void gauss_mask_odd ( /******************************************************/ float sigma, /* in : standard deviation of Gaussian */ int nm, /* in : data dimension in mask direktion */ float hm, /* in : pixel size in mask direction */ float precision, /* in : cutoff at precision * sigma */ int *masksize, /* out : size of gaussian mask */ float **mask /* out : the mask itself */ /* memory is allocated IN the routine ! */ /******************************************************/ ) /* computes odd gaussian convolution mask */ { /******************************************************/ int i; /* loop variables */ float sum; /* for summing up */ /******************************************************/ /* calculate size of convolution mask n */ /* please note that due to the symmetry of the Gaussian convolution mask */ /* only n+1 instead of 2*n+1 value have to be stored */ *masksize = (int)(precision * sigma / hm) + 1; if ((*masksize) > nm) { printf("\n gauss_mask_odd : mask too large"); printf("\n nm : %d",nm); printf("\n hm : %f",hm); printf("\n size : %d",*masksize); printf("\n prec : %f\n\n",precision); exit(0); } /* allocate storage for convolution vector (n+1 values) */ ALLOC_VECTOR (1, (*masksize)+1, mask); /* calculate entries of convolution vector */ for (i=0; i<=(*masksize); i++) { (*mask)[i] = 1 / (sigma * sqrt(2.0 * 3.1415926)) * exp (- (i * i * hm * hm) / (2.0 * sigma * sigma)); } /* normalise convolution vector to sum 1 */ sum = (*mask)[0]; for (i=1; i<=(*masksize); i++) sum = sum + 2.0 * (*mask)[i]; for (i=0; i<=(*masksize); i++) (*mask)[i] = (*mask)[i] / sum; return; }
/* * Allocate an array of size 'n'. */ struct vector * allocate_array(long long nn) { int i, n = nn; struct vector *p; if (nn < 0 || nn > MAX_ARRAY_SIZE) error("Illegal array size.\n"); if (n == 0) { p = &null_vector; INCREF(p->ref); return p; } num_arrays++; total_array_size += sizeof (struct vector) + sizeof (struct svalue) * (n-1); p = ALLOC_VECTOR(n); p->ref = 1; p->size = n; for (i=0; i<n; i++) p->item[i] = const0; return p; }
main(int argc, char *argv[]){ int i,j,k; int nr, n_run; int n,m; double **A, **At, **G, **Gt, **GtG, **U, **Ut, **UtU, *w, **V, norm; double *v; FILE *stream; if (argc <4){ fprintf(stderr,"Usage: %s m n n_run <datfile>\n", argv[0]); exit(EXIT_FAILURE); } m = atoi(argv[1]); n = atoi(argv[2]); n_run = atoi(argv[3]); if (argc == 5){ if ((stream = fopen(argv[4], "r")) == NULL){ fprintf(stderr, "Can't open file %s.\n", argv[4]); exit(EXIT_FAILURE); } } else { stream = stdin; } A = ALLOC_MATRIX(m,n); /* for(i=0; i<m; ++i){ */ /* for(j=0; j<n; ++j){ */ /* if (fscanf(stream,"%lf", A[i]+j) != 1){ */ /* fprintf(stderr,"Error occured in reading the data.\n"); */ /* exit(EXIT_FAILURE); */ /* } */ /* } */ /* } */ for(i=0; i<m; ++i){ for(j=0; j<n; ++j){ A[i][j] = RANDOM(-10.0,10.0); } } /* print A */ U = ALLOC_MATRIX(m,n); COPY_VECTOR(A[0], U[0], m*n); for(i=0; i<m; ++i){ for(j=0; j<n; ++j) printf("%8.2f ", U[i][j]); printf("\n"); } printf("Using Gram-Schmidt\n"); /* gram-schmidt */ At = RECT_TRANSPOSE(A, m,n); Gt = ALLOC_MATRIX(n,m); for(i=0; i<n_run; ++i){ COPY_VECTOR(At[0], Gt[0], n*m); GRAM_SCHMIDT(Gt,n,m); } printf("Orthogonal vectors are \n"); for (i=0; i<n; ++i){ for(j=0, norm=0.0; j<m; ++j){ norm += SQR(Gt[i][j]); printf("%.6f ", Gt[i][j]); } printf(" %f\n",norm); } G = RECT_TRANSPOSE(Gt,n,m); GtG = ALLOC_MATRIX(n,n); printf("S=\n"); for(i=0; i<n; ++i){ for(j=0; j<n; ++j){ GtG[i][j]=0.0; for(k=0; k<m; ++k) GtG[i][j]+=Gt[i][k]*G[k][j]; printf("%8.1e ", GtG[i][j]); } printf("\n"); } /* project random vector against orthogonal basis */ v = ALLOC_VECTOR(m); for(i=0; i<m; ++i) v[i] = RANDOM(-10,10); PROJECT(v, m, Gt, n); for(i=0; i<n; ++i) printf("v.G[%2d] = %9.2e\n", i, DOTP(v,Gt[i],m)); }
int main(int argc, char *argv[]){ /* Output message */ fprintf(stdout, "run_network %s\n", RUN_NETWORK_VERSION); fflush(stdout); // Variables // register int i/*, j*/; char *netfile_name, *network_name; char *group_input_file_name = NULL; char *save_file_name; FILE *netfile, *conc_file, *group_file/*, *func_file*/, *out, *flux_file, *species_stats_file; int net_line_number, group_line_number, n_read; Elt_array *species, *rates/*, *parameters*/; Group *spec_groups = NULL; Rxn_array *reactions; int n, n_sample; double t_start=0.0, t, dt, atol = 1.0e-8, rtol = 1.0e-8; double sample_time, *sample_times = 0x0/*, *st, t1*/; char c, buf[1000], *outpre = NULL; int argleft, iarg = 1, error = 0; int save_file = 0; int check_steady_state = 0; int seed = -1; int remove_zero = 1; int print_flux = 0, print_end_net = 0, print_save_net = 0, enable_species_stats = 0; int gillespie_update_interval = 1; int verbose=0; int continuation=0; double *conc, *conc_last, *derivs; struct program_times ptimes; // extern char *optarg; // extern int