void BVH4Intersector4Single<types,robust,PrimitiveIntersector4>::occluded(sseb* valid_i, BVH4* bvh, Ray4& ray)
{
    /* load ray */
    const sseb valid = *valid_i;
    sseb terminated = !valid;
    sse3f ray_org = ray.org, ray_dir = ray.dir;
    ssef ray_tnear = ray.tnear, ray_tfar  = ray.tfar;
    const sse3f rdir = rcp_safe(ray_dir);
    const sse3f org(ray_org), org_rdir = org * rdir;
    ray_tnear = select(valid,ray_tnear,ssef(pos_inf));
    ray_tfar  = select(valid,ray_tfar ,ssef(neg_inf));
    const ssef inf = ssef(pos_inf);
    Precalculations pre(valid,ray);

    /* compute near/far per ray */
    sse3i nearXYZ;
    nearXYZ.x = select(rdir.x >= 0.0f,ssei(0*(int)sizeof(ssef)),ssei(1*(int)sizeof(ssef)));
    nearXYZ.y = select(rdir.y >= 0.0f,ssei(2*(int)sizeof(ssef)),ssei(3*(int)sizeof(ssef)));
    nearXYZ.z = select(rdir.z >= 0.0f,ssei(4*(int)sizeof(ssef)),ssei(5*(int)sizeof(ssef)));

    /* we have no packet implementation for OBB nodes yet */
    size_t bits = movemask(valid);
    for (size_t i=__bsf(bits); bits!=0; bits=__btc(bits,i), i=__bsf(bits)) {
        if (occluded1(bvh,bvh->root,i,pre,ray,ray_org,ray_dir,rdir,ray_tnear,ray_tfar,nearXYZ))
            terminated[i] = -1;
    }
    store4i(valid & terminated,&ray.geomID,0);
    AVX_ZERO_UPPER();
}
示例#2
0
    void BVH4Intersector8Single<types,robust,PrimitiveIntersector8>::intersect(avxb* valid_i, BVH4* bvh, Ray8& ray)
    {
      /* load ray */
      const avxb valid0 = *valid_i;
      avx3f ray_org = ray.org;
      avx3f ray_dir = ray.dir;
      avxf ray_tnear = ray.tnear, ray_tfar  = ray.tfar;
      const avx3f rdir = rcp_safe(ray_dir);
      const avx3f org(ray_org), org_rdir = org * rdir;
      ray_tnear = select(valid0,ray_tnear,avxf(pos_inf));
      ray_tfar  = select(valid0,ray_tfar ,avxf(neg_inf));
      const avxf inf = avxf(pos_inf);
      Precalculations pre(valid0,ray);

      /* compute near/far per ray */
      avx3i nearXYZ;
      nearXYZ.x = select(rdir.x >= 0.0f,avxi(0*(int)sizeof(ssef)),avxi(1*(int)sizeof(ssef)));
      nearXYZ.y = select(rdir.y >= 0.0f,avxi(2*(int)sizeof(ssef)),avxi(3*(int)sizeof(ssef)));
      nearXYZ.z = select(rdir.z >= 0.0f,avxi(4*(int)sizeof(ssef)),avxi(5*(int)sizeof(ssef)));

      /* we have no packet implementation for OBB nodes yet */
      size_t bits = movemask(valid0);
      for (size_t i=__bsf(bits); bits!=0; bits=__btc(bits,i), i=__bsf(bits)) {
	intersect1(bvh, bvh->root, i, pre, ray, ray_org, ray_dir, rdir, ray_tnear, ray_tfar, nearXYZ);
      }
      AVX_ZERO_UPPER();
    }
void BVH4Intersector4FromIntersector1<Intersector1>::intersect(sseb* valid_i, BVH4* bvh, Ray4& ray)
{
    Ray rays[4];
    ray.get(rays);
    size_t bits = movemask(*valid_i);
    for (size_t i=__bsf(bits); bits!=0; bits=__btc(bits,i), i=__bsf(bits)) {
        Intersector1::intersect(bvh,rays[i]);
    }
    ray.set(rays);
    AVX_ZERO_UPPER();
}
  void BVH4Intersector1AVX<TriangleIntersector>::intersect(const BVH4Intersector1AVX* This, Ray& ray)
  {
    AVX_ZERO_UPPER();
    STAT3(normal.travs,1,1,1);

