//----------------------------------------------------------------------------------
long init_asio_static_data (DriverInfo *asioDriverInfo)
{	// collect the informational data of the driver
	// get the number of available channels
	if(ASIOGetChannels(&asioDriverInfo->inputChannels, &asioDriverInfo->outputChannels) == ASE_OK)
	{
		printf ("ASIOGetChannels (inputs: %d, outputs: %d);\n", asioDriverInfo->inputChannels, asioDriverInfo->outputChannels);

		// get the usable buffer sizes
		if(ASIOGetBufferSize(&asioDriverInfo->minSize, &asioDriverInfo->maxSize, &asioDriverInfo->preferredSize, &asioDriverInfo->granularity) == ASE_OK)
		{
			printf ("ASIOGetBufferSize (min: %d, max: %d, preferred: %d, granularity: %d);\n",
					 asioDriverInfo->minSize, asioDriverInfo->maxSize,
					 asioDriverInfo->preferredSize, asioDriverInfo->granularity);

			// get the currently selected sample rate
			if(ASIOGetSampleRate(&asioDriverInfo->sampleRate) == ASE_OK)
			{
				printf ("ASIOGetSampleRate (sampleRate: %f);\n", asioDriverInfo->sampleRate);
				if (asioDriverInfo->sampleRate <= 0.0 || asioDriverInfo->sampleRate > 96000.0)
				{
					// Driver does not store it's internal sample rate, so set it to a know one.
					// Usually you should check beforehand, that the selected sample rate is valid
					// with ASIOCanSampleRate().
					if(ASIOSetSampleRate(44100.0) == ASE_OK)
					{
						if(ASIOGetSampleRate(&asioDriverInfo->sampleRate) == ASE_OK)
							printf ("ASIOGetSampleRate (sampleRate: %f);\n", asioDriverInfo->sampleRate);
						else
							return -6;
					}
					else
						return -5;
				}

				// check wether the driver requires the ASIOOutputReady() optimization
				// (can be used by the driver to reduce output latency by one block)
				if(ASIOOutputReady() == ASE_OK)
					asioDriverInfo->postOutput = true;
				else
					asioDriverInfo->postOutput = false;
				printf ("ASIOOutputReady(); - %s\n", asioDriverInfo->postOutput ? "Supported" : "Not supported");

				return 0;
			}
			return -3;
		}
		return -2;
	}
	return -1;
}
示例#2
0
JNIEXPORT jdouble JNICALL Java_com_synthbot_jasiohost_AsioDriver_ASIOGetSampleRate
(JNIEnv *env, jclass clazz) {
  
  ASIOSampleRate sampleRate;
  ASIOError errorCode = ASIOGetSampleRate(&sampleRate);
  switch (errorCode) {
    case ASE_OK: {
      return (jdouble) sampleRate;
    }
    case ASE_NoClock: {
      env->ThrowNew(
          env->FindClass("com/synthbot/jasiohost/AsioException"),
          "Sample rate not present or unknown.");
      return (jdouble) -1.0;
    }
    case ASE_NotPresent: {
      env->ThrowNew(
          env->FindClass("com/synthbot/jasiohost/AsioException"),
          "No input or output is present.");
      return (jdouble) -1.0;
    }
  }
}
示例#3
0
SndASIO::SndASIO(int channels, int mode, char* driver, int numbuffs, 
		 SndObj** inputs, 
		 int vecsize, float sr) : 
  SndIO(channels,16,inputs,vecsize, sr){

  int i;
  m_numbuffs = numbuffs;
  m_mode = mode;
  m_running = false;
  m_driver = driver;
  m_ocurrentbuffer = m_icurrentbuffer = 1;
  m_icount = m_ocount = 0; 

  memset(&m_driverinfo, 0, sizeof(ASIODriverInfo));

  m_asiocallbacks.bufferSwitch = &bufferSwitch;
  m_asiocallbacks.sampleRateDidChange = &sampleRateChanged;
  m_asiocallbacks.asioMessage = &asioMessages;
  m_asiocallbacks.bufferSwitchTimeInfo = &bufferSwitchTimeInfo;

