double antsImageMIHelper( typename itk::Image< float , Dimension >::Pointer image1, typename itk::Image< float , Dimension >::Pointer image2 ) { typedef itk::Image< float , Dimension > ImageType; if( image1.IsNotNull() & image2.IsNotNull() ) { double mi = 1; typedef itk::MattesMutualInformationImageToImageMetricv4 <ImageType, ImageType, ImageType> MetricType; unsigned int bins = 32; typename MetricType::Pointer metric = MetricType::New(); metric->SetFixedImage( image1 ); metric->SetMovingImage( image2 ); metric->SetNumberOfHistogramBins( bins ); metric->Initialize(); mi = metric->GetValue(); return mi; } else { return 1; } }
template<class FixedImageType,class MovingImageType,class TransformType> void RegisterPair(const typename FixedImageType::Pointer & fixedImage, const typename MovingImageType::Pointer & movingImage, typename TransformType::Pointer & transform ){ typedef itk::LogImageAdaptor<FixedImageType,float> LogFixedImageType; typedef itk::CenteredTransformInitializer< TransformType,LogFixedImageType,MovingImageType> TransformInitializerType; typename TransformInitializerType::Pointer initializer = TransformInitializerType::New(); typename LogFixedImageType::Pointer logAdaptor=LogFixedImageType::New(); logAdaptor->SetImage(fixedImage); initializer->SetTransform( transform ); initializer->SetFixedImage( logAdaptor ); initializer->SetMovingImage( movingImage); initializer->MomentsOn(); initializer->InitializeTransform(); // Optimizer Type typedef itk::VersorRigid3DTransformOptimizer OptimizerType; //typedef itk::ConjugateGradientOptimizer OptimizerType; // Metric Type typedef //itk::NormalizedMutualInformationHistogramImageToImageMetric< FixedImageType, MovingImageType > //itk::MutualInformationImageToImageMetric<FixedImageType,MovingImageType > //itk::GradientDifferenceImageToImageMetric<FixedImageType,MovingImageType> itk::NormalizedCorrelationImageToImageMetric< FixedImageType, MovingImageType > // itk::KullbackLeiblerCompareHistogramImageToImageMetric< FixedImageType, MovingImageType > //itk::MattesMutualInformationImageToImageMetric<FixedImageType,MovingImageType> //itk::MutualInformationHistogramImageToImageMetric<FixedImageType,MovingImageType> //itk::MeanSquaresImageToImageMetric< FixedImageType, MovingImageType > MetricType; // Interpolation technique typedef itk:: LinearInterpolateImageFunction< MovingImageType, double > InterpolatorType; // Registration Method typedef itk::ImageRegistrationMethod< FixedImageType, MovingImageType > RegistrationType; typename MetricType::Pointer metric = MetricType::New(); typename OptimizerType::Pointer optimizer = OptimizerType::New(); typename InterpolatorType::Pointer interpolator = InterpolatorType::New(); typename RegistrationType::Pointer registration = RegistrationType::New(); /****************************************************************** * Set up the optimizer. ******************************************************************/ typedef typename TransformType::VersorType VersorType; typedef typename VersorType::VectorType VectorType; VersorType rotation; VectorType axis; axis[0] = 0.0; axis[1] = 0.0; axis[2] = 1.0; const double angle = 0; rotation.Set( axis, angle ); transform->SetRotation( rotation ); registration->SetInitialTransformParameters( transform->GetParameters() ); // Software Guide : EndCodeSnippet typedef OptimizerType::ScalesType OptimizerScalesType; OptimizerScalesType optimizerScales( transform->GetNumberOfParameters() ); const