    const BVH4* bvh = This->bvh;
    int swapX = ray.dir.x < 0.0f;
    int swapY = ray.dir.y < 0.0f;
    int swapZ = ray.dir.z < 0.0f;
    int swap = 4*swapX+2*swapY+swapZ;
    
    switch (swap) {
    case 0: intersectT<TriangleIntersector,false,false,false>(bvh,ray); break;
    case 1: intersectT<TriangleIntersector,false,false,true >(bvh,ray); break;
    case 2: intersectT<TriangleIntersector,false,true ,false>(bvh,ray); break;
    case 3: intersectT<TriangleIntersector,false,true ,true >(bvh,ray); break;
    case 4: intersectT<TriangleIntersector,true ,false,false>(bvh,ray); break;
    case 5: intersectT<TriangleIntersector,true ,false,true >(bvh,ray); break;
    case 6: intersectT<TriangleIntersector,true ,true ,false>(bvh,ray); break;
    case 7: intersectT<TriangleIntersector,true ,true ,true >(bvh,ray); break;
    }

    AVX_ZERO_UPPER();
  }
  void SubdivMeshAVX::interpolateN(const void* valid_i, const unsigned* primIDs, const float* u, const float* v, size_t numUVs, 
                                   RTCBufferType buffer, float* P, float* dPdu, float* dPdv, float* ddPdudu, float* ddPdvdv, float* ddPdudv, size_t numFloats)
  {
#if defined(DEBUG)
    if ((parent->aflags & RTC_INTERPOLATE) == 0) 
      throw_RTCError(RTC_INVALID_OPERATION,"rtcInterpolate can only get called when RTC_INTERPOLATE is enabled for the scene");
#endif

    const int* valid = (const int*) valid_i;
    
    for (size_t i=0; i<numUVs;) 
    {
      if (i+4 >= numUVs)
      {
        vbool4 valid1 = vint4(int(i))+vint4(step) < vint4(numUVs);
        if (valid) valid1 &= vint4::loadu(&valid[i]) == vint4(-1);
        if (none(valid1)) { i+=4; continue; }
        interpolateHelper(valid1,vint4::loadu(&primIDs[i]),vfloat4::loadu(&u[i]),vfloat4::loadu(&v[i]),numUVs,buffer, 
                          P ? P+i : nullptr, 
                          dPdu ? dPdu+i : nullptr, 
                          dPdv ? dPdv+i : nullptr,
                          ddPdudu ? ddPdudu+i : nullptr,
                          ddPdvdv ? ddPdvdv+i : nullptr,
                          ddPdudv ? ddPdudv+i : nullptr,
                          numFloats);
        i+=4;
      }
      else
      {
        vbool8 valid1 = vint8(int(i))+vint8(step) < vint8(int(numUVs));
        if (valid) valid1 &= vint8::loadu(&valid[i]) == vint8(-1);
        if (none(valid1)) { i+=8; continue; }
        interpolateHelper(valid1,vint8::loadu(&primIDs[i]),vfloat8::loadu(&u[i]),vfloat8::loadu(&v[i]),numUVs,buffer, 
                          P ? P+i : nullptr, 
                          dPdu ? dPdu+i : nullptr, 
                          dPdv ? dPdv+i : nullptr,
                          ddPdudu ? ddPdudu+i : nullptr,
                          ddPdvdv ? ddPdvdv+i : nullptr,
                          ddPdudv ? ddPdudv+i : nullptr,
                          numFloats);
        i+=8;
      }
    }
    AVX_ZERO_UPPER();
  }
  bool BVH4Intersector1AVX<TriangleIntersector>::occluded(const BVH4Intersector1AVX* This, Ray& ray)
  {
    AVX_ZERO_UPPER();
    STAT3(shadow.travs,1,1,1);