optind, opterr; // // Allowed propagator types enum {SSA, CVODE, EULER, RKCS, PLA}; int propagator = CVODE; int SOLVER = DENSE; int outtime = -1; // double maxSteps = INFINITY;//LONG_MAX;//-1; double stepInterval = INFINITY;//LONG_MAX;// -1; string pla_config; // No default bool print_cdat = true, print_func = false; bool additional_pla_output = false; // Print PLA-specific data (e.g., rxn classifications) bool print_on_stop = true; // Print to file if stopping condition met? string stop_string = "0"; mu::Parser stop_condition; if (argc < 4) print_error(); /* Process input options */ while ( argv[iarg][0] == '-' ){ c = argv[iarg++][1]; switch (c){ case 'a': atol = atof(argv[iarg++]); break; case 'b': if(SOLVER == DENSE) SOLVER = GMRES; else SOLVER = GMRES_J; break; case 'c': check_steady_state = 1; break; case 'd': if (SOLVER == DENSE) SOLVER = DENSE_J; else SOLVER = GMRES_J; break; case 'e': print_end_net = 1; break; case 'f': print_flux = 1; break; case 'g': group_input_file_name = argv[iarg++]; break; case 'h': seed = atoi(argv[iarg++]); if (seed == INT_MAX){ cout << "Warning in run_network: Your seed (" << seed << ") equals INT_MAX." << endl; cout << "Are you sure you didn't enter a seed larger than INT_MAX?" << endl; cout << "If you did you could be getting duplicate results." << endl; } break; case 'i': t_start = atof(argv[iarg++]); break; case 'j': enable_species_stats = 1; break; case 'k': remove_zero = 0; break; case 'm': propagator = SSA; break; case 'n': print_save_net = 1; break; case 'o': outpre = argv[iarg++]; break; case 'p': if (strcmp(argv[iarg],"ssa") == 0) propagator= SSA; else if (strcmp(argv[iarg],"cvode") == 0) propagator= CVODE; else if (strcmp(argv[iarg],"euler") == 0) propagator= EULER; else if (strcmp(argv[iarg],"rkcs") == 0) propagator= RKCS; else if (strcmp(argv[iarg],"pla") == 0){ propagator= PLA; if (argv[iarg+1][0] != '-') pla_config = argv[++iarg]; else{ cout << "ERROR: To use the pla you must specify a simulation configuration. Please try again." << endl; exit(1); } } else{ fprintf(stderr, "ERROR: Unrecognized propagator type %s.\n", argv[iarg]); exit(1); } iarg++; break; case 'r': rtol = atof(argv[iarg++]); break; case 's': save_file = 1; break; case 't': atol = rtol = atof(argv[iarg++]); break; case 'u': gillespie_update_interval = atoi(argv[iarg++]); break; case 'v': verbose = 1; break; case 'x': /* continue ('extend') simulation */ continuation = 1; break; case 'z': outtime = atoi(argv[iarg++]); break; case '?': ++error; break; case 'M': if ((string)argv[iarg] == "INT_MAX") maxSteps = (double)INT_MAX; else if ((string)argv[iarg] == "LONG_MAX") maxSteps = (double)LONG_MAX; else if ((string)argv[iarg] == "INFINITY") maxSteps = INFINITY;//LONG_MAX;//-1L; else maxSteps = floor(atof(argv[iarg])); //std::atol(argv[iarg++]); if (maxSteps <= 0){ cout << "Warning: You set maxSteps = " << maxSteps << ". Simulation will not run." << endl; } iarg++; break; case 'I': if ((string)argv[iarg] == "INT_MAX") stepInterval = (double)INT_MAX; else if ((string)argv[iarg] == "LONG_MAX") stepInterval = (double)LONG_MAX; else if ((string)argv[iarg] == "INFINITY") stepInterval = INFINITY;//LONG_MAX;//-1L; else stepInterval = floor(atof(argv[iarg])); //std::atol(argv[iarg++]); iarg++; break; case '-': // Process long options // cout << argv[iarg-1] << " "; string long_opt(argv[iarg-1]); long_opt = long_opt.substr(2); // remove '--' // // Print to .cdat if (long_opt == "cdat"){ if (atoi(argv[iarg]) <= 0){ print_cdat = false; cout << "Suppressing concentrations (.cdat) output" << endl; } } // Print to .fdat else if (long_opt == "fdat"){ if (atoi(argv[iarg]) > 0){ print_func = true; cout << "Activating functions output (to .gdat)" << endl; } } // Print additional PLA data (e.g., rxn classifications) else if (long_opt == "pla_output"){ if (atoi(argv[iarg]) > 0){ additional_pla_output = true; } } else if (long_opt == "stop_cond"){ stop_string = (string)argv[iarg++]; cout << "Stopping condition specified: " << stop_string; if (atoi(argv[iarg]) <= 0){ print_on_stop = false; cout << " (print-on-stop disabled)"; } cout << endl; // cout << stop_string << endl; } //... else{ // cout << endl; cout << "Sorry, don't recognize your long option " << argv[iarg-1] << ". Please try again." << endl; } iarg++; // break; } } /* Check input options for consistency */ /* Check for correct number of input args */ argleft = argc - iarg; if (argleft < 3) print_error(); /* Get net file name */ netfile_name = strdup(argv[iarg++]); /* Process sample times */ if ((argleft = argc - iarg) == 2) { /* input is sample_time n_sample */ sample_time = atof(argv[iarg++]); n_sample = (int)atof(argv[iarg++]); // Read as float and cast to int to allow for exponential format } else { /* input is t1 t2 ... tn */ n_sample = argleft; vector<double> st; vector<bool> keep; st.push_back(t_start); keep.push_back(true); // Collect all sample times for (int j=0;j < n_sample;j++){ st.push_back(atof(argv[iarg++])); keep.push_back(true); } if (t_start > st[st.size()-1]){ // BNG appends t_end to the sample_times array cout << "WARNING: t_start > t_end. Setting t_end = t_start, simulation will not run." << endl; st[st.size()-1] = t_start; } double t_end = st[st.size()-1]; // Flag sample times <= t_start and >= t_end for removal for (unsigned int j=1;j < st.size()-1;j++){ if (st[j] <= t_start || st[j] >= t_end){ // cout << ": ERASE"; keep.at(j) = false; n_sample--; } // cout << endl; } // Fill up sample_times array sample_times = ALLOC_VECTOR(n_sample+1); // t_start is the extra sample int k=0; for (unsigned int j=0;j < st.size();j++){ if (keep.at(j)){ sample_times[k] = st[j]; k++; } } // Error check if (k != n_sample+1){ cout << "Oops, something went wrong while processing sample_times." << endl; exit(1); } // Make sure there are at least 2 elements (t_start and t_end) if (n_sample < 1){ fprintf(stderr,"ERROR: There must be at least one sample time (t_end).\n"); exit(1); } // Check that final array is in ascending order with no negative elements for (i = 0; i <= n_sample; ++i) { if (sample_times[i] < 0.0) { fprintf(stderr,"ERROR: Negative sample times are not allowed.\n"); exit(1); } if (i == 0) continue; // if (sample_times[i] <= sample_times[i-1]) { if (sample_times[i] < sample_times[i-1]) { // Handle case where n_sample=2 and t_start=t_end fprintf(stderr,"ERROR: Sample times must be in ascending order.\n"); exit(1); } } } // Initialize time t = t_start; // Find NET file if (!(netfile = fopen(netfile_name, "r"))) { fprintf(stderr, "ERROR: Couldn't open file %s.\n", netfile_name); exit(1); } /* Assign network_name based on netfile_name */ network_name = strdup(netfile_name); chop_suffix(network_name,".net"); if (!outpre){ outpre = network_name; } /* Rate constants and concentration parameters should now be placed in the parameters block. */ net_line_number = 0; rates = read_Elt_array(netfile, &net_line_number, (char*)"parameters", &n_read, 0x0); fprintf(stdout, "Read %d parameters from %s\n", n_read, netfile_name); rewind(netfile); net_line_number = 0; /* Read species */ if (!(species = read_Elt_array(netfile, &net_line_number, (char*)"species", &n_read, rates))){ fprintf(stderr,"ERROR: Couldn't read rates array.\n"); exit(1); } fprintf(stdout, "Read %d species from %s\n", n_read, netfile_name); rewind(netfile); net_line_number = 0; /* Read optional groups */ if (group_input_file_name){ if (!(group_file = fopen(group_input_file_name, "r"))) { fprintf(stderr, "ERROR: Couldn't open file %s.\n", group_input_file_name); exit(1); } group_line_number = 0; spec_groups = read_Groups(0x0, group_file, species, &group_line_number, (char*)"groups", &n_read); fprintf(stdout, "Read %d group(s) from %s\n", n_read, group_input_file_name); fclose(group_file); } /** Ilya Korsunsky 6/2/10: Global Functions */ map<string, double*> param_map = init_param_map(rates,spec_groups); map<string, int> observ_index_map = init_observ_index_map(spec_groups); map<string, int> param_index_map = init_param_index_map(rates); read_functions_array(netfile_name,rates,param_map,param_index_map,observ_index_map,&t); int n_func = network.functions.size(); if (n_func > 0) n_func--; // Subtract off 'time' function cout << "Read " << n_func << " function(s) from " << netfile_name << endl; if (!rates){ // Error if the 'rates' array doesn't exist (means 0 parameters, 0 functions) fprintf(stderr,"ERROR: Reaction network must have parameters and/or functions defined to be used as rate laws.\n"); exit(1); } // Create stop condition process_function_names(stop_string); // Remove parentheses from variable names vector<string> variable_names = find_variables(stop_string); // Extract variable names for (unsigned int i=0;i < variable_names.size();i++){ // Error check if (param_map.find(variable_names[i]) == param_map.end()) { cout << "Error in parsing stop condition: \"" << stop_string << "\". Could not find variable " << variable_names[i] << ". Exiting." << endl; exit(1); } // Define variable else { stop_condition.DefineVar(_T(variable_names[i]),param_map[variable_names[i]]); } } stop_condition.SetExpr(stop_string); /* Read reactions */ if (!(reactions = read_Rxn_array(netfile,&net_line_number,&n_read,species,rates,network.is_func_map))){ fprintf(stderr, "ERROR: No reactions in the network.