double translationScale = 1.0 / 1000.0; optimizerScales[0] = 1.0; optimizerScales[1] = 1.0; optimizerScales[2] = 1.0; optimizerScales[3] = translationScale; optimizerScales[4] = translationScale; optimizerScales[5] = translationScale; optimizer->SetScales( optimizerScales ); //optimizer->SetMaximumStepLength( 0.1 ); optimizer->SetMaximumStepLength( 1); optimizer->SetMinimumStepLength( 0.000000001 ); optimizer->SetNumberOfIterations( 10 ); optimizer->SetMinimize(true); /****************************************************************** * Set up the metric. ******************************************************************/ //metric->SetMovingImageStandardDeviation( 1.0 ); //metric->SetFixedImageStandardDeviation( 1.0 ); //metric->SetNumberOfSpatialSamples( 50000000 ); metric->SetUseAllPixels(true); //metric->SetFixedImageRegion( fixedImage->GetBufferedRegion() ); /****************************************************************** * Set up the registrator. ******************************************************************/ // connect up the components registration->SetMetric( metric ); registration->SetOptimizer( optimizer ); registration->SetTransform( transform ); registration->SetFixedImage( fixedImage ); registration->SetMovingImage( movingImage ); registration->SetInterpolator( interpolator ); // transform->SetIdentity(); // // set initial parameters to identity // typename RegistrationType::ParametersType initialParameters( // transform->GetNumberOfParameters() ); // // initialParameters.Fill( 0.0 ); // //initialParameters[3] = 1.0; CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New(); optimizer->AddObserver( itk::IterationEvent(), observer ); try { registration->Update(); std::cout << "Optimizer stop condition: " << registration->GetOptimizer()->GetStopConditionDescription() << std::endl; } catch( itk::ExceptionObject & err ) { std::cerr << "ExceptionObject caught !" << std::endl; std::cerr << err << std::endl; //return EXIT_FAILURE; } OptimizerType::ParametersType finalParameters = registration->GetLastTransformParameters(); const double versorX = finalParameters[0]; const double versorY = finalParameters[1]; const double versorZ = finalParameters[2]; const double finalTranslationX = finalParameters[3]; const double finalTranslationY = finalParameters[4]; const double finalTranslationZ = finalParameters[5]; const unsigned int numberOfIterations = optimizer->GetCurrentIteration(); const double bestValue = optimizer->GetValue(); // Print out results // std::cout << std::endl << std::endl; std::cout << "Result = " << std::endl; std::cout << " versor X = " << versorX << std::endl; std::cout << " versor Y = " << versorY << std::endl; std::cout << " versor Z = " << versorZ << std::endl; std::cout << " Translation X = " << finalTranslationX << std::endl; std::cout << " Translation Y = " << finalTranslationY << std::endl; std::cout << " Translation Z = " << finalTranslationZ << std::endl; std::cout << " Iterations = " << numberOfIterations << std::endl; std::cout << " Metric value = " << bestValue << std::endl; }
