示例#1
0
static void
AcpiTbConvertFadt1 (
    FADT_DESCRIPTOR_REV2   *LocalFadt,
    FADT_DESCRIPTOR_REV1   *OriginalFadt)
{


    /* ACPI 1.0 FACS */
    /* The BIOS stored FADT should agree with Revision 1.0 */

    /*
     * Copy the table header and the common part of the tables.
     *
     * The 2.0 table is an extension of the 1.0 table, so the entire 1.0
     * table can be copied first, then expand some fields to 64 bits.
     */
    ACPI_MEMCPY (LocalFadt, OriginalFadt, sizeof (FADT_DESCRIPTOR_REV1));

    /* Convert table pointers to 64-bit fields */

    ACPI_STORE_ADDRESS (LocalFadt->XFirmwareCtrl, LocalFadt->V1_FirmwareCtrl);
    ACPI_STORE_ADDRESS (LocalFadt->XDsdt, LocalFadt->V1_Dsdt);

    /*
     * System Interrupt Model isn't used in ACPI 2.0 (LocalFadt->Reserved1 = 0;)
     */

    /*
     * This field is set by the OEM to convey the preferred power management
     * profile to OSPM. It doesn't have any 1.0 equivalence.  Since we don't
     * know what kind of 32-bit system this is, we will use "unspecified".
     */
    LocalFadt->Prefer_PM_Profile = PM_UNSPECIFIED;

    /*
     * Processor Performance State Control. This is the value OSPM writes to
     * the SMI_CMD register to assume processor performance state control
     * responsibility. There isn't any equivalence in 1.0, leave it zeroed.
     */
    LocalFadt->PstateCnt = 0;

    /*
     * Support for the _CST object and C States change notification.
     * This data item hasn't any 1.0 equivalence so leave it zero.
     */
    LocalFadt->CstCnt = 0;

    /*
     * Since there isn't any equivalence in 1.0 and since it highly likely
     * that a 1.0 system has legacy support.
     */
    LocalFadt->IapcBootArch = BAF_LEGACY_DEVICES;

    /*
     * Convert the V1.0 block addresses to V2.0 GAS structures
     */
    ASL_BUILD_GAS_FROM_V1_ENTRY (LocalFadt->XPm1aEvtBlk, LocalFadt->Pm1EvtLen,  LocalFadt->V1_Pm1aEvtBlk);
    ASL_BUILD_GAS_FROM_V1_ENTRY (LocalFadt->XPm1bEvtBlk, LocalFadt->Pm1EvtLen,  LocalFadt->V1_Pm1bEvtBlk);
    ASL_BUILD_GAS_FROM_V1_ENTRY (LocalFadt->XPm1aCntBlk, LocalFadt->Pm1CntLen,  LocalFadt->V1_Pm1aCntBlk);
    ASL_BUILD_GAS_FROM_V1_ENTRY (LocalFadt->XPm1bCntBlk, LocalFadt->Pm1CntLen,  LocalFadt->V1_Pm1bCntBlk);
    ASL_BUILD_GAS_FROM_V1_ENTRY (LocalFadt->XPm2CntBlk,  LocalFadt->Pm2CntLen,  LocalFadt->V1_Pm2CntBlk);
    ASL_BUILD_GAS_FROM_V1_ENTRY (LocalFadt->XPmTmrBlk,   LocalFadt->PmTmLen,    LocalFadt->V1_PmTmrBlk);
    ASL_BUILD_GAS_FROM_V1_ENTRY (LocalFadt->XGpe0Blk,    0,                     LocalFadt->V1_Gpe0Blk);
    ASL_BUILD_GAS_FROM_V1_ENTRY (LocalFadt->XGpe1Blk,    0,                     LocalFadt->V1_Gpe1Blk);
}
示例#2
0
static void
AcpiTbConvertFadt2 (
    FADT_DESCRIPTOR_REV2   *LocalFadt,
    FADT_DESCRIPTOR_REV2   *OriginalFadt)
{

    /* We have an ACPI 2.0 FADT but we must copy it to our local buffer */

    ACPI_MEMCPY (LocalFadt, OriginalFadt, sizeof (FADT_DESCRIPTOR_REV2));