    const BVH4* bvh = This->bvh;
    int swapX = ray.dir.x < 0.0f;
    int swapY = ray.dir.y < 0.0f;
    int swapZ = ray.dir.z < 0.0f;
    int swap = 4*swapX+2*swapY+swapZ;
    
    switch (swap) {
    case 0: return occludedT<TriangleIntersector,false,false,false>(bvh,ray); break;
    case 1: return occludedT<TriangleIntersector,false,false,true >(bvh,ray); break;
    case 2: return occludedT<TriangleIntersector,false,true ,false>(bvh,ray); break;
    case 3: return occludedT<TriangleIntersector,false,true ,true >(bvh,ray); break;
    case 4: return occludedT<TriangleIntersector,true ,false,false>(bvh,ray); break;
    case 5: return occludedT<TriangleIntersector,true ,false,true >(bvh,ray); break;
    case 6: return occludedT<TriangleIntersector,true ,true ,false>(bvh,ray); break;
    case 7: return occludedT<TriangleIntersector,true ,true ,true >(bvh,ray); break;
    default: return false;
    }
  }
示例#7
0
    void BVH4Intersector1<types,robust,PrimitiveIntersector>::intersect(const BVH4* bvh, Ray& ray)
    {
      /*! perform per ray precalculations required by the primitive intersector */
      Precalculations pre(ray);
      BVH4::UnalignedNodeMB::Precalculations pre1(ray);

      /*! stack state */
      StackItemInt32<NodeRef> stack[stackSize];            //!< stack of nodes 
      StackItemInt32<NodeRef>* stackPtr = stack+1;        //!< current stack pointer
      StackItemInt32<NodeRef>* stackEnd = stack+stackSize;
      stack[0].ptr  = bvh->root;
      stack[0].dist = neg_inf;
            
      /*! load the ray into SIMD registers */
      const Vec3fa ray_rdir = rcp_safe(ray.dir);
      const Vec3fa ray_org_rdir = ray.org*ray_rdir;
      const sse3f org(ray.org.x,ray.org.y,ray.org.z);
      const sse3f dir(ray.dir.x,ray.dir.y,ray.dir.z);
      const sse3f rdir(ray_rdir.x,ray_rdir.y,ray_rdir.z);
      const sse3f org_rdir(ray_org_rdir.x,ray_org_rdir.y,ray_org_rdir.z);
      const ssef  ray_near(ray.tnear);
      ssef ray_far(ray.tfar);

      /*! offsets to select the side that becomes the lower or upper bound */
      const size_t nearX = ray_rdir.x >= 0.0f ? 0*sizeof(ssef) : 1*sizeof(ssef);
      const size_t nearY = ray_rdir.y >= 0.0f ? 2*sizeof(ssef) : 3*sizeof(ssef);
      const size_t nearZ = ray_rdir.z >= 0.0f ? 4*sizeof(ssef) : 5*sizeof(ssef);

      /* pop loop */
      while (true) pop:
      {
        /*! pop next node */
        if (unlikely(stackPtr == stack)) break;
        stackPtr--;
        NodeRef cur = NodeRef(stackPtr->ptr);
        
        /*! if popped node is too far, pop next one */
        if (unlikely(*(float*)&stackPtr->dist > ray.tfar))
          continue;
        
        /* downtraversal loop */
        while (true)
        {
	  size_t mask; 
	  ssef tNear;

	  /*! stop if we found a leaf node */
	  if (unlikely(cur.isLeaf(types))) break;
	  STAT3(normal.trav_nodes,1,1,1);

	  /* process standard nodes */
          if (likely(cur.isNode(types)))
	    mask = cur.node()->intersect<robust>(nearX,nearY,nearZ,org,rdir,org_rdir,ray_near,ray_far,tNear); 

