// Find the intersection with another rect and fill in the intersect rect // if requested (not NULL) // bool TClipRect::Intersect(Rectangle* pTargetRect, Rectangle* pIntRect) { coord l; coord t; coord r; coord b; bool ret = FALSE; if (IsEmpty() == FALSE) { // we have a rect to check l = AMax(x1, pTargetRect->x1); t = AMin(x2 - 1, pTargetRect->x2); r = AMax(y1, pTargetRect->y1); b = AMin(y2 - 1, pTargetRect->y2); if (r >= l && b >= t) { if (pIntRect) { pIntRect->x1 = l; pIntRect->y1 = t; pIntRect->x2 = r; pIntRect->y2 = b; } ret = TRUE; } } return ret; }
// Clip this rectangle to be within the passed clipRect // void Rectangle::Clip(Rectangle* clipRect) { x1 = AMax(x1, clipRect->x1); y1 = AMax(y1, clipRect->y1); x2 = AMax(AMin(x2, clipRect->x2), x1); y2 = AMax(AMin(y2, clipRect->y2), y1); }
// Clip this rectangle to be within the passed TClipRect // void TClipRect::Clip(TClipRect* pClipRect) { x1 = AMax(x1, pClipRect->x1); y1 = AMax(y1, pClipRect->y1); x2 = AMax(AMin(x2, pClipRect->x2), x1); y2 = AMax(AMin(y2, pClipRect->y2), y1); }
// Clip this rectangle to be within the passed TClipRect // void TClipRect::Clip(Rectangle* pClipRect) { x1 = AMax(x1, pClipRect->x1); y1 = AMax(y1, pClipRect->y1); x2 = AMax(AMin(x2, pClipRect->x2 + 1), x1); y2 = AMax(AMin(y2, pClipRect->y2 + 1), y1); }
// Enlarge to bound second rect void Rectangle::Unite(Rectangle* pRect2) { x1 = AMin(x1, pRect2->x1); y1 = AMin(y1, pRect2->y1); x2 = AMax(x2, pRect2->x2); y2 = AMax(y2, pRect2->y2); area = CalcArea(); }
// Enlarge to bound second rect void TClipRect::Unite(TClipRect* pRect2) { x1 = AMin(x1, pRect2->x1); y1 = AMin(y1, pRect2->y1); x2 = AMax(x2, pRect2->x2); y2 = AMax(y2, pRect2->y2); area = CalcArea(); }
// Calculate the area of a rect large enough to contain this rect // and another rect. uint Rectangle::AreaBounds(Rectangle* pRect2) { coord t, l, b, r; l = AMin(x1, pRect2->x1); t = AMin(y1, pRect2->y1); r = AMax(x2, pRect2->x2); b = AMax(y2, pRect2->y2); return ((b - t + 1) * (r - l + 1)); }
// Calculate the area of a rect large enough to contain this rect // and another rect. uint TClipRect::AreaBounds(TClipRect* pRect2) { coord t, l, b, r; l = AMin(x1, pRect2->x1); t = AMin(y1, pRect2->y1); r = AMax(x2, pRect2->x2); b = AMax(y2, pRect2->y2); return ((b - t) * (r - l)); }
/*========================================================= * enlarge_array -- Make array large enough for [space] elements *=======================================================*/ void enlarge_array (ARRAY array, INT space) { int newsize = AMax(array); void ** ptr; int i; while (newsize <= space) newsize <<= 2; if (newsize<AMax(array)) return; ptr = (void **)stdalloc(newsize * sizeof(AData(array)[0])); for (i = 0; i < ASize(array); i++) ptr[i] = AData(array)[i]; stdfree(AData(array)); AData(array) = ptr; AMax(array) = newsize; }
// Find the intersection with another rect and fill in the intersect rect // if requested (not NULL) // bool Rectangle::Intersect(Rectangle* pTargetRect, Rectangle* pIntRect) { coord l = AMax(x1, pTargetRect->x1); coord t = AMin(x2, pTargetRect->x2); coord r = AMax(y1, pTargetRect->y1); coord b = AMin(y2, pTargetRect->y2); bool ret = FALSE; if (r >= l && b >= t) { if (pIntRect) { pIntRect->x1 = l; pIntRect->y1 = t; pIntRect->x2 = r; pIntRect->y2 = b; } ret = TRUE; } return ret; }