    /*
     * "X" fields are optional extensions to the original V1.0 fields, so
     * we must selectively expand V1.0 fields if the corresponding X field
     * is zero.
     */
    if (!(ACPI_GET_ADDRESS (LocalFadt->XFirmwareCtrl)))
    {
        ACPI_STORE_ADDRESS (LocalFadt->XFirmwareCtrl, LocalFadt->V1_FirmwareCtrl);
    }

    if (!(ACPI_GET_ADDRESS (LocalFadt->XDsdt)))
    {
        ACPI_STORE_ADDRESS (LocalFadt->XDsdt, LocalFadt->V1_Dsdt);
    }

    if (!(ACPI_GET_ADDRESS (LocalFadt->XPm1aEvtBlk.Address)))
    {
        ASL_BUILD_GAS_FROM_V1_ENTRY (LocalFadt->XPm1aEvtBlk,
            LocalFadt->Pm1EvtLen,  LocalFadt->V1_Pm1aEvtBlk);
    }

    if (!(ACPI_GET_ADDRESS (LocalFadt->XPm1bEvtBlk.Address)))
    {
        ASL_BUILD_GAS_FROM_V1_ENTRY (LocalFadt->XPm1bEvtBlk,
            LocalFadt->Pm1EvtLen,  LocalFadt->V1_Pm1bEvtBlk);
    }

    if (!(ACPI_GET_ADDRESS (LocalFadt->XPm1aCntBlk.Address)))
    {
        ASL_BUILD_GAS_FROM_V1_ENTRY (LocalFadt->XPm1aCntBlk,
            LocalFadt->Pm1CntLen,  LocalFadt->V1_Pm1aCntBlk);
    }

    if (!(ACPI_GET_ADDRESS (LocalFadt->XPm1bCntBlk.Address)))
    {
        ASL_BUILD_GAS_FROM_V1_ENTRY (LocalFadt->XPm1bCntBlk,
            LocalFadt->Pm1CntLen,  LocalFadt->V1_Pm1bCntBlk);
    }

    if (!(ACPI_GET_ADDRESS (LocalFadt->XPm2CntBlk.Address)))
    {
        ASL_BUILD_GAS_FROM_V1_ENTRY (LocalFadt->XPm2CntBlk,
            LocalFadt->Pm2CntLen,  LocalFadt->V1_Pm2CntBlk);
    }

    if (!(ACPI_GET_ADDRESS (LocalFadt->XPmTmrBlk.Address)))
    {
        ASL_BUILD_GAS_FROM_V1_ENTRY (LocalFadt->XPmTmrBlk,
            LocalFadt->PmTmLen,    LocalFadt->V1_PmTmrBlk);
    }

    if (!(ACPI_GET_ADDRESS (LocalFadt->XGpe0Blk.Address)))
    {
        ASL_BUILD_GAS_FROM_V1_ENTRY (LocalFadt->XGpe0Blk,
            0, LocalFadt->V1_Gpe0Blk);
    }

    if (!(ACPI_GET_ADDRESS (LocalFadt->XGpe1Blk.Address)))
    {
        ASL_BUILD_GAS_FROM_V1_ENTRY (LocalFadt->XGpe1Blk,
            0, LocalFadt->V1_Gpe1Blk);
    }
}
acpi_status
acpi_tb_convert_table_fadt (void)
{

#ifdef _IA64
	fadt_descriptor_rev071 *FADT71;
	u8                      pm1_address_space;
	u8                      pm2_address_space;
	u8                      pm_timer_address_space;
	u8                      gpe0address_space;
	u8                      gpe1_address_space;
#else
	fadt_descriptor_rev1   *FADT1;
#endif

	fadt_descriptor_rev2   *FADT2;
	acpi_table_desc        *table_desc;


	FUNCTION_TRACE ("Tb_convert_table_fadt");


	/* Acpi_gbl_FADT is valid */
	/* Allocate and zero the 2.0 buffer */

	FADT2 = ACPI_MEM_CALLOCATE (sizeof (fadt_descriptor_rev2));
	if (FADT2 == NULL) {
		return_ACPI_STATUS (AE_NO_MEMORY);
	}


	/* The ACPI FADT revision number is FADT2_REVISION_ID=3 */
	/* So, if the current table revision is less than 3 it is type 1.0 or 0.71 */

	if (acpi_gbl_FADT->header.revision >= FADT2_REVISION_ID) {
		/* We have an ACPI 2.0 FADT but we must copy it to our local buffer */