void BSplineRegistration::GenerateData2( itk::Image<TPixel, VImageDimension>* itkImage1) { std::cout << "start bspline registration" << std::endl; // Typedefs typedef typename itk::Image< TPixel, VImageDimension > InternalImageType; typedef typename itk::Vector< float, VImageDimension > VectorPixelType; typedef typename itk::Image< VectorPixelType, VImageDimension > DeformationFieldType; typedef itk::BSplineDeformableTransform< double, VImageDimension, 3 > TransformType; typedef typename TransformType::ParametersType ParametersType; //typedef itk::LBFGSOptimizer OptimizerType; typedef itk::SingleValuedNonLinearOptimizer OptimizerType; //typedef itk::SingleValuedCostFunction MetricType; typedef itk::MattesMutualInformationImageToImageMetric< InternalImageType, InternalImageType > MetricType; typedef itk::MeanSquaresImageToImageMetric< InternalImageType, InternalImageType > MetricTypeMS; typedef itk::LinearInterpolateImageFunction< InternalImageType, double > InterpolatorType; typedef itk::ImageRegistrationMethod< InternalImageType, InternalImageType > RegistrationType; typedef typename itk::WarpImageFilter< InternalImageType, InternalImageType, DeformationFieldType > WarperType; typedef typename TransformType::SpacingType SpacingType; typedef typename TransformType::OriginType OriginType; typedef itk::ResampleImageFilter< InternalImageType, InternalImageType > ResampleFilterType; typedef itk::Image< TPixel, VImageDimension > OutputImageType; // Sample new image with the same image type as the fixed image typedef itk::CastImageFilter< InternalImageType, InternalImageType > CastFilterType; typedef itk::Vector< float, VImageDimension > VectorType; typedef itk::Image< VectorType, VImageDimension > DeformationFieldType; typedef itk::BSplineDeformableTransformInitializer < TransformType, InternalImageType > InitializerType; typename InterpolatorType::Pointer interpolator = InterpolatorType::New(); typename RegistrationType::Pointer registration = RegistrationType::New(); typename InitializerType::Pointer initializer = InitializerType::New(); typename TransformType::Pointer transform = TransformType::New(); if(m_Metric==0 || m_Metric==1) { typename MetricType::Pointer metric = MetricType::New(); metric->SetNumberOfHistogramBins( 32); metric->SetNumberOfSpatialSamples(90000); registration->SetMetric( metric ); } else{ typename MetricTypeMS::Pointer metric = MetricTypeMS::New(); registration->SetMetric( metric ); } typename OptimizerFactory::Pointer optFac = OptimizerFactory::New(); optFac->SetOptimizerParameters(m_OptimizerParameters); optFac->SetNumberOfTransformParameters(transform->GetNumberOfParameters()); OptimizerType::Pointer optimizer = optFac->GetOptimizer(); optimizer->AddObserver(itk::AnyEvent(), m_Observer); //typedef mitk::MetricFactory <TPixel, VImageDimension> MetricFactoryType; //typename MetricFactoryType::Pointer metricFac = MetricFactoryType::New(); //metricFac->SetMetricParameters(m_MetricParameters); ////MetricType::Pointer metric = metricFac->GetMetric(); typename InternalImageType::Pointer fixedImage = InternalImageType::New(); mitk::CastToItkImage(m_ReferenceImage, fixedImage); typename InternalImageType::Pointer movingImage = itkImage1; typename InternalImageType::RegionType fixedRegion = fixedImage->GetBufferedRegion(); typename InternalImageType::RegionType movingRegion = movingImage->GetBufferedRegion(); if(m_MatchHistograms) { typedef itk::RescaleIntensityImageFilter<InternalImageType,InternalImageType> FilterType; typedef itk::HistogramMatchingImageFilter<InternalImageType,InternalImageType> HEFilterType; typename FilterType::Pointer inputRescaleFilter = FilterType::New(); typename FilterType::Pointer referenceRescaleFilter = FilterType::New(); referenceRescaleFilter->SetInput(fixedImage); inputRescaleFilter->SetInput(movingImage); TPixel