\n"); exit(1); } fprintf(stdout, "Read %d reaction(s) from %s\n", n_read, netfile_name); if (remove_zero) { remove_zero_rate_rxns(&reactions, rates); int n_rxn = 0; if (reactions){ n_rxn = reactions->n_rxn; } fprintf(stdout, "%d reaction(s) have nonzero rate\n", n_rxn); } else{ fprintf(stdout, "nonzero rate reactions were not removed\n"); } /* sort_Rxn_array( reactions, rates); */ fclose(netfile); /* Should add check that reactions, rates, and species are defined */ /* Also should check that definitions don't exceed array bounds */ if (n_sample < 1) { fprintf(stderr, "ERROR: n_sample < 1\n"); exit(1); } /* Initialize reaction network */ init_network(reactions, rates, species, spec_groups, network_name); // Round species populations if propagator is SSA or PLA if (propagator == SSA || propagator == PLA){ for (int i=0;i < network.species->n_elt;i++) { network.species->elt[i]->val = floor(network.species->elt[i]->val + 0.5); } } /* Initialize SSA */ if (propagator == SSA){ init_gillespie_direct_network(gillespie_update_interval,seed); } /* Save network to file */ if (save_file) { if (outpre) { sprintf(buf, "%s.net", outpre); save_file_name = strdup(buf); } else { save_file_name = strdup("save.net"); } if ((out = fopen(save_file_name, "w"))) { print_network(out); fprintf(stdout, "Saved network to file %s.\n", save_file_name); fclose(out); } } fflush(stdout); /* timing for initialization */ ptimes = t_elapsed(); fprintf(stdout, "Initialization took %.2f CPU seconds\n", ptimes.total_cpu); // t = t_start; /* space for concentration vector */ if (check_steady_state) { conc = ALLOC_VECTOR(n_species_network()); conc_last = ALLOC_VECTOR(n_species_network()); derivs = ALLOC_VECTOR(n_species_network()); get_conc_network(conc_last); } outpre = chop_suffix(outpre, ".net"); /* Initialize and print initial concentrations */ conc_file = NULL; // Just to be safe conc_file = init_print_concentrations_network(outpre,continuation); if (!continuation) print_concentrations_network(conc_file, t); /* Initialize and print initial group concentrations and function values */ group_file = NULL; if (spec_groups || (print_func && network.functions.size() > 0)){ group_file = init_print_group_concentrations_network(outpre,continuation,print_func); if (print_func & !continuation) init_print_function_values_network(group_file); if (!continuation){ print_group_concentrations_network(group_file,t,print_func); if (print_func) print_function_values_network(group_file,t); } } /* Initialize and print species stats (if enabled) */ species_stats_file = NULL; if (enable_species_stats){ species_stats_file = init_print_species_stats(outpre, continuation); if (!continuation) print_species_stats(species_stats_file, t); } /* Initialize flux printing (if selected) */ flux_file = NULL; if (print_flux){ flux_file = init_print_flux_network(outpre); int discrete = 0; if (propagator == SSA || propagator == PLA) discrete = 1; print_flux_network(flux_file,t,discrete); } fflush(stdout); // *** Simulate *** double t_end; if (sample_times) t_end = sample_times[n_sample]; else t_end = t_start + (double)n_sample*sample_time; // PLA simulator if (propagator == PLA) { cout << "Accelerated stochastic simulation using PLA" << endl; // Initialize Network3 Network3::init_Network3(&t,false); // Stop condition mu::Parser pla_stop_condition; map<string,double*> var = stop_condition.GetUsedVar(); // Search observables for (unsigned int j=0;j < Network3::OBSERVABLE.size();j++){ if (var.find(Network3::OBSERVABLE[j]->first->name) != var.end()){ // cout << "\t" << Network3::OBSERVABLE[j]->first->name << " = " << Network3::OBSERVABLE[j]->second << endl; pla_stop_condition.DefineVar(Network3::OBSERVABLE[j]->first->name,&Network3::OBSERVABLE[j]->second); } } // Search parameters for (Elt* elt=network.rates->list;elt != NULL;elt=elt->next){ if (var.find(elt->name) != var.end()){ // cout << "\t" << "rates[" << elt->index << "] = " << elt->name << " ("; bool func = false; // Is it a function? for (unsigned int j=0;j < network.var_parameters.size() && !func;j++){ if (elt->index == network.var_parameters[j]){ // YES // cout << "function[" << j <<"] = " << network.functions[j].GetExpr() << ")" << endl; func = true; bool found = false; // Which one? for (unsigned int k=0;k < Network3::FUNCTION.size() && !found;k++){ if (network.functions[j].GetExpr() == Network3::FUNCTION[k]->first->GetExpr()){ found = true; pla_stop_condition.DefineVar(elt->name,&Network3::FUNCTION[k]->second); } } // Error check if (!found){ cout << "Error constructing PLA stop condition in run_network: " << "Couldn't find function " << network.functions[j].GetExpr() << ". Exiting." << endl; exit(1); } } } // NO, it's a constant if (!func){ // cout << "constant)" << endl; pla_stop_condition.DefineConst(elt->name,elt->val); } } } // Set expression string expr = stop_condition.GetExpr(); expr.erase(expr.size()-1); // Trim last character (muParser adds a null to the end) pla_stop_condition.SetExpr(expr); // cout << pla_stop_condition.GetExpr() << "= " << pla_stop_condition.Eval() << endl; // Initialize PLA Network3::init_PLA(pla_config,verbose); if (seed >= 0) Network3::PLA_SIM->setSeed(seed); // PLA-specific output if (additional_pla_output){ cout << "Activating classifications output (to _classif.pla)" << endl; if (!continuation){ // Print header FILE* outfile = NULL; outfile = fopen(((string)outpre+"_classif.pla").c_str(),"w"); fprintf(outfile, "#"); fprintf(outfile, "%18s", "time"); fprintf(outfile, " %19s", "step"); for (unsigned int v=0;v < Network3::REACTION.size();v++){ fprintf(outfile," %10s",("R_"+Util::toString((int)v+1)).c_str()); } fprintf(outfile,"\n"); fclose(outfile); } } // Initial output to stdout if (verbose){ printf("# \t time \t\t step\n"); printf("\t %f \t 0\n",t_start); fflush(stdout); } // Run simulation // initTime = clock(); if (!verbose) cout << "Running..." << endl; double step = 0; if (sample_times){ // Sample times double nextOutputStep = stepInterval; bool forceQuit = false; for (int n=1;n <= n_sample && step < maxSteps - network3::TOL && !forceQuit;n++) // t_start is the extra sample (already output) { error = Network3::run_PLA(t,sample_times[n],INFINITY, step,min(nextOutputStep,maxSteps),stepInterval, pla_stop_condition,print_on_stop, outpre, print_cdat,print_func,print_save_net,print_end_net, additional_pla_output, verbose); if (error == -1){ // stepLimit reached in propagation n--; nextOutputStep += stepInterval; } if (error == -2){ // Stop condition satisfied forceQuit = true; // cout << "\nStopping condition " << pla_stop_condition.GetExpr() << "met in " // << "PLA simulation." << endl; } } } else{ // Sample interval error = Network3::run_PLA(t,t_end,sample_time, step,maxSteps,stepInterval, pla_stop_condition,print_on_stop, outpre, print_cdat,print_func,print_save_net,print_end_net, additional_pla_output, verbose); } if (step >= maxSteps){ // maxSteps limit reached cout << "Maximum step limit (" << maxSteps << ") reached in PLA simulation." << endl; } if (!verbose) cout << "Done." << endl; // cout << "PLA simulation took " << (clock()-initTime)/(double)CLOCKS_PER_SEC << " CPU seconds" << endl; // Even if .cdat printing is suppressed, must output the last step if (step > 0.5 && !print_cdat){ // Only print if the simulation ran (i.e., step > 0) string filename(outpre); filename += ".cdat"; FILE* cdatFile = fopen(filename.c_str(),"a"); Network3::print_species_concentrations(cdatFile,t); } // Print total steps to stdout fprintf(stdout, "TOTAL STEPS: %d\n", (int)step); // Clean up Network3::close_Network3(false); } // ODE & SSA simulators else{ long int /*n_steps = 0, n_steps_last = 0,*/ n_rate_calls_last = 0, n_deriv_calls_last = 0; double n_steps = 0, n_steps_last = 0;//, n_rate_calls_last = 0, n_deriv_calls_last = 0; // double stepLimit = min(stepInterval,maxSteps); bool forceQuit = false; string forceQuit_message; double t_out = t_start; // Initial screen outputs switch (propagator) { case SSA: fprintf(stdout, "Stochastic simulation using direct Gillespie algorithm\n"); if (verbose){ fprintf(stdout, "%15s %8s %12s %7s %7s %10s %7s\n", "time", "n_steps", "n_rate_calls", "% spec", "% rxn", "n_species", "n_rxns"); fprintf(stdout, "%15.6f %8.0f %12d %7.3f %7.3f %10d %7d\n", t, gillespie_n_steps() - n_steps_last, n_rate_calls_network() - (int)n_rate_calls_last, 100 * gillespie_frac_species_active(), 100 * gillespie_frac_rxns_active(), n_species_network(), n_rxns_network() ); } break; case CVODE: fprintf(stdout, "Propagating with cvode"); if (SOLVER == GMRES) fprintf(stdout, " using GMRES\n"); else if (SOLVER == GMRES_J) fprintf(stdout, " using GMRES with specified Jacobian multiply\n"); else if (SOLVER == DENSE_J) fprintf(stdout, " using dense LU with specified Jacobian\n"); else fprintf(stdout, " using dense LU\n"); if (verbose){ fprintf(stdout, "%15s %13s %13s\n", "time", "n_steps", "n_deriv_calls"); fprintf(stdout, "%15.2f %13.0f %13d\n", t, n_steps, n_deriv_calls_network()); } break; case EULER: fprintf(stdout,"Propagating with Euler method using fixed time step of %.15g\n",rtol); if (verbose){ fprintf(stdout, "%15s %13s %13s\n", "time", "n_steps", "n_deriv_calls"); fprintf(stdout, "%15.2f %13.0f %13d\n", t, n_steps, n_deriv_calls_network()); } break; case RKCS: fprintf(stdout, "Propagating with rkcs\n"); if (verbose){ fprintf(stdout, "%15s %13s %13s\n", "time", "n_steps", "n_deriv_calls"); fprintf(stdout, "%15.2f %13.0f %13d\n", t, n_steps, n_deriv_calls_network()); } break; } if (verbose) fflush(stdout); // Initial check of stopping condition before starting propagation if (stop_condition.Eval()){ cout << "Stopping condition " << stop_condition.GetExpr() << "already met prior " << "to simulation. Quitting." << endl; forceQuit = true; } // Do propagation int n_old = 0; for (n = 1; n <= n_sample && t < t_end-network3::TOL && !forceQuit; ++n){ if (n != n_old){ if (sample_times) t_out = sample_times[n]; else