		*FADT2 = *((fadt_descriptor_rev2*) acpi_gbl_FADT);

	}

	else {

#ifdef _IA64
		/*
		 * For the 64-bit case only, a revision ID less than V2.0 means the
		 * tables are the 0.71 extensions
		 */

		/* The BIOS stored FADT should agree with Revision 0.71 */

		FADT71 = (fadt_descriptor_rev071 *) acpi_gbl_FADT;

		/* Copy the table header*/

		FADT2->header       = FADT71->header;

		/* Copy the common fields */

		FADT2->sci_int      = FADT71->sci_int;
		FADT2->acpi_enable  = FADT71->acpi_enable;
		FADT2->acpi_disable = FADT71->acpi_disable;
		FADT2->S4bios_req   = FADT71->S4bios_req;
		FADT2->plvl2_lat    = FADT71->plvl2_lat;
		FADT2->plvl3_lat    = FADT71->plvl3_lat;
		FADT2->day_alrm     = FADT71->day_alrm;
		FADT2->mon_alrm     = FADT71->mon_alrm;
		FADT2->century      = FADT71->century;
		FADT2->gpe1_base    = FADT71->gpe1_base;

		/*
		 * We still use the block length registers even though
		 * the GAS structure should obsolete them.  This is because
		 * these registers are byte lengths versus the GAS which
		 * contains a bit width
		 */
		FADT2->pm1_evt_len  = FADT71->pm1_evt_len;
		FADT2->pm1_cnt_len  = FADT71->pm1_cnt_len;
		FADT2->pm2_cnt_len  = FADT71->pm2_cnt_len;
		FADT2->pm_tm_len    = FADT71->pm_tm_len;
		FADT2->gpe0blk_len  = FADT71->gpe0blk_len;
		FADT2->gpe1_blk_len = FADT71->gpe1_blk_len;
		FADT2->gpe1_base    = FADT71->gpe1_base;

		/* Copy the existing 0.71 flags to 2.0. The other bits are zero.*/

		FADT2->wb_invd      = FADT71->flush_cash;
		FADT2->proc_c1      = FADT71->proc_c1;
		FADT2->plvl2_up     = FADT71->plvl2_up;
		FADT2->pwr_button   = FADT71->pwr_button;
		FADT2->sleep_button = FADT71->sleep_button;
		FADT2->fixed_rTC    = FADT71->fixed_rTC;
		FADT2->rtcs4        = FADT71->rtcs4;
		FADT2->tmr_val_ext  = FADT71->tmr_val_ext;
		FADT2->dock_cap     = FADT71->dock_cap;


		/* We should not use these next two addresses */
		/* Since our buffer is pre-zeroed nothing to do for */
		/* the next three data items in the structure */
		/* FADT2->Firmware_ctrl = 0; */
		/* FADT2->Dsdt = 0; */

		/* System Interrupt Model isn't used in ACPI 2.0*/
		/* FADT2->Reserved1 = 0; */

		/* This field is set by the OEM to convey the preferred */
		/* power management profile to OSPM. It doesn't have any*/
		/* 0.71 equivalence.  Since we don't know what kind of  */
		/* 64-bit system this is, we will pick unspecified.     */

		FADT2->prefer_PM_profile = PM_UNSPECIFIED;


		/* Port address of SMI command port */
		/* We shouldn't use this port because IA64 doesn't */
		/* have or use SMI.  It has PMI. */

		FADT2->smi_cmd      = (u32)(FADT71->smi_cmd & 0xFFFFFFFF);


		/* processor performance state control*/
		/* The value OSPM writes to the SMI_CMD register to assume */
		/* processor performance state control responsibility. */
		/* There isn't any equivalence in 0.71 */
		/* Again this should be meaningless for IA64 */
		/* FADT2->Pstate_cnt = 0; */

		/* The 32-bit Power management and GPE registers are */
		/* not valid in IA-64 and we are not going to use them */
		/* so leaving them pre-zeroed. */

		/* Support for the _CST object and C States change notification.*/
		/* This data item hasn't any 0.71 equivalence so leaving it zero.*/
		/* FADT2->Cst_cnt = 0; */

		/* number of flush strides that need to be read */
		/* No 0.71 equivalence. Leave pre-zeroed. */
		/* FADT2->Flush_size = 0; */