desiredMinimum = 0; TPixel desiredMaximum = 255; referenceRescaleFilter->SetOutputMinimum( desiredMinimum ); referenceRescaleFilter->SetOutputMaximum( desiredMaximum ); referenceRescaleFilter->UpdateLargestPossibleRegion(); inputRescaleFilter->SetOutputMinimum( desiredMinimum ); inputRescaleFilter->SetOutputMaximum( desiredMaximum ); inputRescaleFilter->UpdateLargestPossibleRegion(); // Histogram match the images typename HEFilterType::Pointer intensityEqualizeFilter = HEFilterType::New(); intensityEqualizeFilter->SetReferenceImage( inputRescaleFilter->GetOutput() ); intensityEqualizeFilter->SetInput( referenceRescaleFilter->GetOutput() ); intensityEqualizeFilter->SetNumberOfHistogramLevels( 64 ); intensityEqualizeFilter->SetNumberOfMatchPoints( 12 ); intensityEqualizeFilter->ThresholdAtMeanIntensityOn(); intensityEqualizeFilter->Update(); //fixedImage = referenceRescaleFilter->GetOutput(); //movingImage = IntensityEqualizeFilter->GetOutput(); fixedImage = intensityEqualizeFilter->GetOutput(); movingImage = inputRescaleFilter->GetOutput(); } // registration->SetOptimizer( optimizer ); registration->SetInterpolator( interpolator ); registration->SetFixedImage( fixedImage ); registration->SetMovingImage( movingImage ); registration->SetFixedImageRegion(fixedRegion ); initializer->SetTransform(transform); initializer->SetImage(fixedImage); initializer->SetNumberOfGridNodesInsideTheImage( m_NumberOfGridPoints ); initializer->InitializeTransform(); registration->SetTransform( transform ); const unsigned int numberOfParameters = transform->GetNumberOfParameters(); typename itk::BSplineDeformableTransform< double, VImageDimension, 3 >::ParametersType parameters; parameters.set_size(numberOfParameters); parameters.Fill( 0.0 ); transform->SetParameters( parameters ); // We now pass the parameters of the current transform as the initial // parameters to be used when the registration process starts. registration->SetInitialTransformParameters( transform->GetParameters() ); std::cout << "Intial Parameters = " << std::endl; std::cout << transform->GetParameters() << std::endl; std::cout << std::endl << "Starting Registration" << std::endl; try { double tstart(clock()); registration->StartRegistration(); double time = clock() - tstart; time = time / CLOCKS_PER_SEC; MITK_INFO << "Registration time: " << time; } catch( itk::ExceptionObject & err ) { std::cerr << "ExceptionObject caught !" << std::endl; std::cerr << err << std::endl; } typename OptimizerType::ParametersType finalParameters = registration->GetLastTransformParameters(); std::cout << "Last Transform Parameters" << std::endl; std::cout << finalParameters << std::endl; transform->SetParameters( finalParameters ); /* ResampleFilterType::Pointer resampler = ResampleFilterType::New(); resampler->SetTransform( transform ); resampler->SetInput( movingImage ); resampler->SetSize( fixedImage->GetLargestPossibleRegion().GetSize() ); resampler->SetOutputOrigin( fixedImage->GetOrigin() ); resampler->SetOutputSpacing( fixedImage->GetSpacing() ); resampler->SetOutputDirection( fixedImage->GetDirection() ); resampler->SetDefaultPixelValue( 100 ); resampler->SetInterpolator( interpolator); resampler->Update();*/ // Generate deformation field typename DeformationFieldType::Pointer field = DeformationFieldType::New(); field->SetRegions( movingRegion ); field->SetOrigin( movingImage->GetOrigin() ); field->SetSpacing( movingImage->GetSpacing() ); field->SetDirection( movingImage->GetDirection() ); field->Allocate(); typedef