  // Allocate the memory for BufferInfos
  if(!(bufferinfos = new ASIOBufferInfo[(m_channels+2)*2])){
    m_error = 21;
    return;
  }


  if(!asioDrivers) asioDrivers = new AsioDrivers;

  if(asioDrivers->loadDriver(m_driver)){

    if(ASIOInit(&m_driverinfo) == ASE_OK){

      if(ASIOCanSampleRate(m_sr) == ASE_OK) 
	ASIOSetSampleRate(m_sr);
      else ASIOGetSampleRate((double *)&m_sr);
      // set buffer size
      long dump1, dump2, dump3;
      ASIOGetBufferSize(&dump1, &dump2, &buffsize, &dump3);
   
      // get number of channels
      ASIOGetChannels(&ichannels, &ochannels);
      if(ichannels < m_channels){
	m_channels = (short) ichannels;
	m_samples = m_vecsize*m_channels;
      }
      else ichannels = m_channels;
      if(ochannels < m_channels){
	m_channels = (short) ochannels;
	m_samples = m_vecsize*m_channels;
      }
      else ochannels = m_channels;
   
      if(m_mode == SND_OUTPUT) ichannels = 0;
      if(m_mode == SND_INPUT) ochannels = 0;
       
  
      // Set the channel infos
      if(!(m_channelinfos = new ASIOChannelInfo[m_channels*2])){
	m_error = 22;
	return;
      }
      
      if((m_mode == SND_IO) || (m_mode == SND_OUTPUT)){           
	outsndbuff = new float*[m_numbuffs];    
   
	for(i = 0; i< m_numbuffs; i++){
	  if(!(outsndbuff[i] = new float[buffsize*m_channels])){
	    m_error =14;
	    return;
	  }
	}

	for(i = 0; i < m_channels; i++){	
	  bufferinfos[i].isInput = ASIOFalse;
	  bufferinfos[i].channelNum = i;
	  bufferinfos[i].buffers[0] =
	    bufferinfos[i].buffers[1] = 0;

	  m_channelinfos[i].channel = bufferinfos[i].channelNum;
	  m_channelinfos[i].isInput = bufferinfos[i].isInput;

	  ASIOGetChannelInfo(&m_channelinfos[i]);

  
	  switch(m_channelinfos[i].type){

	  case ASIOSTInt16LSB:
	    encoding = SHORTSAM;
	    m_bits = 16;
	    break;

	  case ASIOSTInt24LSB:
	    encoding = S24LE;
	    m_bits = 24;
	    break;

	  case ASIOSTInt32LSB:
	    encoding = LONGSAM;
	    m_bits = 32;
	    break;

	  default:
	    encoding = SHORTSAM;
	    break;

	  }
	} 
      }
 	 
      if((m_mode == SND_IO) || (m_mode == SND_INPUT)){
	insndbuff = new float*[m_numbuffs];    
   
	for(i = 0; i< m_numbuffs; i++){
	  if(!(insndbuff[i] = new float[buffsize*m_channels])){
	    m_error =14;
	    return;
	  }
	}
   
	for(i = 0; i < m_channels; i++){
	  bufferinfos[i+ochannels].isInput = ASIOTrue;
	  bufferinfos[i+ochannels].channelNum = i;
	  bufferinfos[i+ochannels].buffers[0] =
	    bufferinfos[i+ochannels].buffers[1] = 0;

	  m_channelinfos[i+ochannels].channel = bufferinfos[i+ochannels].channelNum;
	  m_channelinfos[i+ochannels].isInput = bufferinfos[i+ochannels].isInput;
 
	  ASIOGetChannelInfo(&m_channelinfos[i+ochannels]);
     
	  switch(m_channelinfos[i+ochannels].type){

	  case ASIOSTInt16LSB:
	    encoding = SHORTSAM;
	    m_bits = 16;
	    break;

	  case ASIOSTInt24LSB:
	    encoding = S24LE;
	    m_bits = 24;
	    break;

	  case ASIOSTInt32LSB:
	    encoding = LONGSAM;
	    m_bits = 32;
	    break;

	  default:
	    encoding = SHORTSAM;
	    break;

	  }

	}
      }

      if(!(ASIOCreateBuffers(bufferinfos, ichannels+ochannels, 
			     buffsize, &m_asiocallbacks)== ASE_OK)){
	m_error = 25;
	return;
      }

    
      if(ASIOOutputReady() == ASE_OK) optimise = true;
      else optimise = false;
      // printf("channels: %d\n", m_channels);
      m_outsndbuff = outsndbuff;
      m_insndbuff = insndbuff;
      m_encoding = encoding;
      m_bufferinfos = bufferinfos;
      m_ichannels = ichannels;
      m_ochannels  = ochannels;
      m_buffsize = buffsize;
      currentbuffer = 0;
      m_called_read = false;
      buffs = m_numbuffs;
  