	  /* process motion blur nodes */
	  else if (likely(cur.isNodeMB(types)))
	    mask = cur.nodeMB()->intersect(nearX,nearY,nearZ,org,rdir,org_rdir,ray_near,ray_far,ray.time,tNear); 

	  /*! process nodes with unaligned bounds */
          else if (unlikely(cur.isUnalignedNode(types)))
            mask = cur.unalignedNode()->intersect(org,dir,ray_near,ray_far,tNear);

          /*! process nodes with unaligned bounds and motion blur */
          else if (unlikely(cur.isUnalignedNodeMB(types)))
            mask = cur.unalignedNodeMB()->intersect(pre1,org,dir,ray_near,ray_far,ray.time,tNear);

          /*! if no child is hit, pop next node */
	  const BVH4::BaseNode* node = cur.baseNode(types);
          if (unlikely(mask == 0))
            goto pop;
          
          /*! one child is hit, continue with that child */
	  size_t r = __bscf(mask);
	  if (likely(mask == 0)) {
            cur = node->child(r); cur.prefetch(types);
            assert(cur != BVH4::emptyNode);
            continue;
          }
          
          /*! two children are hit, push far child, and continue with closer child */
          NodeRef c0 = node->child(r); c0.prefetch(types); const unsigned int d0 = ((unsigned int*)&tNear)[r];
          r = __bscf(mask);
          NodeRef c1 = node->child(r); c1.prefetch(types); const unsigned int d1 = ((unsigned int*)&tNear)[r];
          assert(c0 != BVH4::emptyNode);
          assert(c1 != BVH4::emptyNode);
          if (likely(mask == 0)) {
            assert(stackPtr < stackEnd); 
            if (d0 < d1) { stackPtr->ptr = c1; stackPtr->dist = d1; stackPtr++; cur = c0; continue; }
            else         { stackPtr->ptr = c0; stackPtr->dist = d0; stackPtr++; cur = c1; continue; }
          }
          
          /*! Here starts the slow path for 3 or 4 hit children. We push
           *  all nodes onto the stack to sort them there. */
          assert(stackPtr < stackEnd); 
          stackPtr->ptr = c0; stackPtr->dist = d0; stackPtr++;
          assert(stackPtr < stackEnd); 
          stackPtr->ptr = c1; stackPtr->dist = d1; stackPtr++;
          
          /*! three children are hit, push all onto stack and sort 3 stack items, continue with closest child */
          assert(stackPtr < stackEnd); 
          r = __bscf(mask);
          NodeRef c = node->child(r); c.prefetch(types); unsigned int d = ((unsigned int*)&tNear)[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++;
          assert(c != BVH4::emptyNode);
          if (likely(mask == 0)) {
            sort(stackPtr[-1],stackPtr[-2],stackPtr[-3]);
            cur = (NodeRef) stackPtr[-1].ptr; stackPtr--;
            continue;
          }
          
          /*! four children are hit, push all onto stack and sort 4 stack items, continue with closest child */
          assert(stackPtr < stackEnd); 
          r = __bscf(mask);
          c = node->child(r); c.prefetch(types); d = *(unsigned int*)&tNear[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++;
          assert(c != BVH4::emptyNode);
          sort(stackPtr[-1],stackPtr[-2],stackPtr[-3],stackPtr[-4]);
          cur = (NodeRef) stackPtr[-1].ptr; stackPtr--;
        }
        
        /*! this is a leaf node */
	assert(cur != BVH4::emptyNode);
        STAT3(normal.trav_leaves,1,1,1);
        size_t num; Primitive* prim = (Primitive*) cur.leaf(num);
        PrimitiveIntersector::intersect(pre,ray,prim,num,bvh->geometry);
        ray_far = ray.tfar;
      }
      AVX_ZERO_UPPER();
    }
示例#8
0
    void BVH4Intersector1<types,robust,PrimitiveIntersector>::occluded(const BVH4* bvh, Ray& ray)
    {
      /*! perform per ray precalculations required by the primitive intersector */
      Precalculations pre(ray);
      BVH4::UnalignedNodeMB::Precalculations pre1(ray);