itk::ImageRegionIterator< DeformationFieldType > FieldIterator; FieldIterator fi( field, movingRegion ); fi.GoToBegin(); typename TransformType::InputPointType fixedPoint; typename TransformType::OutputPointType movingPoint; typename DeformationFieldType::IndexType index; VectorType displacement; while( ! fi.IsAtEnd() ) { index = fi.GetIndex(); field->TransformIndexToPhysicalPoint( index, fixedPoint ); movingPoint = transform->TransformPoint( fixedPoint ); displacement = movingPoint - fixedPoint; fi.Set( displacement ); ++fi; } // Use the deformation field to warp the moving image typename WarperType::Pointer warper = WarperType::New(); warper->SetInput( movingImage ); warper->SetInterpolator( interpolator ); warper->SetOutputSpacing( movingImage->GetSpacing() ); warper->SetOutputOrigin( movingImage->GetOrigin() ); warper->SetOutputDirection( movingImage->GetDirection() ); warper->SetDeformationField( field ); warper->Update(); typename InternalImageType::Pointer result = warper->GetOutput(); if(m_UpdateInputImage) { Image::Pointer outputImage = this->GetOutput(); mitk::CastToMitkImage( result, outputImage ); } // Save the deformationfield resulting from the registration if(m_SaveDeformationField) { typedef itk::ImageFileWriter< DeformationFieldType > FieldWriterType; typename FieldWriterType::Pointer fieldWriter = FieldWriterType::New(); fieldWriter->SetInput( field ); fieldWriter->SetFileName( m_DeformationFileName ); try { fieldWriter->Update(); } catch( itk::ExceptionObject & excp ) { std::cerr << "Exception thrown " << std::endl; std::cerr << excp << std::endl; //return EXIT_FAILURE; } } }
SEXP invariantSimilarityHelper( typename itk::Image< float , ImageDimension >::Pointer image1, typename itk::Image< float , ImageDimension >::Pointer image2, SEXP r_thetas, SEXP r_lsits, SEXP r_WM, SEXP r_scale, SEXP r_doreflection, SEXP r_txfn ) { unsigned int mibins = 20; unsigned int localSearchIterations = Rcpp::as< unsigned int >( r_lsits ) ; std::string whichMetric = Rcpp::as< std::string >( r_WM ); std::string txfn = Rcpp::as< std::string >( r_txfn ); bool useprincaxis = true; typedef typename itk::ImageMaskSpatialObject<ImageDimension>::ImageType maskimagetype; typename maskimagetype::Pointer mask = ITK_NULLPTR; Rcpp::NumericVector thetas( r_thetas ); Rcpp::NumericVector vector_r( r_thetas ) ; Rcpp::IntegerVector dims( 1 ); Rcpp::IntegerVector doReflection( r_doreflection ); unsigned int vecsize = thetas.size(); dims[0]=0; typedef float PixelType; typedef double RealType; RealType bestscale = Rcpp::as< RealType >( r_scale ) ; typedef itk::Image< PixelType , ImageDimension > ImageType; if( image1.IsNotNull() & image2.IsNotNull() ) { typedef typename itk::ImageMomentsCalculator<ImageType> ImageCalculatorType; typedef itk::AffineTransform<RealType, ImageDimension> AffineType0; typedef itk::AffineTransform<RealType, ImageDimension> AffineType; typedef typename ImageCalculatorType::MatrixType MatrixType; typedef itk::Vector<float, ImageDimension> VectorType; VectorType ccg1; VectorType cpm1; MatrixType cpa1; VectorType ccg2; VectorType cpm2; MatrixType cpa2; typename ImageCalculatorType::Pointer calculator1 = ImageCalculatorType::New(); typename ImageCalculatorType::Pointer calculator2 = ImageCalculatorType::New(); calculator1->SetImage( image1 ); calculator2->SetImage( image2 ); typename ImageCalculatorType::VectorType