    } 
    else { // could not initialise
      m_error = 24;
      return;
    }
  }   
  else { // if driver could not be loaded

    m_error = 23;
    return;

  }
#ifdef DEBUG
  cout << m_bits;
#endif
}
示例#4
0
// Main:
int main()
{
    int retval = 0;
    bool inited = false, buffersCreated = false, started = false;
    char *error = NULL;

    drv.sampleRate = 44100.0;

    // Initialize FX parameters:
    fx.f0_gain.init();
    fx.f1_compressor.init();

    // Set our own inputs:
    for (int i = 0; i < icr; ++i)
    {
        fx.f0_gain.input.gain[i] = _mm256_set1_pd(0);   // dB

        fx.f1_compressor.input.threshold[i] = _mm256_set1_pd(-30);  // dBFS
        fx.f1_compressor.input.attack[i]    = _mm256_set1_pd(1.0);  // msec
        fx.f1_compressor.input.release[i]   = _mm256_set1_pd(80);   // msec
        fx.f1_compressor.input.ratio[i]     = _mm256_set1_pd(0.25); // N:1
        fx.f1_compressor.input.gain[i]      = _mm256_set1_pd(6);    // dB
    }

    // Calculate input-dependent values:
    fx.f0_gain.recalc();
    fx.f1_compressor.recalc();

    // FX parameters are all set.

#ifdef NOT_LIVE
    // Test mode:

#if 0
    const auto t0 = mm256_if_then_else(_mm256_cmp_pd(_mm256_set1_pd(-1.0), _mm256_set1_pd(0.0), _CMP_LT_OQ), _mm256_set1_pd(0.0), _mm256_set1_pd(-1.0));
    printvec_dB(t0);
    printf("\n\n");
    const auto p0 = mm256_if_then_else(_mm256_cmp_pd(_mm256_set1_pd(-1.0), _mm256_set1_pd(0.0), _CMP_LT_OQ), _mm256_set1_pd(0.0), _mm256_set1_pd(1.0));
    printvec_dB(t0);
    printf("\n\n");
    const auto t1 = mm256_if_then_else(_mm256_cmp_pd(_mm256_set1_pd(0.0), _mm256_set1_pd(0.0), _CMP_LT_OQ), _mm256_set1_pd(0.0), _mm256_set1_pd(-1.0));
    printvec_dB(t1);
    printf("\n\n");
    const auto p1 = mm256_if_then_else(_mm256_cmp_pd(_mm256_set1_pd(0.0), _mm256_set1_pd(0.0), _CMP_LT_OQ), _mm256_set1_pd(0.0), _mm256_set1_pd(1.0));
    printvec_dB(t1);
    printf("\n\n");
    goto done;
#endif

    vec8_i32 in, out;
    long long c = 0LL;
    for (int i = 0; i < 20; ++i)
    {
        for (int n = 0; n < 48; ++n, ++c)
        {
            double s = sin(2.0 * 3.14159265358979323846 * (double)c / drv.sampleRate);
            int si = (int)(s * INT_MAX / 2);

            in = _mm256_set1_epi32(si);

            processEffects(in, out, 0);
        }

#if 1
        printf("samp:   ");
        printvec_samp(in);
        printf("\n");

        printf("input:  ");
        for (int n = 0; n < icr; ++n)
        {
            printvec_dB(fx.fi_monitor.levels[n]);
            if (n < icr - 1) printf(" ");
        }
        printf("\n");

        printf("gain:   ");
        for (int n = 0; n < icr; ++n)
        {
            printvec_dB(fx.f0_output.levels[n]);
            if (n < icr - 1) printf(" ");
        }
        printf("\n");

        printf("comp:   ");
        for (int n = 0; n < icr; ++n)
        {
            printvec_dB(fx.fo_monitor.levels[n]);
            if (n < icr - 1) printf(" ");
        }
        printf("\n");

        printf("samp:   ");
        printvec_samp(out);
        printf("\n\n");
#endif
    }
#else
    // ASIO live engine mode:
    if (!loadAsioDriver("UA-1000"))
    {
        error = "load failed.";
        goto err;
    }