      /*! stack state */
      NodeRef stack[stackSize];  //!< stack of nodes that still need to get traversed
      NodeRef* stackPtr = stack+1;        //!< current stack pointer
      NodeRef* stackEnd = stack+stackSize;
      stack[0] = bvh->root;
      
      /*! load the ray into SIMD registers */
      const Vec3fa ray_rdir = rcp_safe(ray.dir);
      const Vec3fa ray_org_rdir = ray.org*ray_rdir;
      const sse3f org(ray.org.x,ray.org.y,ray.org.z);
      const sse3f dir(ray.dir.x,ray.dir.y,ray.dir.z);
      const sse3f rdir(ray_rdir.x,ray_rdir.y,ray_rdir.z);
      const sse3f org_rdir(ray_org_rdir.x,ray_org_rdir.y,ray_org_rdir.z);
      const ssef  ray_near(ray.tnear);
      ssef ray_far(ray.tfar);

      /*! offsets to select the side that becomes the lower or upper bound */
      const size_t nearX = ray_rdir.x >= 0 ? 0*sizeof(ssef) : 1*sizeof(ssef);
      const size_t nearY = ray_rdir.y >= 0 ? 2*sizeof(ssef) : 3*sizeof(ssef);
      const size_t nearZ = ray_rdir.z >= 0 ? 4*sizeof(ssef) : 5*sizeof(ssef);      
      
      /* pop loop */
      while (true) pop:
      {
        /*! pop next node */
        if (unlikely(stackPtr == stack)) break;
        stackPtr--;
        NodeRef cur = (NodeRef) *stackPtr;
        
        /* downtraversal loop */
        while (true)
        {
	  size_t mask; 
	  ssef tNear;

	  /*! stop if we found a leaf node */
	  if (unlikely(cur.isLeaf(types))) break;
	  STAT3(shadow.trav_nodes,1,1,1);

	  /* process standard nodes */
          if (likely(cur.isNode(types)))
	    mask = cur.node()->intersect<robust>(nearX,nearY,nearZ,org,rdir,org_rdir,ray_near,ray_far,tNear); 

	  /* process motion blur nodes */
	  else if (likely(cur.isNodeMB(types)))
	    mask = cur.nodeMB()->intersect(nearX,nearY,nearZ,org,rdir,org_rdir,ray_near,ray_far,ray.time,tNear); 

	  /*! process nodes with unaligned bounds */
          else if (unlikely(cur.isUnalignedNode(types)))
            mask = cur.unalignedNode()->intersect(org,dir,ray_near,ray_far,tNear);

          /*! process nodes with unaligned bounds and motion blur */
          else if (unlikely(cur.isUnalignedNodeMB(types)))
            mask = cur.unalignedNodeMB()->intersect(pre1,org,dir,ray_near,ray_far,ray.time,tNear);
	  
          /*! if no child is hit, pop next node */
	  const BVH4::BaseNode* node = cur.baseNode(types);
          if (unlikely(mask == 0))
            goto pop;
	  
	  /*! one child is hit, continue with that child */
          size_t r = __bscf(mask);
          if (likely(mask == 0)) {
            cur = node->child(r); cur.prefetch(types); 
            assert(cur != BVH4::emptyNode);
            continue;
          }
          
          /*! two children are hit, push far child, and continue with closer child */
          NodeRef c0 = node->child(r); c0.prefetch(types); const unsigned int d0 = ((unsigned int*)&tNear)[r];
          r = __bscf(mask);
          NodeRef c1 = node->child(r); c1.prefetch(types); const unsigned int d1 = ((unsigned int*)&tNear)[r];
          assert(c0 != BVH4::emptyNode);
          assert(c1 != BVH4::emptyNode);
          if (likely(mask == 0)) {
            assert(stackPtr < stackEnd);
            if (d0 < d1) { *stackPtr = c1; stackPtr++; cur = c0; continue; }
            else         { *stackPtr = c0; stackPtr++; cur = c1; continue; }
          }
          assert(stackPtr < stackEnd);
          *stackPtr = c0; stackPtr++;
          assert(stackPtr < stackEnd);
          *stackPtr = c1; stackPtr++;
          