t_out += sample_time; n_old = n; } if (t_end < t_out) t_out = t_end; // Don't go past end time dt = t_out-t; switch (propagator){ case SSA: if (gillespie_n_steps() >= stepLimit - network3::TOL){ // Error check if (gillespie_n_steps() > stepLimit + network3::TOL){ cout << "Uh oh, step limit exceeded in SSA (step limit = " << stepLimit << ", current step = " << gillespie_n_steps() << "). This shouldn't happen. Exiting." << endl; exit(1); } // Continue stepLimit = min(stepLimit+stepInterval,maxSteps); } error = gillespie_direct_network(&t, dt, 0x0, 0x0, stepLimit-network3::TOL,stop_condition); if (verbose){ // fprintf(stdout, "%15.6f %8ld %12d %7.3f %7.3f %10d %7d", fprintf(stdout, "%15.6f %8.0f %12d %7.3f %7.3f %10d %7d", t, gillespie_n_steps() - n_steps_last, n_rate_calls_network() - (int)n_rate_calls_last, 100 * gillespie_frac_species_active(), 100 * gillespie_frac_rxns_active(), n_species_network(), n_rxns_network() ); } n_steps_last = gillespie_n_steps(); if (error == -1) n -= 1; // stepLimit reached in propagation if (error == -2){ // Stop condition satisfied forceQuit = true; forceQuit_message = "Stopping condition " + stop_condition.GetExpr() + "met in Gillespie simulation."; } if (gillespie_n_steps() >= maxSteps - network3::TOL){ // maxSteps limit reached forceQuit = true; forceQuit_message = "Maximum step limit (" + Util::toString(maxSteps) + ") reached in Gillespie simulation."; } break; case CVODE: if (n_steps >= stepLimit - network3::TOL){ // Error check if (n_steps > stepLimit + network3::TOL){ cout << "Uh oh, step limit exceeded in CVODE (step limit = " << stepLimit << ", current step = " << n_steps << "). This shouldn't happen. Exiting." << endl; exit(1); } // Continue stepLimit = min(stepLimit+stepInterval,maxSteps); } error = propagate_cvode_network(&t, dt, &n_steps, &rtol, &atol, SOLVER, stepLimit-network3::TOL,stop_condition); // if (verbose) fprintf(stdout, "%15.2f %13ld %13d", t, n_steps, n_deriv_calls_network()); if (verbose) fprintf(stdout, "%15.2f %13.0f %13d", t, n_steps, n_deriv_calls_network()); if (error == -1) n -= 1; // stepLimit reached in propagation if (error == -2){ // Stop condition satisfied forceQuit = true; forceQuit_message = "Stopping condition " + stop_condition.GetExpr() + "met in CVODE simulation."; } if (n_steps >= maxSteps - network3::TOL){ // maxSteps limit reached forceQuit = true; forceQuit_message = "Maximum step limit (" + Util::toString(maxSteps) + ") reached in CVODE simulation."; } break; case EULER: if (n_steps >= stepLimit - network3::TOL){ // Error check if (n_steps > stepLimit + network3::TOL){ cout << "Uh oh, step limit exceeded in EULER (step limit = " << stepLimit << ", current step = " << n_steps << "). This shouldn't happen. Exiting." << endl; exit(1); } // Continue stepLimit = min(stepLimit+stepInterval,maxSteps); } error = propagate_euler_network(&t, dt, &n_steps, rtol, stepLimit-network3::TOL, stop_condition); // if (verbose) fprintf(stdout, "%15.2f %13ld %13d", t, n_steps, n_deriv_calls_network()); if (verbose) fprintf(stdout, "%15.2f %13.0f %13d", t, n_steps, n_deriv_calls_network()); if (error == -1) n -= 1; // stepLimit reached in propagation if (error == -2){ // Stop condition satisfied forceQuit = true; forceQuit_message = "Stopping condition " + stop_condition.GetExpr() + "met in EULER simulation."; } if (n_steps >= maxSteps - network3::TOL){ // maxSteps limit reached forceQuit = true; forceQuit_message = "Maximum step limit (" + Util::toString(maxSteps) + ") reached in EULER simulation."; } break; case RKCS: if (n_steps >= stepLimit - network3::TOL){ // Error check if (n_steps > stepLimit + network3::TOL){ cout << "Uh oh, step limit exceeded in RKCS (step limit = " << stepLimit << ", current step = " << n_steps << "). This shouldn't happen. Exiting." << endl; exit(1); } // Continue stepLimit = min(stepLimit+stepInterval,maxSteps); } error = propagate_rkcs_network(&t, dt, &n_steps, rtol, stepLimit-network3::TOL, stop_condition); // if (verbose) fprintf(stdout, "%15.2f %13ld %13d", t, n_steps, n_deriv_calls_network()); if (verbose) fprintf(stdout, "%15.2f %13.0f %13d", t, n_steps, n_deriv_calls_network()); if (error == -1) n -= 1; // stepLimit reached in propagation if (error == -2){ // Stop condition satisfied forceQuit = true; forceQuit_message = "Stopping condition " + stop_condition.GetExpr() + "met in RKCS simulation."; } if (n_steps >= maxSteps - network3::TOL){ // maxSteps limit reached forceQuit = true; forceQuit_message = "Maximum step limit (" + Util::toString(maxSteps) + ") reached in RKCS simulation."; } break; } n_rate_calls_last = n_rate_calls_network(); n_deriv_calls_last = n_deriv_calls_network(); if (error > 0) { // error codes < 0 (e.g., stepLimit reached = -1) are not really errors fprintf(stderr, "Stopping due to error in integration.