		/* Processor's memory cache line width, in bytes */
		/* No 0.71 equivalence. Leave pre-zeroed. */
		/* FADT2->Flush_stride = 0; */

		/* Processor's duty cycle index in processor's P_CNT reg*/
		/* No 0.71 equivalence. Leave pre-zeroed. */
		/* FADT2->Duty_offset = 0; */

		/* Processor's duty cycle value bit width in P_CNT register.*/
		/* No 0.71 equivalence. Leave pre-zeroed. */
		/* FADT2->Duty_width = 0; */


		/* Since there isn't any equivalence in 0.71 */
		/* and since Big_sur had to support legacy */

		FADT2->iapc_boot_arch = BAF_LEGACY_DEVICES;

		/* Copy to ACPI 2.0 64-BIT Extended Addresses */

		FADT2->Xfirmware_ctrl = FADT71->firmware_ctrl;
		FADT2->Xdsdt         = FADT71->dsdt;


		/* Extract the address space IDs */

		pm1_address_space   = (u8)((FADT71->address_space & PM1_BLK_ADDRESS_SPACE)    >> 1);
		pm2_address_space   = (u8)((FADT71->address_space & PM2_CNT_BLK_ADDRESS_SPACE) >> 2);
		pm_timer_address_space = (u8)((FADT71->address_space & PM_TMR_BLK_ADDRESS_SPACE) >> 3);
		gpe0address_space   = (u8)((FADT71->address_space & GPE0_BLK_ADDRESS_SPACE)   >> 4);
		gpe1_address_space  = (u8)((FADT71->address_space & GPE1_BLK_ADDRESS_SPACE)   >> 5);

		/*
		 * Convert the 0.71 (non-GAS style) Block addresses to V2.0 GAS structures,
		 * in this order:
		 *
		 * PM 1_a Events
		 * PM 1_b Events
		 * PM 1_a Control
		 * PM 1_b Control
		 * PM 2 Control
		 * PM Timer Control
		 * GPE Block 0
		 * GPE Block 1
		 */

		ASL_BUILD_GAS_FROM_ENTRY (FADT2->Xpm1a_evt_blk, FADT71->pm1_evt_len, FADT71->pm1a_evt_blk, pm1_address_space);
		ASL_BUILD_GAS_FROM_ENTRY (FADT2->Xpm1b_evt_blk, FADT71->pm1_evt_len, FADT71->pm1b_evt_blk, pm1_address_space);
		ASL_BUILD_GAS_FROM_ENTRY (FADT2->Xpm1a_cnt_blk, FADT71->pm1_cnt_len, FADT71->pm1a_cnt_blk, pm1_address_space);
		ASL_BUILD_GAS_FROM_ENTRY (FADT2->Xpm1b_cnt_blk, FADT71->pm1_cnt_len, FADT71->pm1b_cnt_blk, pm1_address_space);
		ASL_BUILD_GAS_FROM_ENTRY (FADT2->Xpm2_cnt_blk, FADT71->pm2_cnt_len, FADT71->pm2_cnt_blk, pm2_address_space);
		ASL_BUILD_GAS_FROM_ENTRY (FADT2->Xpm_tmr_blk, FADT71->pm_tm_len,  FADT71->pm_tmr_blk, pm_timer_address_space);
		ASL_BUILD_GAS_FROM_ENTRY (FADT2->Xgpe0blk,    FADT71->gpe0blk_len, FADT71->gpe0blk,   gpe0address_space);
		ASL_BUILD_GAS_FROM_ENTRY (FADT2->Xgpe1_blk,   FADT71->gpe1_blk_len, FADT71->gpe1_blk, gpe1_address_space);

#else

		/* ACPI 1.0 FACS */


		/* The BIOS stored FADT should agree with Revision 1.0 */

		FADT1 = (fadt_descriptor_rev1*) acpi_gbl_FADT;

		/*
		 * Copy the table header and the common part of the tables
		 * The 2.0 table is an extension of the 1.0 table, so the
		 * entire 1.0 table can be copied first, then expand some
		 * fields to 64 bits.
		 */
		MEMCPY (FADT2, FADT1, sizeof (fadt_descriptor_rev1));