          /*! three children are hit */
          r = __bscf(mask);
          cur = node->child(r); cur.prefetch(types);
          assert(cur != BVH4::emptyNode);
          if (likely(mask == 0)) continue;
          assert(stackPtr < stackEnd);
          *stackPtr = cur; stackPtr++;
          
          /*! four children are hit */
          cur = node->child(3); cur.prefetch(types);
          assert(cur != BVH4::emptyNode);
        }
        
        /*! this is a leaf node */
	assert(cur != BVH4::emptyNode);
        STAT3(shadow.trav_leaves,1,1,1);
        size_t num; Primitive* prim = (Primitive*) cur.leaf(num);
        if (PrimitiveIntersector::occluded(pre,ray,prim,num,bvh->geometry)) {
          ray.geomID = 0;
          break;
        }
      }
      AVX_ZERO_UPPER();
    }
    void BVH4Intersector4Chunk<PrimitiveIntersector4>::intersect(sseb* valid_i, BVH4* bvh, Ray4& ray)
    {
      /* load ray */
      const sseb valid0 = *valid_i;
      const sse3f rdir = rcp_safe(ray.dir);
      const sse3f org(ray.org), org_rdir = org * rdir;
      ssef ray_tnear = select(valid0,ray.tnear,ssef(pos_inf));
      ssef ray_tfar  = select(valid0,ray.tfar ,ssef(neg_inf));
      const ssef inf = ssef(pos_inf);
      Precalculations pre(valid0,ray);
      
      /* allocate stack and push root node */
      ssef    stack_near[stackSize];
      NodeRef stack_node[stackSize];
      stack_node[0] = BVH4::invalidNode;
      stack_near[0] = inf;
      stack_node[1] = bvh->root;
      stack_near[1] = ray_tnear; 
      NodeRef* stackEnd = stack_node+stackSize;
      NodeRef* __restrict__ sptr_node = stack_node + 2;
      ssef*    __restrict__ sptr_near = stack_near + 2;
      
      while (1)
      {
        /* pop next node from stack */
        assert(sptr_node > stack_node);
        sptr_node--;
        sptr_near--;
        NodeRef curNode = *sptr_node;
        if (unlikely(curNode == BVH4::invalidNode)) {
          assert(sptr_node == stack_node);
          break;
        }
        
        /* cull node if behind closest hit point */
        ssef curDist = *sptr_near;
        if (unlikely(none(ray_tfar > curDist))) 
          continue;
        
        while (1)
        {
          /* test if this is a leaf node */
          if (unlikely(curNode.isLeaf()))
            break;
          
          const sseb valid_node = ray_tfar > curDist;
          STAT3(normal.trav_nodes,1,popcnt(valid_node),4);
          const Node* __restrict__ const node = curNode.node();
          
          /* pop of next node */
          assert(sptr_node > stack_node);
          sptr_node--;
          sptr_near--;
          curNode = *sptr_node;
          curDist = *sptr_near;
          
#pragma unroll(4)
          for (unsigned i=0; i<BVH4::N; i++)
          {
            const NodeRef child = node->children[i];
            if (unlikely(child == BVH4::emptyNode)) break;
            