\n"); exit(1); } // End propagation // Print current properties of the system if (print_cdat) print_concentrations_network(conc_file,t); // Don't print if stopping condition met and !print_on_stop (must print to CDAT) // NOTE: Sometimes forceQuit happens at an output step. In this case print. if (!(forceQuit && !print_on_stop && t < t_out-network3::TOL)){ if (group_file) print_group_concentrations_network(group_file,t,print_func); if (group_file && print_func) print_function_values_network(group_file,t); if (enable_species_stats) print_species_stats(species_stats_file,t); if (print_flux){ int discrete = 0; if (propagator == SSA || propagator == PLA) discrete = 1; print_flux_network(flux_file,t,discrete); } if (print_save_net){ if (outpre) sprintf(buf, "%s_save.net", outpre); else sprintf(buf, "save.net"); out = fopen(buf, "w"); print_network(out); fclose(out); if (verbose) fprintf(stdout, " Wrote NET file to %s", buf); } } /* Check if steady state reached */ if (check_steady_state) { double *a, delta, dx; get_conc_network(conc); delta = sqrt(VECTOR_DIST(conc, conc_last, n_species_network())) / n_species_network(); fprintf(stdout, " RMS change in concentrations=%.1e.", delta); // Calculate derivatives derivs_network(t, conc, derivs); dx = NORM(derivs, n_species_network()) / n_species_network(); fprintf(stdout, " |dx/dt|/dim(x)=%.1e.", dx); //if (delta<10*atol){ if (dx < atol) { fprintf(stdout, " Steady state reached.\n"); break; } /* Swap conc and conc_last pointers */ a = conc_last; conc_last = conc; conc = a; } if (verbose) printf("\n"); if (n == outtime) { char buf[1000]; FILE *outfile; sprintf(buf, "%s.m", outpre); outfile = fopen(buf, "w"); init_sparse_matlab_file(outfile); sparse_jac_matlab(outfile); fclose(outfile); fprintf(stdout, "Jacobian written to %s after iteration %d\n", buf, outtime); } if (verbose) fflush(stdout); // Screen output if forceQuit = true if (forceQuit) cout << forceQuit_message << endl; } // end for } // end else // Final printouts if (t > t_start+network3::TOL && !print_cdat && propagator != PLA){ // If simulation ran t > t_start // Even if .cdat is suppressed, must print the last step (PLA handles this internally) print_concentrations_network(conc_file, t); } finish_print_concentrations_network(conc_file); if (group_file) finish_print_group_concentrations_network(group_file,print_func); if (group_file && print_func) finish_print_function_values_network(group_file); if (enable_species_stats) finish_print_species_stats(species_stats_file); // Screen outputs outpre = chop_suffix(outpre, ".net"); if (propagator == SSA) fprintf(stdout, "TOTAL STEPS: %-16.0f\n", gillespie_n_steps()); fprintf(stdout, "Time course of concentrations written to file %s.cdat.\n", outpre); if (n_groups_network()) fprintf(stdout, "Time course of groups written to file %s.gdat.\n", outpre); if (print_func && network.functions.size() > 0) fprintf(stdout, "Time course of functions written to file %s.gdat.\n", outpre); ptimes = t_elapsed(); fprintf(stdout, "Propagation took %.2e CPU seconds\n", ptimes.cpu); /* Print final concentrations in species list */ if (print_end_net){ if (outpre) sprintf(buf, "%s_end.net", outpre); else sprintf(buf, "end.net"); out = fopen(buf, "w"); print_network(out); fclose(out); fprintf(stdout, "Final network file written to %s\n", buf); } // exit: // Clean up memory allocated for functions if (network.has_functions) delete[] network.rates->elt; if (propagator == SSA){ // GSP.included added to GSP struct in code extension for functions // NOTE: GSP.included is created whether functions exist or not, so it must always be deleted delete_GSP_included(); } // Delete sample_times if exists if (sample_times) free(sample_times); // Note that "/^Program times:/" must be last message sent from Network3 (see BNGAction.pm) ptimes = t_elapsed(); fprintf(stdout, "Program times: %.2f CPU s %.2f clock s \n", ptimes.total_cpu, ptimes.total_real); return (0); }
void conv_2d_x_sym_odd_opt ( /******************************************************/ int masksize, /* in : size of convolution mask */ float *mask, /* in : convolution mask */ int nx, /* in : data dimension in x direction */ int ny, /* in : data dimension in y direction */ int bx, /* in : boundary in x direction */ int by, /* in : boundary in y direction */ float **f, /* in : original data */ float **v /* out : processed data */ /******************************************************/ ) /* convolution in x-direction with odd symmetric convolution mask */ /* since the values are stored in y-direction in the cache, a loop unrolling */ /* scheme is applied */ { /*************************************************/ int i, j, k,p; /* loop variables */ float *sum; /* for summing up */ float **help; /* array of rows with suitable