fixed_center; fixed_center.Fill(0); typename ImageCalculatorType::VectorType moving_center; moving_center.Fill(0); try { calculator1->Compute(); fixed_center = calculator1->GetCenterOfGravity(); ccg1 = calculator1->GetCenterOfGravity(); cpm1 = calculator1->GetPrincipalMoments(); cpa1 = calculator1->GetPrincipalAxes(); try { calculator2->Compute(); moving_center = calculator2->GetCenterOfGravity(); ccg2 = calculator2->GetCenterOfGravity(); cpm2 = calculator2->GetPrincipalMoments(); cpa2 = calculator2->GetPrincipalAxes(); } catch( ... ) { fixed_center.Fill(0); } } catch( ... ) { // Rcpp::Rcerr << " zero image1 error "; } if ( vnl_math_abs( bestscale - 1.0 ) < 1.e-6 ) { RealType volelt1 = 1; RealType volelt2 = 1; for ( unsigned int d=0; d<ImageDimension; d++) { volelt1 *= image1->GetSpacing()[d]; volelt2 *= image2->GetSpacing()[d]; } bestscale = ( calculator2->GetTotalMass() * volelt2 )/ ( calculator1->GetTotalMass() * volelt1 ); RealType powlev = 1.0 / static_cast<RealType>(ImageDimension); bestscale = vcl_pow( bestscale , powlev ); } unsigned int eigind1 = 1; unsigned int eigind2 = 1; if( ImageDimension == 3 ) { eigind1 = 2; } typedef vnl_vector<RealType> EVectorType; typedef vnl_matrix<RealType> EMatrixType; EVectorType evec1_2ndary = cpa1.GetVnlMatrix().get_row( eigind2 ); EVectorType evec1_primary = cpa1.GetVnlMatrix().get_row( eigind1 ); EVectorType evec2_2ndary = cpa2.GetVnlMatrix().get_row( eigind2 ); EVectorType evec2_primary = cpa2.GetVnlMatrix().get_row( eigind1 ); /** Solve Wahba's problem http://en.wikipedia.org/wiki/Wahba%27s_problem */ EMatrixType B = outer_product( evec2_primary, evec1_primary ); if( ImageDimension == 3 ) { B = outer_product( evec2_2ndary, evec1_2ndary ) + outer_product( evec2_primary, evec1_primary ); } vnl_svd<RealType> wahba( B ); vnl_matrix<RealType> A_solution = wahba.V() * wahba.U().transpose(); A_solution = vnl_inverse( A_solution ); RealType det = vnl_determinant( A_solution ); if( ( det < 0 ) ) { vnl_matrix<RealType> id( A_solution ); id.set_identity(); for( unsigned int i = 0; i < ImageDimension; i++ ) { if( A_solution( i, i ) < 0 ) { id( i, i ) = -1.0; } } A_solution = A_solution * id.transpose(); } if ( doReflection[0] == 1 || doReflection[0] == 3 ) { vnl_matrix<RealType> id( A_solution ); id.set_identity(); id = id - 2.0 * outer_product( evec2_primary , evec2_primary ); A_solution = A_solution * id; } if ( doReflection[0] > 1 ) { vnl_matrix<RealType> id( A_solution ); id.set_identity(); id = id - 2.0 * outer_product( evec1_primary , evec1_primary ); A_solution = A_solution * id; } typename AffineType::Pointer affine1 = AffineType::New(); typename AffineType::OffsetType trans = affine1->GetOffset(); itk::Point<RealType, ImageDimension> trans2; for( unsigned int i = 0; i < ImageDimension; i++ ) { trans[i] = moving_center[i] - fixed_center[i]; trans2[i] = fixed_center[i] * ( 1 ); } affine1->SetIdentity(); affine1->SetOffset( trans ); if( useprincaxis ) { affine1->SetMatrix( A_solution ); } affine1->SetCenter( trans2 ); if( ImageDimension > 3 ) { return EXIT_SUCCESS; } vnl_vector<RealType> evec_tert; if( ImageDimension == 3 ) { // try to rotate around tertiary and secondary axis evec_tert = vnl_cross_3d( evec1_primary, evec1_2ndary ); } if( ImageDimension == 2 ) { // try to rotate around tertiary and secondary axis evec_tert = evec1_2ndary; evec1_2ndary = evec1_primary; } itk::Vector<RealType, ImageDimension> axis2; itk::Vector<RealType, ImageDimension> axis1; for( unsigned