#if defined(__AVX2__)
            const ssef lclipMinX = msub(node->lower_x[i],rdir.x,org_rdir.x);
            const ssef lclipMinY = msub(node->lower_y[i],rdir.y,org_rdir.y);
            const ssef lclipMinZ = msub(node->lower_z[i],rdir.z,org_rdir.z);
            const ssef lclipMaxX = msub(node->upper_x[i],rdir.x,org_rdir.x);
            const ssef lclipMaxY = msub(node->upper_y[i],rdir.y,org_rdir.y);
            const ssef lclipMaxZ = msub(node->upper_z[i],rdir.z,org_rdir.z);
#else
            const ssef lclipMinX = (node->lower_x[i] - org.x) * rdir.x;
            const ssef lclipMinY = (node->lower_y[i] - org.y) * rdir.y;
            const ssef lclipMinZ = (node->lower_z[i] - org.z) * rdir.z;
            const ssef lclipMaxX = (node->upper_x[i] - org.x) * rdir.x;
            const ssef lclipMaxY = (node->upper_y[i] - org.y) * rdir.y;
            const ssef lclipMaxZ = (node->upper_z[i] - org.z) * rdir.z;
#endif

#if defined(__SSE4_1__)
            const ssef lnearP = maxi(maxi(mini(lclipMinX, lclipMaxX), mini(lclipMinY, lclipMaxY)), mini(lclipMinZ, lclipMaxZ));
            const ssef lfarP  = mini(mini(maxi(lclipMinX, lclipMaxX), maxi(lclipMinY, lclipMaxY)), maxi(lclipMinZ, lclipMaxZ));
            const sseb lhit   = maxi(lnearP,ray_tnear) <= mini(lfarP,ray_tfar);      
#else
            const ssef lnearP = max(max(min(lclipMinX, lclipMaxX), min(lclipMinY, lclipMaxY)), min(lclipMinZ, lclipMaxZ));
            const ssef lfarP  = min(min(max(lclipMinX, lclipMaxX), max(lclipMinY, lclipMaxY)), max(lclipMinZ, lclipMaxZ));
            const sseb lhit   = max(lnearP,ray_tnear) <= min(lfarP,ray_tfar);      
#endif
            
            /* if we hit the child we choose to continue with that child if it 
               is closer than the current next child, or we push it onto the stack */
            if (likely(any(lhit)))
            {
              assert(sptr_node < stackEnd);
              const ssef childDist = select(lhit,lnearP,inf);
              const NodeRef child = node->children[i];
              assert(child != BVH4::emptyNode);
              sptr_node++;
              sptr_near++;
              
              /* push cur node onto stack and continue with hit child */
              if (any(childDist < curDist))
              {
                *(sptr_node-1) = curNode;
                *(sptr_near-1) = curDist; 
                curDist = childDist;
                curNode = child;
              }
              
              /* push hit child onto stack */
              else {
                *(sptr_node-1) = child;
                *(sptr_near-1) = childDist; 
              }
            }	      
          }
        }
        
        /* return if stack is empty */
        if (unlikely(curNode == BVH4::invalidNode)) {
          assert(sptr_node == stack_node);
          break;
        }
        
        /* intersect leaf */
        const sseb valid_leaf = ray_tfar > curDist;
        STAT3(normal.trav_leaves,1,popcnt(valid_leaf),4);
        size_t items; const Primitive* prim = (Primitive*) curNode.leaf(items);
        PrimitiveIntersector4::intersect(valid_leaf,pre,ray,prim,items,bvh->geometry);
        ray_tfar = select(valid_leaf,ray.tfar,ray_tfar);
      }
      AVX_ZERO_UPPER();
    }
    void BVH8iIntersector8Hybrid<TriangleIntersector8>::occluded(avxb* valid_i, BVH8i* bvh, Ray8& ray)
    {
      /* load ray */
      const avxb valid = *valid_i;
      avxb terminated = !valid;
      avx3f ray_org = ray.org, ray_dir = ray.dir;
      avxf ray_tnear = ray.tnear, ray_tfar  = ray.tfar;
#if defined(__FIX_RAYS__)
      const avxf float_range = 0.1f*FLT_MAX;
      ray_org = clamp(ray_org,avx3f(-float_range),avx3f(+float_range));
      ray_dir = clamp(ray_dir,avx3f(-float_range),avx3f(+float_range));
      ray_tnear = max(ray_tnear,FLT_MIN); 
      ray_tfar  = min(ray_tfar,float(inf)); 
#endif
      const avx3f rdir = rcp_safe(ray_dir);
      const avx3f org(ray_org), org_rdir = org * rdir;
      ray_tnear = select(valid,ray_tnear,avxf(pos_inf));
      ray_tfar  = select(valid,ray_tfar ,avxf(neg_inf));
      const avxf inf = avxf(pos_inf);
      