boundary size */ int tmp1,tmp2,tmp3,tmp4; /* time saver */ int UNROLL; /* number of rows that are convolved in parallel */ int inner_loop_max; /* number of loops for parrallel computation */ int inner_loop_rest; /* number of remaining rows */ /*************************************************/ /* set number of rows convolved in parallel */ UNROLL=32; /* allocate storage for that many rows */ ALLOC_MATRIX (1, nx+masksize+masksize,UNROLL, &help); /* allocate storagy for that many results */ ALLOC_VECTOR (1, UNROLL, &sum); /* compute number of loops required if the desired number of rows is */ /* convolved in parallel */ inner_loop_max=ny/UNROLL; /* compute number of remaining rows that have to be convolved thereafter */ inner_loop_rest=ny-(inner_loop_max*UNROLL); /* time saver indices */ tmp1=masksize-1; tmp2=tmp1+nx; tmp3=tmp2+1; tmp4=tmp1-(bx-1); /*****************************************************************************/ /* (1/2) As long as the desired number of rows can be convolved in parallel */ /* use loop unrolling scheme that respects cache direction */ /*****************************************************************************/ for (j=0; j<inner_loop_max; j++) { /* copy rows in vector array */ for (i=bx; i<nx+bx; i++) for (k=0; k<UNROLL; k++) { help[i+tmp4][k] = f[i][j*UNROLL+k+by]; } /* mirror boundaries of each of these rows */ for (p=1; p<=masksize; p++) for (k=0; k<UNROLL; k++) { help[masksize-p][k] = help[tmp1+p][k]; help[tmp2 +p][k] = help[tmp3-p][k]; } /* convolution step for each of these rows */ for (i=masksize; i<=tmp2; i++) { /* convolve different rows in parallel */ for (k=0; k<UNROLL; k++) { sum[k] = mask[0] * help[i][k]; } for (p=1; p<=masksize; p++) for (k=0; k<UNROLL; k++) { sum[k] += mask[p] * (help[i+p][k] + help[i-p][k]); } /* write back results in parallel */ for (k=0; k<UNROLL; k++) { v[i-tmp4][j*UNROLL+k+by] = sum[k]; } } } /* for j */ /*****************************************************************************/ /* (2/2) Convolve the remaining number of rows in parallel using the same */ /* loop unrolling scheme */ /*****************************************************************************/ if (inner_loop_rest>0) { /* copy rows in vector array */ for (i=bx; i<nx+bx; i++) for (k=0; k<inner_loop_rest; k++) { help[i+tmp4][k] = f[i][j*UNROLL+k+by]; } /* mirror boundaries for each of these rows */ for (p=1; p<=masksize; p++) for (k=0; k<inner_loop_rest; k++) { help[masksize-p][k] = help[tmp1+p][k]; help[tmp2+p][k] = help[tmp3-p][k]; } /* convolution step for each of these rows */ for (i=masksize; i<=tmp2; i++) { /* convolve different rows in parallel */ for (k=0; k<inner_loop_rest; k++) { sum[k] = mask[0] * help[i][k]; } for (p=1; p<=masksize; p++) for (k=0; k<inner_loop_rest; k++) { sum[k] += mask[p] * (help[i+p][k] + help[i-p][k]); } /* write back results in parallel */ for (k=0; k<inner_loop_rest; k++) { v[i-tmp4][j*UNROLL+k+by] = sum[k]; } } } /* disallocate storage for the rows */ FREE_MATRIX (1, nx+masksize+masksize,UNROLL, help); /* disallocate storage for the results */ FREE_VECTOR (1, UNROLL, sum); return; }
void conv_2d_y_asym_odd_opt ( /******************************************************/ int masksize, /* in : size of convolution mask */ float *mask, /* in : convolution mask */ int nx, /* in : data dimension in x direction */ int ny, /* in : data dimension in y direction */ int bx, /* in : boundary in x direction */ int by, /* in : boundary in y direction */ float **f, /* in : original data */ float **v /* out : processed data */ /******************************************************/ ) /* convolution in y-direction with odd antisymmetric convolution mask */ { /*************************************************/ int i, j, k,p; /* loop variables */ float sum; /* for summing up */ float *help; /* array for one column with suitable boundary */ int tmp1,tmp2,tmp3,tmp4; /* time saver */ /*************************************************/ /* allocate storage for a sigle row */ ALLOC_VECTOR (1, ny+masksize+masksize, &help); /* time saver indices */ tmp1=masksize-1; tmp2=tmp1+ny; tmp3=tmp2+1; tmp4=tmp1-(by-1); /* for each column */ for (i=bx; i<nx+bx; i++) { /* copy current column in this column vector */ for (j=by; j<ny+by; j++) help[j+tmp4] = f[i][j]; /* mirror boundary of the colum vector */ for (p=1; p<=masksize; p++) { help[masksize-p] = help[tmp1+p]; help[tmp2+p] = help[tmp3-p]; } /* convolution step for the column vector*/ for (j=masksize; j<=tmp2; j++) { /* calculate convolution */ sum = mask[0] * help[j]; for (p=1; p<=masksize; p++) sum += mask[p] * (help[j+p] - help[j-p]); /* write back result for the current colum */ v[i][j-tmp4] = sum; } } /* for i */ /* disallocate storage for a single row */ FREE_VECTOR (1, ny+masksize+masksize, help); return; }