SEXP addNeighborhoodToImageHelper( SEXP r_antsimage, SEXP r_center, SEXP r_rad, SEXP r_vec) { typedef typename ImageType::Pointer ImagePointerType; const unsigned int ImageDimension = ImageType::ImageDimension; typedef float PixelType; typename ImageType::Pointer image = Rcpp::as< ImagePointerType >( r_antsimage ); Rcpp::NumericVector center( r_center ); Rcpp::NumericVector rad( r_rad ); Rcpp::NumericVector intvec( r_vec ); if ( center.size() != ImageDimension ) Rcpp::stop("addNeighborhoodToImageHelper dim error."); typename itk::NeighborhoodIterator<ImageType>::SizeType nSize; typename ImageType::IndexType ind; ind.Fill( 0 ); for ( unsigned int i=0; i<ImageDimension; i++ ) { nSize[i] = rad[i]; ind[i] = center[i]; // R coords to ITK } itk::NeighborhoodIterator<ImageType> nit( nSize, image, image->GetLargestPossibleRegion() ) ; // for each location in nitSearch, compute the correlation // of the intvec with the nit neighborhood nit.SetLocation( ind ); for( unsigned int i = 0; i < nit.Size(); i++ ) { typename ImageType::IndexType ind2 = nit.GetIndex(i); PixelType lval = image->GetPixel( ind2 ); image->SetPixel( ind2, lval + intvec[i] ); } return 0; }
SEXP eigenanatomyCppHelper( NumericMatrix X, SEXP r_mask, RealType sparseness, IntType nvecs, IntType its, IntType cthresh, RealType z, RealType smooth, // NumericMatrix initializationMatrix, Rcpp::List initializationList, IntType covering, RealType ell1, IntType verbose, IntType powerit, RealType priorWeight ) { enum { Dimension = ImageType::ImageDimension }; typename ImageType::RegionType region; typedef typename ImageType::PixelType PixelType; typedef typename ImageType::Pointer ImagePointerType; typedef double Scalar; typedef itk::ants::antsSCCANObject<ImageType, Scalar> SCCANType; typedef typename SCCANType::MatrixType vMatrix; typename SCCANType::Pointer sccanobj = SCCANType::New(); typename ImageType::Pointer mask = Rcpp::as<ImagePointerType>( r_mask ); bool maskisnull = mask.IsNull(); // deal with the initializationList, if any unsigned int nImages = initializationList.size(); if ( ( nImages > 0 ) && ( !maskisnull ) ) { itk::ImageRegionIteratorWithIndex<ImageType> it( mask, mask->GetLargestPossibleRegion() ); vMatrix priorROIMat( nImages , X.cols() ); priorROIMat.fill( 0 ); for ( unsigned int i = 0; i < nImages; i++ ) { typename ImageType::Pointer init = Rcpp::as<ImagePointerType>( initializationList[i] ); unsigned long ct = 0; it.GoToBegin(); while ( !it.IsAtEnd() ) { PixelType pix = it.Get(); if ( pix >= 0.5 ) { pix = init->GetPixel( it.GetIndex() ); priorROIMat( i, ct ) = pix; ct++; } ++it; } } sccanobj->SetMatrixPriorROI( priorROIMat ); nvecs = nImages; } sccanobj->SetPriorWeight( priorWeight ); sccanobj->SetLambda( priorWeight ); // cast hack from Rcpp type to sccan type std::vector<double> xdat = Rcpp::as< std::vector<double> >( X ); const double* _xdata = &xdat[0]; vMatrix vnlX( _xdata , X.cols(), X.rows() ); vnlX = vnlX.transpose(); sccanobj->SetGetSmall( false ); vMatrix priorROIMat; // sccanobj->SetMatrixPriorROI( priorROIMat); // sccanobj->SetMatrixPriorROI2( priorROIMat ); sccanobj->SetCovering( covering ); sccanobj->SetSilent( ! verbose ); if( ell1 > 0 ) { sccanobj->SetUseL1( true ); } else { sccanobj->SetUseL1( false ); } sccanobj->SetGradStep( vnl_math_abs( ell1 ) ); sccanobj->SetMaximumNumberOfIterations( its ); sccanobj->SetRowSparseness( z ); sccanobj->SetSmoother( smooth ); if ( sparseness < 0 ) sccanobj->SetKeepPositiveP(false); sccanobj->SetSCCANFormulation( SCCANType::PQ ); sccanobj->SetFractionNonZeroP( fabs( sparseness ) ); sccanobj->SetMinClusterSizeP( cthresh ); sccanobj->SetMatrixP( vnlX ); // sccanobj->SetMatrixR( r ); // FIXME sccanobj->SetMaskImageP( mask ); RealType truecorr = 0; if( powerit == 1 ) { truecorr = sccanobj->SparseReconHome( nvecs ); } else if ( priorWeight > 1.e-12 ) truecorr = sccanobj->SparseReconPrior( nvecs, true ); else truecorr = sccanobj->SparseRecon(nvecs); /* else if( powerit != 0 ) { truecorr = sccanobj->SparseArnoldiSVD(nvecs); } else if( svd_option == 4 ) { truecorr = sccanobj->NetworkDecomposition( nvecs ); } else if( svd_option == 5 ) { truecorr = sccanobj->LASSO( nvecs ); } else if( svd_option == 2 ) { truecorr = sccanobj->CGSPCA(nvecs); // cgspca } else if( svd_option == 6 ) { truecorr = sccanobj->SparseRecon(nvecs); // sparse (default) } else if( svd_option == 7 ) { // sccanobj->SetPriorScaleMat( priorScaleMat); sccanobj->SetMatrixPriorROI( priorROIMat); sccanobj->SetFlagForSort(); sccanobj->SetLambda(sccanparser->Convert<double>( option->GetFunction( 0 )->GetParameter( 3 ) ) ); truecorr = sccanobj->SparseReconPrior(nvecs, true); // Prior } else { truecorr = sccanobj->SparseArnoldiSVDGreedy( nvecs ); // sparse (default) } */ // solutions should be much smaller so may not be a big deal to copy // FIXME - should not copy, should map memory vMatrix solV = sccanobj->GetVariatesP(); NumericMatrix eanatMat( solV.cols(), solV.rows() ); unsigned long rows = solV.rows(); for( unsigned long c = 0; c < solV.cols(); c++ ) { for( unsigned int r = 0; r < rows; r++ ) { eanatMat( c, r ) = solV( r, c ); } } vMatrix solU = sccanobj->GetMatrixU(); NumericMatrix eanatMatU( solU.rows(), solU.cols() ); rows = solU.rows(); for( unsigned long c = 0; c < solU.cols(); c++ ) { for( unsigned int r = 0; r < rows; r++ ) { eanatMatU( r, c) = solU( r, c); } } return( Rcpp::List::create( Rcpp::Named("eigenanatomyimages") = eanatMat, Rcpp::Named("umatrix") = eanatMatU, Rcpp::Named("varex") = truecorr ) ); }
SEXP sccanCppHelper( NumericMatrix X, NumericMatrix Y, SEXP r_maskx, SEXP r_masky, RealType sparsenessx, RealType sparsenessy, IntType nvecs, IntType its, IntType cthreshx, IntType cthreshy, RealType z, RealType smooth, Rcpp::List initializationListx, Rcpp::List initializationListy, IntType covering, RealType ell1, IntType verbose, RealType priorWeight ) { enum { Dimension = ImageType::ImageDimension }; typename ImageType::RegionType region; typedef typename ImageType::PixelType PixelType; typedef typename ImageType::Pointer ImagePointerType; typedef double Scalar; typedef itk::ants::antsSCCANObject<ImageType, Scalar> SCCANType; typedef typename SCCANType::MatrixType vMatrix; typename SCCANType::Pointer sccanobj = SCCANType::New(); typename ImageType::Pointer maskx = Rcpp::as<ImagePointerType>( r_maskx ); typename ImageType::Pointer masky = Rcpp::as<ImagePointerType>( r_masky ); bool maskxisnull = maskx.IsNull(); bool maskyisnull = masky.IsNull(); // deal with the initializationList, if any unsigned int nImagesx = initializationListx.size(); if ( ( nImagesx > 0 ) && ( !maskxisnull ) ) { itk::ImageRegionIteratorWithIndex<ImageType> it( maskx, maskx->GetLargestPossibleRegion() ); vMatrix priorROIMatx( nImagesx , X.cols() ); priorROIMatx.fill( 0 ); for ( unsigned int i = 0; i < nImagesx; i++ ) { typename ImageType::Pointer init = Rcpp::as<ImagePointerType>( initializationListx[i] ); unsigned long ct = 0; it.GoToBegin(); while ( !it.IsAtEnd() ) { PixelType pix = it.Get(); if ( pix >= 0.5 ) { pix = init->GetPixel( it.GetIndex() ); priorROIMatx( i, ct ) = pix; ct++; } ++it; } } sccanobj->SetMatrixPriorROI( priorROIMatx ); nvecs = nImagesx; } unsigned int nImagesy = initializationListy.size(); if ( ( nImagesy > 0 ) && ( !maskyisnull ) ) { itk::ImageRegionIteratorWithIndex<ImageType> it( masky, masky->GetLargestPossibleRegion() ); vMatrix priorROIMaty( nImagesy , Y.cols() ); priorROIMaty.fill( 0 ); for ( unsigned int i = 0; i < nImagesy; i++ ) { typename ImageType::Pointer init = Rcpp::as<ImagePointerType>( initializationListy[i] ); unsigned long ct = 0; it.GoToBegin(); while ( !it.IsAtEnd() ) { PixelType pix = it.Get(); if ( pix >= 0.5 ) { pix = init->GetPixel( it.GetIndex() ); priorROIMaty( i, ct ) = pix; ct++; } ++it; } } sccanobj->SetMatrixPriorROI2( priorROIMaty ); nvecs = nImagesy; } sccanobj->SetPriorWeight( priorWeight ); sccanobj->SetLambda( priorWeight ); // cast hack from Rcpp type to sccan type std::vector<double> xdat = Rcpp::as< std::vector<double> >( X ); const double* _xdata = &xdat[0]; vMatrix vnlX( _xdata , X.cols(), X.rows() ); vnlX = vnlX.transpose(); std::vector<double> ydat = Rcpp::as< std::vector<double> >( Y ); const double* _ydata = &ydat[0]; vMatrix vnlY( _ydata , Y.cols(), Y.rows() ); vnlY = vnlY.transpose(); // cast hack done sccanobj->SetGetSmall( false ); sccanobj->SetCovering( covering ); sccanobj->SetSilent( ! verbose ); if( ell1 > 0 ) { sccanobj->SetUseL1( true ); } else { sccanobj->SetUseL1( false ); } sccanobj->SetGradStep( vnl_math_abs( ell1 ) ); sccanobj->SetMaximumNumberOfIterations( its ); sccanobj->SetRowSparseness( z ); sccanobj->SetSmoother( smooth ); if ( sparsenessx < 0 ) sccanobj->SetKeepPositiveP(false); if ( sparsenessy < 0 ) sccanobj->SetKeepPositiveQ(false); sccanobj->SetSCCANFormulation( SCCANType::PQ ); sccanobj->SetFractionNonZeroP( fabs( sparsenessx ) ); sccanobj->SetFractionNonZeroQ( fabs( sparsenessy ) ); sccanobj->SetMinClusterSizeP( cthreshx ); sccanobj->SetMinClusterSizeQ( cthreshy ); sccanobj->SetMatrixP( vnlX ); sccanobj->SetMatrixQ( vnlY ); // sccanobj->SetMatrixR( r ); // FIXME sccanobj->SetMaskImageP( maskx ); sccanobj->SetMaskImageQ( masky ); sccanobj->SparsePartialArnoldiCCA( nvecs ); // FIXME - should not copy, should map memory vMatrix solP = sccanobj->GetVariatesP(); NumericMatrix eanatMatp( solP.cols(), solP.rows() ); unsigned long rows = solP.rows(); for( unsigned long c = 0; c < solP.cols(); c++ ) { for( unsigned int r = 0; r < rows; r++ ) { eanatMatp( c, r ) = solP( r, c ); } } vMatrix solQ = sccanobj->GetVariatesQ(); NumericMatrix eanatMatq( solQ.cols(), solQ.rows() ); rows = solQ.rows(); for( unsigned long c = 0; c < solQ.cols(); c++ ) { for( unsigned int r = 0; r < rows; r++ ) { eanatMatq( c, r ) = solQ( r, c ); } } return( Rcpp::List::create( Rcpp::Named("eig1") = eanatMatp, Rcpp::Named("eig2") = eanatMatq ) ); }