    if (ASIOInit(&drv.driver) != ASE_OK)
        goto err;

    inited = true;

    if (ASIOGetChannels(&drv.inputChannels, &drv.outputChannels) != ASE_OK)
        goto err;

    printf("in: %d, out %d\n", drv.inputChannels, drv.outputChannels);

    if (ASIOGetBufferSize(&drv.minSize, &drv.maxSize, &drv.preferredSize, &drv.granularity) != ASE_OK)
        goto err;

    printf("min buf size: %d, preferred: %d, max buf size: %d\n", drv.minSize, drv.preferredSize, drv.maxSize);

    if (ASIOGetSampleRate(&drv.sampleRate) != ASE_OK)
        goto err;

    printf("rate: %f\n\n", drv.sampleRate);

    if (ASIOOutputReady() == ASE_OK)
        drv.postOutput = true;
    else
        drv.postOutput = false;

    // fill the bufferInfos from the start without a gap
    ASIOBufferInfo *info = drv.bufferInfos;

    // prepare inputs (Though this is not necessarily required, no opened inputs will work, too
    if (drv.inputChannels > kMaxInputChannels)
        drv.inputBuffers = kMaxInputChannels;
    else
        drv.inputBuffers = drv.inputChannels;
    for (int i = 0; i < drv.inputBuffers; i++, info++)
    {
        info->isInput = ASIOTrue;
        info->channelNum = i;
        info->buffers[0] = info->buffers[1] = 0;
    }

    // prepare outputs
    if (drv.outputChannels > kMaxOutputChannels)
        drv.outputBuffers = kMaxOutputChannels;
    else
        drv.outputBuffers = drv.outputChannels;
    for (int i = 0; i < drv.outputBuffers; i++, info++)
    {
        info->isInput = ASIOFalse;
        info->channelNum = i;
        info->buffers[0] = info->buffers[1] = 0;
    }

    asioCallbacks.asioMessage = asioMessage;
    asioCallbacks.bufferSwitch = bufferSwitch;
    asioCallbacks.bufferSwitchTimeInfo = bufferSwitchTimeInfo;

    // Create the buffers:
    if (ASIOCreateBuffers(drv.bufferInfos, drv.inputBuffers + drv.outputBuffers, drv.preferredSize, &asioCallbacks) != ASE_OK)
        goto err;
    else
        buffersCreated = true;

    // now get all the buffer details, sample word length, name, word clock group and activation
    for (int i = 0; i < drv.inputBuffers + drv.outputBuffers; i++)
    {
        drv.channelInfos[i].channel = drv.bufferInfos[i].channelNum;
        drv.channelInfos[i].isInput = drv.bufferInfos[i].isInput;
        if (ASIOGetChannelInfo(&drv.channelInfos[i]) != ASE_OK)
            goto err;

        //printf("%s[%2d].type = %d\n", drv.channelInfos[i].isInput ? "in " : "out", drv.channelInfos[i].channel, drv.channelInfos[i].type);
        if (drv.channelInfos[i].type != ASIOSTInt32LSB)
        {
            error = "Application assumes sample types of ASIOSTInt32LSB!";
            goto err;
        }
    }

    // get the input and output latencies
    // Latencies often are only valid after ASIOCreateBuffers()
    // (input latency is the age of the first sample in the currently returned audio block)
    // (output latency is the time the first sample in the currently returned audio block requires to get to the output)
    if (ASIOGetLatencies(&drv.inputLatency, &drv.outputLatency) != ASE_OK)
        goto err;

    printf ("latencies: input: %d, output: %d\n", drv.inputLatency, drv.outputLatency);

    // Start the engine:
    if (ASIOStart() != ASE_OK)
        goto err;
    else
        started = true;

    printf("Engine started.\n\n");
    const int total_time = 30;
    for (int i = 0; i < total_time; ++i)
    {
        printf("Engine running %2d.   \r", total_time - i);
        Sleep(1000);
    }
#endif

    goto done;

err:
    if (error == NULL)
        error = drv.driver.errorMessage;

    if (error != NULL)
        fprintf(stderr, "%s\r\n", error);

    retval = -1;

done:
    if (started)
        ASIOStop();
    if (buffersCreated)
        ASIODisposeBuffers();
    if (inited)
        ASIOExit();
    return retval;
}