		/* Convert table pointers to 64-bit fields */

		ACPI_STORE_ADDRESS (FADT2->Xfirmware_ctrl, FADT1->firmware_ctrl);
		ACPI_STORE_ADDRESS (FADT2->Xdsdt, FADT1->dsdt);

		/* System Interrupt Model isn't used in ACPI 2.0*/
		/* FADT2->Reserved1 = 0; */

		/* This field is set by the OEM to convey the preferred */
		/* power management profile to OSPM. It doesn't have any*/
		/* 1.0 equivalence.  Since we don't know what kind of   */
		/* 32-bit system this is, we will pick unspecified.     */

		FADT2->prefer_PM_profile = PM_UNSPECIFIED;


		/* Processor Performance State Control. This is the value  */
		/* OSPM writes to the SMI_CMD register to assume processor */
		/* performance state control responsibility. There isn't   */
		/* any equivalence in 1.0.  So leave it zeroed.            */

		FADT2->pstate_cnt = 0;


		/* Support for the _CST object and C States change notification.*/
		/* This data item hasn't any 1.0 equivalence so leaving it zero.*/

		FADT2->cst_cnt = 0;


		/* Since there isn't any equivalence in 1.0 and since it   */
		/* is highly likely that a 1.0 system has legacy  support. */

		FADT2->iapc_boot_arch = BAF_LEGACY_DEVICES;


		/*
		 * Convert the V1.0 Block addresses to V2.0 GAS structures
		 * in this order:
		 *
		 * PM 1_a Events
		 * PM 1_b Events
		 * PM 1_a Control
		 * PM 1_b Control
		 * PM 2 Control
		 * PM Timer Control
		 * GPE Block 0
		 * GPE Block 1
		 */

		ASL_BUILD_GAS_FROM_V1_ENTRY (FADT2->Xpm1a_evt_blk, FADT1->pm1_evt_len, FADT1->pm1a_evt_blk);
		ASL_BUILD_GAS_FROM_V1_ENTRY (FADT2->Xpm1b_evt_blk, FADT1->pm1_evt_len, FADT1->pm1b_evt_blk);
		ASL_BUILD_GAS_FROM_V1_ENTRY (FADT2->Xpm1a_cnt_blk, FADT1->pm1_cnt_len, FADT1->pm1a_cnt_blk);
		ASL_BUILD_GAS_FROM_V1_ENTRY (FADT2->Xpm1b_cnt_blk, FADT1->pm1_cnt_len, FADT1->pm1b_cnt_blk);
		ASL_BUILD_GAS_FROM_V1_ENTRY (FADT2->Xpm2_cnt_blk, FADT1->pm2_cnt_len, FADT1->pm2_cnt_blk);
		ASL_BUILD_GAS_FROM_V1_ENTRY (FADT2->Xpm_tmr_blk, FADT1->pm_tm_len,  FADT1->pm_tmr_blk);
		ASL_BUILD_GAS_FROM_V1_ENTRY (FADT2->Xgpe0blk,    FADT1->gpe0blk_len, FADT1->gpe0blk);
		ASL_BUILD_GAS_FROM_V1_ENTRY (FADT2->Xgpe1_blk,   FADT1->gpe1_blk_len, FADT1->gpe1_blk);
#endif
	}


	/*
	 * Global FADT pointer will point to the common V2.0 FADT
	 */
	acpi_gbl_FADT = FADT2;
	acpi_gbl_FADT->header.length = sizeof (FADT_DESCRIPTOR);


	/* Free the original table */

	table_desc = &acpi_gbl_acpi_tables[ACPI_TABLE_FADT];
	acpi_tb_delete_single_table (table_desc);


	/* Install the new table */

	table_desc->pointer = (acpi_table_header *) acpi_gbl_FADT;
	table_desc->base_pointer = acpi_gbl_FADT;
	table_desc->allocation = ACPI_MEM_ALLOCATED;
	table_desc->length = sizeof (fadt_descriptor_rev2);


	/* Dump the entire FADT */

	ACPI_DEBUG_PRINT ((ACPI_DB_TABLES,
		"Hex dump of common internal FADT, size %d (%X)\n",
		acpi_gbl_FADT->header.length, acpi_gbl_FADT->header.length));
	DUMP_BUFFER ((u8 *) (acpi_gbl_FADT), acpi_gbl_FADT->header.length);


	return_ACPI_STATUS (AE_OK);
}