SEXP jointLabelFusionNeighborhoodSearchHelper( SEXP r_intvec, SEXP r_center, unsigned int rad, unsigned int radSearch, SEXP r_antsimage, SEXP r_antsimageseg) { unsigned int segval = 0; typedef typename ImageType::Pointer ImagePointerType; const unsigned int ImageDimension = ImageType::ImageDimension; typedef float PixelType; typename ImageType::Pointer image = Rcpp::as< ImagePointerType >( r_antsimage ); typename ImageType::Pointer imageseg = Rcpp::as< ImagePointerType >( r_antsimageseg ); Rcpp::NumericVector intvec( r_intvec ); Rcpp::NumericVector outvec = Rcpp::NumericVector( intvec.size(), Rcpp::NumericVector::get_na() ); Rcpp::NumericVector bestvec = Rcpp::NumericVector( intvec.size(), Rcpp::NumericVector::get_na() ); Rcpp::NumericVector outsegvec = Rcpp::NumericVector( intvec.size(), Rcpp::NumericVector::get_na() ); Rcpp::NumericVector bestsegvec = Rcpp::NumericVector( intvec.size(), Rcpp::NumericVector::get_na() ); Rcpp::NumericVector center( r_center ); if ( center.size() != ImageDimension ) Rcpp::stop("jointLabelFusionNeighborhoodSearchHelper dim error."); typename itk::NeighborhoodIterator<ImageType>::SizeType nSize; typename itk::NeighborhoodIterator<ImageType>::SizeType nSizeSearch; typename ImageType::IndexType ind; ind.Fill( 0 ); for ( unsigned int i=0; i<ImageDimension; i++ ) { nSize[i] = rad; nSizeSearch[i] = radSearch; ind[i] = center[i]; // R coords to ITK } itk::NeighborhoodIterator<ImageType> nit( nSize, image, image->GetLargestPossibleRegion() ) ; itk::NeighborhoodIterator<ImageType> nitSearch( nSizeSearch, image, image->GetLargestPossibleRegion() ) ; // for each location in nitSearch, compute the correlation // of the intvec with the nit neighborhood nitSearch.SetLocation( ind ); PixelType bestcor = 1.e11; PixelType bestsd = 0; PixelType bestmean = 0; for( unsigned int i = 0; i < nitSearch.Size(); i++ ) { typename ImageType::IndexType ind2 = nitSearch.GetIndex(i); nit.SetLocation( ind2 ); PixelType outmean = 0; PixelType outsd = 0; PixelType inmean = 0; PixelType insd = 0; for ( unsigned int i=0; i < intvec.size(); i++ ) { PixelType pix = image->GetPixel( nit.GetIndex(i) ); outvec[i] = pix; outsegvec[i] = imageseg->GetPixel( nit.GetIndex(i) ); outmean += pix; inmean += intvec[i]; } outmean /= ( static_cast<PixelType>(intvec.size()) ); inmean /= ( static_cast<PixelType>(intvec.size()) ); for ( unsigned int i=0; i < intvec.size(); i++ ) { // should use recursive formula in above loop outsd += ( outvec[i] - outmean ) * ( outvec[i] - outmean ); insd += ( intvec[i] - inmean ) * ( intvec[i] - inmean ); } outsd = sqrt( outsd ); insd = sqrt( insd ); PixelType sum_uv = 0; PixelType sum_psearch = 0; PixelType ssq_psearch = 0; unsigned int n = intvec.size(); for(unsigned int i = 0; i < n; i++) { PixelType v = intvec[i]; PixelType u = outvec[i]; sum_psearch += u; ssq_psearch += u * u; sum_uv += u * v; } PixelType var_u_unnorm = ssq_psearch - sum_psearch * sum_psearch / n; if(var_u_unnorm < 1.0e-6) var_u_unnorm = 1.0e-6; PixelType locor = 0; if ( sum_uv > 0 ) locor = ( -1.0 * (sum_uv * sum_uv) / var_u_unnorm ); else locor = ( sum_uv * sum_uv ) / var_u_unnorm; // - (\Sum u_i v_i)^2 / z, where z = sigma_v^2 * (n-1) // locor = locor / ( insd * outsd ); if ( locor < bestcor ) { segval = imageseg->GetPixel( ind2 ); for ( unsigned int i=0; i < intvec.size(); i++ ) { bestvec[i] = outvec[i]; bestsegvec[i] = outsegvec[i]; } bestcor = locor; bestsd = outsd; bestmean = outmean; } } return Rcpp::List::create( Rcpp::Named("segval") = segval, Rcpp::Named("values") = bestvec, Rcpp::Named("bestmean") = bestmean, Rcpp::Named("bestsd") = bestsd, Rcpp::Named("bestcor") = bestcor, Rcpp::Named("bestsegvec") = bestsegvec ); }