/*========================================================= * create_array_objval -- Create array (which holds objects) *=======================================================*/ ARRAY create_array_objval (INT size) { ARRAY array = 0; if (!size) size=20; ASSERT(size >= 1); array = (ARRAY)stdalloc(sizeof(*array)); memset(array, 0, sizeof(*array)); array->vtable = &vtable_for_array; ASize(array) = 0; AMax(array) = size; AData(array) = (void **)stdalloc(size * sizeof(AData(array)[0])); return array; }
/*========================================================= * set_array_obj -- Set element (object) in array * grow if necessary *=======================================================*/ void set_array_obj (ARRAY array, INT i, OBJECT obj) { ASSERT(i>=0); ASSERT(i< 0x1000000); /* 16,777,216 */ if (i>=AMax(array)) { enlarge_array(array, i); } if (i>=ASize(array)) { int j; for (j=ASize(array); j<i; ++j) AData(array)[j] = 0; ASize(array)=i+1; } AData(array)[i] = obj; }
int test_linearRand() { int Error = 0; glm::int32 const Min = 16; glm::int32 const Max = 32; { glm::u8vec2 AMin(std::numeric_limits<glm::u8>::max()); glm::u8vec2 AMax(std::numeric_limits<glm::u8>::min()); { for(std::size_t i = 0; i < 100000; ++i) { glm::u8vec2 A = glm::linearRand(glm::u8vec2(Min), glm::u8vec2(Max)); AMin = glm::min(AMin, A); AMax = glm::max(AMax, A); if(!glm::all(glm::lessThanEqual(A, glm::u8vec2(Max)))) ++Error; if(!glm::all(glm::greaterThanEqual(A, glm::u8vec2(Min)))) ++Error; assert(!Error); } Error += glm::all(glm::equal(AMin, glm::u8vec2(Min))) ? 0 : 1; Error += glm::all(glm::equal(AMax, glm::u8vec2(Max))) ? 0 : 1; assert(!Error); } glm::u16vec2 BMin(std::numeric_limits<glm::u16>::max()); glm::u16vec2 BMax(std::numeric_limits<glm::u16>::min()); { for(std::size_t i = 0; i < 100000; ++i) { glm::u16vec2 B = glm::linearRand(glm::u16vec2(Min), glm::u16vec2(Max)); BMin = glm::min(BMin, B); BMax = glm::max(BMax, B); if(!glm::all(glm::lessThanEqual(B, glm::u16vec2(Max)))) ++Error; if(!glm::all(glm::greaterThanEqual(B, glm::u16vec2(Min)))) ++Error; assert(!Error); } Error += glm::all(glm::equal(BMin, glm::u16vec2(Min))) ? 0 : 1; Error += glm::all(glm::equal(BMax, glm::u16vec2(Max))) ? 0 : 1; assert(!Error); } glm::u32vec2 CMin(std::numeric_limits<glm::u32>::max()); glm::u32vec2 CMax(std::numeric_limits<glm::u32>::min()); { for(std::size_t i = 0; i < 100000; ++i) { glm::u32vec2 C = glm::linearRand(glm::u32vec2(Min), glm::u32vec2(Max)); CMin = glm::min(CMin, C); CMax = glm::max(CMax, C); if(!glm::all(glm::lessThanEqual(C, glm::u32vec2(Max)))) ++Error; if(!glm::all(glm::greaterThanEqual(C, glm::u32vec2(Min)))) ++Error; assert(!Error); } Error += glm::all(glm::equal(CMin, glm::u32vec2(Min))) ? 0 : 1; Error += glm::all(glm::equal(CMax, glm::u32vec2(Max))) ? 0 : 1; assert(!Error); } glm::u64vec2 DMin(std::numeric_limits<glm::u64>::max()); glm::u64vec2 DMax(std::numeric_limits<glm::u64>::min()); { for(std::size_t i = 0; i < 100000; ++i) { glm::u64vec2 D = glm::linearRand(glm::u64vec2(Min), glm::u64vec2(Max)); DMin = glm::min(DMin, D); DMax = glm::max(DMax, D); if(!glm::all(glm::lessThanEqual(D, glm::u64vec2(Max)))) ++Error; if(!glm::all(glm::greaterThanEqual(D, glm::u64vec2(Min)))) ++Error; assert(!Error); } Error += glm::all(glm::equal(DMin, glm::u64vec2(Min))) ? 