocate the encoded message and delay timer before calling the // user-supplied completion handler. encoded_message.reset(); delay_timer.reset(); // Call the user-supplied handler with the result of the operation. self.complete(error); }, token, socket); }
void operator()(CompletionHandler&& completion_handler, tcp::socket& socket, std::unique_ptr<std::string> encoded_message, std::size_t repeat_count, std::unique_ptr<boost::asio::steady_timer> delay_timer) const { // In this example, the composed operation's intermediate completion // handler is implemented as a hand-crafted function object. struct intermediate_completion_handler { // The intermediate completion handler holds a reference to the socket as // it is used for multiple async_write operations, as well as for // obtaining the I/O executor (see get_executor below). tcp::socket& socket_; // The allocated buffer for the encoded message. The std::unique_ptr // smart pointer is move-only, and as a consequence our intermediate // completion handler is also move-only. std::unique_ptr<std::string> encoded_message_; // The repeat count remaining. std::size_t repeat_count_; // A steady timer used for introducing a delay. std::unique_ptr<boost::asio::steady_timer> delay_timer_; // To manage the cycle between the multiple underlying asychronous // operations, our intermediate completion handler is implemented as a // state machine. enum { starting, waiting, writing } state_; // As our composed operation performs multiple underlying I/O operations, // we should maintain a work object against the I/O executor. This tells // the I/O executor that there is still more work to come in the future. boost::asio::executor_work_guard<tcp::socket::executor_type> io_work_; // The user-supplied completion handler, called once only on completion // of the entire composed operation. typename std::decay<CompletionHandler>::type handler_; // By having a default value for the second argument, this function call // operator matches the completion signature of both the async_write and // steady_timer::async_wait operations. void operator()(const boost::system::error_code& error, std::size_t = 0) { if (!error) { switch (state_) { case starting: case writing: if (repeat_count_ > 0) { --repeat_count_; state_ = waiting; delay_timer_->expires_after(std::chrono::seconds(1)); delay_timer_->async_wait(std::move(*this)); return; // Composed operation not yet complete. } break; // Composed operation complete, continue below. case waiting: state_ = writing; boost::asio::async_write(socket_, boost::asio::buffer(*encoded_message_), std::move(*this)); return; // Composed operation not yet complete. } } // This point is reached only on completion of the entire composed // operation. // We no longer have any future work coming for the I/O executor. io_work_.reset(); // Deallocate the encoded message before calling the user-supplied // completion handler. encoded_message_.reset(); // Call the user-supplied handler with the result of the operation. handler_(error); } // It is essential to the correctness of our composed operation that we // preserve the executor of the user-supplied completion handler. With a // hand-crafted function object we can do this by defining a nested type // executor_type and member function get_executor. These obtain the // completion handler's associated executor, and default to the I/O // executor - in this case the executor of the socket - if the completion // handler does not have its own. using executor_type = boost::asio::associated_executor_t< typename std::decay<CompletionHandler>::type, tcp::socket::executor_type>; executor_type get_executor() const noexcept { return boost::asio::get_associated_executor( handler_, socket_.get_executor()); } // Although not necessary for correctness, we may also preserve the // allocator of the user-supplied completion handler. This is achieved by // defining a nested type allocator_type and member function // get_allocator. These obtain the completion handler's associated // allocator, and default to std::allocator<void> if the completion // handler does not have its own. using allocator_type = boost::asio::associated_allocator_t< typename std::decay<CompletionHandler>::type, std::allocator<void>>; allocator_type get_allocator() const noexcept { return boost::asio::get_associated_allocator( handler_, std::allocator<void>{}); } }; // Initiate the underlying async_write operation using our intermediate // completion handler. auto encoded_message_buffer = boost::asio::buffer(*encoded_message); boost::asio::async_write(socket, encoded_message_buffer, intermediate_completion_handler{ socket, std::move(encoded_message), repeat_count, std::move(delay_timer), intermediate_completion_handler::starting, boost::asio::make_work_guard(socket.get_executor()), std::forward<CompletionHandler>(completion_handler)}); }