int d = 0; d < ImageDimension; d++ ) { axis1[d] = evec_tert[d]; axis2[d] = evec1_2ndary[d]; } typename AffineType::Pointer simmer = AffineType::New(); simmer->SetIdentity(); simmer->SetCenter( trans2 ); simmer->SetOffset( trans ); typename AffineType0::Pointer affinesearch = AffineType0::New(); affinesearch->SetIdentity(); affinesearch->SetCenter( trans2 ); typedef itk::MultiStartOptimizerv4 OptimizerType; typename OptimizerType::MetricValuesListType metricvalues; typename OptimizerType::Pointer mstartOptimizer = OptimizerType::New(); typedef itk::CorrelationImageToImageMetricv4 <ImageType, ImageType, ImageType> GCMetricType; typedef itk::MattesMutualInformationImageToImageMetricv4 <ImageType, ImageType, ImageType> MetricType; typename MetricType::ParametersType newparams( affine1->GetParameters() ); typename GCMetricType::Pointer gcmetric = GCMetricType::New(); gcmetric->SetFixedImage( image1 ); gcmetric->SetVirtualDomainFromImage( image1 ); gcmetric->SetMovingImage( image2 ); gcmetric->SetMovingTransform( simmer ); gcmetric->SetParameters( newparams ); typename MetricType::Pointer mimetric = MetricType::New(); mimetric->SetNumberOfHistogramBins( mibins ); mimetric->SetFixedImage( image1 ); mimetric->SetMovingImage( image2 ); mimetric->SetMovingTransform( simmer ); mimetric->SetParameters( newparams ); if( mask.IsNotNull() ) { typename itk::ImageMaskSpatialObject<ImageDimension>::Pointer so = itk::ImageMaskSpatialObject<ImageDimension>::New(); so->SetImage( const_cast<maskimagetype *>( mask.GetPointer() ) ); mimetric->SetFixedImageMask( so ); gcmetric->SetFixedImageMask( so ); } typedef itk::ConjugateGradientLineSearchOptimizerv4 LocalOptimizerType; typename LocalOptimizerType::Pointer localoptimizer = LocalOptimizerType::New(); RealType localoptimizerlearningrate = 0.1; localoptimizer->SetLearningRate( localoptimizerlearningrate ); localoptimizer->SetMaximumStepSizeInPhysicalUnits( localoptimizerlearningrate ); localoptimizer->SetNumberOfIterations( localSearchIterations ); localoptimizer->SetLowerLimit( 0 ); localoptimizer->SetUpperLimit( 2 ); localoptimizer->SetEpsilon( 0.1 ); localoptimizer->SetMaximumLineSearchIterations( 50 ); localoptimizer->SetDoEstimateLearningRateOnce( true ); localoptimizer->SetMinimumConvergenceValue( 1.e-6 ); localoptimizer->SetConvergenceWindowSize( 5 ); if( true ) { typedef typename MetricType::FixedSampledPointSetType PointSetType; typedef typename PointSetType::PointType PointType; typename PointSetType::Pointer pset(PointSetType::New()); unsigned int ind=0; unsigned int ct=0; itk::ImageRegionIteratorWithIndex<ImageType> It(image1, image1->GetLargestPossibleRegion() ); for( It.GoToBegin(); !It.IsAtEnd(); ++It ) { // take every N^th point if ( ct % 10 == 0 ) { PointType pt; image1->TransformIndexToPhysicalPoint( It.GetIndex(), pt); pset->SetPoint(ind, pt); ind++; } ct++; } mimetric->SetFixedSampledPointSet( pset ); mimetric->SetUseFixedSampledPointSet( true ); gcmetric->SetFixedSampledPointSet( pset ); gcmetric->SetUseFixedSampledPointSet( true ); } if ( whichMetric.compare("MI") == 0 ) { mimetric->Initialize(); typedef itk::RegistrationParameterScalesFromPhysicalShift<MetricType> RegistrationParameterScalesFromPhysicalShiftType; typename RegistrationParameterScalesFromPhysicalShiftType::Pointer shiftScaleEstimator = RegistrationParameterScalesFromPhysicalShiftType::New(); shiftScaleEstimator->SetMetric( mimetric ); shiftScaleEstimator->SetTransformForward( true ); typename RegistrationParameterScalesFromPhysicalShiftType::ScalesType movingScales( simmer->GetNumberOfParameters() ); shiftScaleEstimator->EstimateScales( movingScales ); mstartOptimizer->SetScales( movingScales ); mstartOptimizer->SetMetric( mimetric ); localoptimizer->SetMetric( mimetric ); localoptimizer->SetScales( movingScales ); } if ( whichMetric.compare("MI") != 0 ) { gcmetric->Initialize(); typedef itk::RegistrationParameterScalesFromPhysicalShift<GCMetricType> RegistrationParameterScalesFromPhysicalShiftType; typename RegistrationParameterScalesFromPhysicalShiftType::Pointer shiftScaleEstimator = RegistrationParameterScalesFromPhysicalShiftType::New(); shiftScaleEstimator->SetMetric( gcmetric ); shiftScaleEstimator->SetTransformForward( true ); typename RegistrationParameterScalesFromPhysicalShiftType::ScalesType movingScales( simmer->GetNumberOfParameters() ); shiftScaleEstimator->EstimateScales( movingScales ); mstartOptimizer->SetScales( movingScales ); mstartOptimizer->SetMetric( gcmetric ); localoptimizer->SetMetric( gcmetric ); localoptimizer->SetScales( movingScales ); } typename OptimizerType::ParametersListType parametersList = mstartOptimizer->GetParametersList(); affinesearch->SetIdentity(); affinesearch->SetCenter( trans2 ); affinesearch->SetOffset( trans ); for ( unsigned int i = 0; i < vecsize; i++ ) { RealType ang1 = thetas[i]; RealType ang2 = 0; // FIXME should be psi vector_r[ i ]=0; if( ImageDimension == 3 ) { for ( unsigned int jj = 0; jj < vecsize; jj++ ) { ang2=thetas[jj]; affinesearch->SetIdentity(); affinesearch->SetCenter( trans2 ); affinesearch->SetOffset( trans ); if( useprincaxis ) { affinesearch->SetMatrix( A_solution ); } affinesearch->Rotate3D(axis1, ang1, 1); affinesearch->Rotate3D(axis2, ang2, 1); affinesearch->Scale( bestscale ); simmer->SetMatrix( affinesearch->GetMatrix() ); parametersList.push_back( simmer->GetParameters() ); } } if( ImageDimension == 2 ) { affinesearch->SetIdentity(); affinesearch->SetCenter( trans2 ); affinesearch->SetOffset( trans ); if( useprincaxis ) { affinesearch->SetMatrix( A_solution ); } affinesearch->Rotate2D( ang1, 1); affinesearch->Scale( bestscale ); simmer->SetMatrix( affinesearch->GetMatrix() ); typename AffineType::ParametersType pp = simmer->GetParameters(); //pp[1]=ang1; //pp[0]=bestscale; parametersList.push_back( simmer->GetParameters() ); } } mstartOptimizer->SetParametersList( parametersList ); if( localSearchIterations > 0 ) { mstartOptimizer->SetLocalOptimizer( localoptimizer ); } mstartOptimizer->StartOptimization(); typename AffineType::Pointer bestaffine = AffineType::New(); bestaffine->SetCenter( trans2 ); bestaffine->SetParameters( mstartOptimizer->GetBestParameters() ); if ( txfn.length() > 3 ) { typename AffineType::Pointer bestaffine = AffineType::New(); bestaffine->SetCenter( trans2 ); bestaffine->SetParameters( mstartOptimizer->GetBestParameters() ); typedef itk::TransformFileWriter TransformWriterType; typename TransformWriterType::Pointer transformWriter = TransformWriterType::New(); transformWriter->SetInput( bestaffine ); transformWriter->SetFileName( txfn.c_str() ); transformWriter->Update(); } metricvalues = mstartOptimizer->GetMetricValuesList(); for ( unsigned int k = 0; k < metricvalues.size(); k++ ) { vector_r[k] = metricvalues[k]; } dims[0] = vecsize; vector_r.attr( "dim" ) = vecsize; return Rcpp::wrap( vector_r ); } else { return Rcpp::wrap( vector_r ); } }