0 : 1; Error += glm::all(glm::equal(DMax, glm::u64vec2(Max))) ? 0 : 1; assert(!Error); } } { glm::i8vec2 AMin(std::numeric_limits<glm::i8>::max()); glm::i8vec2 AMax(std::numeric_limits<glm::i8>::min()); { for(std::size_t i = 0; i < 100000; ++i) { glm::i8vec2 A = glm::linearRand(glm::i8vec2(Min), glm::i8vec2(Max)); AMin = glm::min(AMin, A); AMax = glm::max(AMax, A); if(!glm::all(glm::lessThanEqual(A, glm::i8vec2(Max)))) ++Error; if(!glm::all(glm::greaterThanEqual(A, glm::i8vec2(Min)))) ++Error; assert(!Error); } Error += glm::all(glm::equal(AMin, glm::i8vec2(Min))) ? 0 : 1; Error += glm::all(glm::equal(AMax, glm::i8vec2(Max))) ? 0 : 1; assert(!Error); } glm::i16vec2 BMin(std::numeric_limits<glm::i16>::max()); glm::i16vec2 BMax(std::numeric_limits<glm::i16>::min()); { for(std::size_t i = 0; i < 100000; ++i) { glm::i16vec2 B = glm::linearRand(glm::i16vec2(Min), glm::i16vec2(Max)); BMin = glm::min(BMin, B); BMax = glm::max(BMax, B); if(!glm::all(glm::lessThanEqual(B, glm::i16vec2(Max)))) ++Error; if(!glm::all(glm::greaterThanEqual(B, glm::i16vec2(Min)))) ++Error; assert(!Error); } Error += glm::all(glm::equal(BMin, glm::i16vec2(Min))) ? 0 : 1; Error += glm::all(glm::equal(BMax, glm::i16vec2(Max))) ? 0 : 1; assert(!Error); } glm::i32vec2 CMin(std::numeric_limits<glm::i32>::max()); glm::i32vec2 CMax(std::numeric_limits<glm::i32>::min()); { for(std::size_t i = 0; i < 100000; ++i) { glm::i32vec2 C = glm::linearRand(glm::i32vec2(Min), glm::i32vec2(Max)); CMin = glm::min(CMin, C); CMax = glm::max(CMax, C); if(!glm::all(glm::lessThanEqual(C, glm::i32vec2(Max)))) ++Error; if(!glm::all(glm::greaterThanEqual(C, glm::i32vec2(Min)))) ++Error; assert(!Error); } Error += glm::all(glm::equal(CMin, glm::i32vec2(Min))) ? 0 : 1; Error += glm::all(glm::equal(CMax, glm::i32vec2(Max))) ? 0 : 1; assert(!Error); } glm::i64vec2 DMin(std::numeric_limits<glm::i64>::max()); glm::i64vec2 DMax(std::numeric_limits<glm::i64>::min()); { for(std::size_t i = 0; i < 100000; ++i) { glm::i64vec2 D = glm::linearRand(glm::i64vec2(Min), glm::i64vec2(Max)); DMin = glm::min(DMin, D); DMax = glm::max(DMax, D); if(!glm::all(glm::lessThanEqual(D, glm::i64vec2(Max)))) ++Error; if(!glm::all(glm::greaterThanEqual(D, glm::i64vec2(Min)))) ++Error; assert(!Error); } Error += glm::all(glm::equal(DMin, glm::i64vec2(Min))) ? 0 : 1; Error += glm::all(glm::equal(DMax, glm::i64vec2(Max))) ? 0 : 1; assert(!Error); } } for(std::size_t i = 0; i < 100000; ++i) { glm::f32vec2 const A(glm::linearRand(glm::f32vec2(static_cast<float>(Min)), glm::f32vec2(static_cast<float>(Max)))); if(!glm::all(glm::lessThanEqual(A, glm::f32vec2(static_cast<float>(Max))))) ++Error; if(!glm::all(glm::greaterThanEqual(A, glm::f32vec2(static_cast<float>(Min))))) ++Error; glm::f64vec2 const B(glm::linearRand(glm::f64vec2(Min), glm::f64vec2(Max))); if(!glm::all(glm::lessThanEqual(B, glm::f64vec2(Max)))) ++Error; if(!glm::all(glm::greaterThanEqual(B, glm::f64vec2(Min)))) ++Error; assert(!Error); } { float ResultFloat = 0.0f; double ResultDouble = 0.0f; for(std::size_t i = 0; i < 100000; ++i) { ResultFloat += glm::linearRand(-1.0f, 1.0f); ResultDouble += glm::linearRand(-1.0, 1.0); } Error += glm::epsilonEqual(ResultFloat, 0.0f, 0.0001f); Error += glm::epsilonEqual(ResultDouble, 0.0, 0.0001); assert(!Error); } return Error; }