      /* compute near/far per ray */
      avx3i nearXYZ;
      nearXYZ.x = select(rdir.x >= 0.0f,avxi(0*(int)sizeof(avxf)),avxi(1*(int)sizeof(avxf)));
      nearXYZ.y = select(rdir.y >= 0.0f,avxi(2*(int)sizeof(avxf)),avxi(3*(int)sizeof(avxf)));
      nearXYZ.z = select(rdir.z >= 0.0f,avxi(4*(int)sizeof(avxf)),avxi(5*(int)sizeof(avxf)));

      /* allocate stack and push root node */
      avxf    stack_near[stackSizeChunk];
      NodeRef stack_node[stackSizeChunk];
      stack_node[0] = BVH4i::invalidNode;
      stack_near[0] = inf;
      stack_node[1] = bvh->root;
      stack_near[1] = ray_tnear; 
      NodeRef* stackEnd = stack_node+stackSizeChunk;
      NodeRef* __restrict__ sptr_node = stack_node + 2;
      avxf*    __restrict__ sptr_near = stack_near + 2;

      const Node     * __restrict__ nodes = (Node    *)bvh->nodePtr();
      const Triangle * __restrict__ accel = (Triangle*)bvh->triPtr();
      
      while (1)
      {
        /* pop next node from stack */
        assert(sptr_node > stack_node);
        sptr_node--;
        sptr_near--;
        NodeRef curNode = *sptr_node;
        if (unlikely(curNode == BVH4i::invalidNode)) {
          assert(sptr_node == stack_node);
          break;
        }

        /* cull node if behind closest hit point */
        avxf curDist = *sptr_near;
        const avxb active = curDist < ray_tfar;
        if (unlikely(none(active))) 
          continue;
        
        /* switch to single ray traversal */
#if !defined(__WIN32__) || defined(__X86_64__)
        size_t bits = movemask(active);
        if (unlikely(__popcnt(bits) <= SWITCH_THRESHOLD)) {
          for (size_t i=__bsf(bits); bits!=0; bits=__btc(bits,i), i=__bsf(bits)) {
            if (occluded1(bvh,curNode,i,ray,ray_org,ray_dir,rdir,ray_tnear,ray_tfar,nearXYZ))
              terminated[i] = -1;
          }
          if (all(terminated)) break;
          ray_tfar = select(terminated,avxf(neg_inf),ray_tfar);
          continue;
        }
#endif
                
        while (1)
        {
          /* test if this is a leaf node */
          if (unlikely(curNode.isLeaf()))
            break;
          
          const avxb valid_node = ray_tfar > curDist;
          STAT3(shadow.trav_nodes,1,popcnt(valid_node),8);
          const Node* __restrict__ const node = (Node*)curNode.node(nodes);
          
          /* pop of next node */
          assert(sptr_node > stack_node);
          sptr_node--;
          sptr_near--;
          curNode = *sptr_node;
          curDist = *sptr_near;
          
          for (unsigned i=0; i<8; i++)
          {
            const NodeRef child = node->children[i];
            if (unlikely(child == BVH4i::emptyNode)) break;
            
#if defined(__AVX2__)
            const avxf lclipMinX = msub(node->lower_x[i],rdir.x,org_rdir.x);
            const avxf lclipMinY = msub(node->lower_y[i],rdir.y,org_rdir.y);
            const avxf lclipMinZ = msub(node->lower_z[i],rdir.z,org_rdir.z);
            const avxf lclipMaxX = msub(node->upper_x[i],rdir.x,org_rdir.x);
            const avxf lclipMaxY = msub(node->upper_y[i],rdir.y,org_rdir.y);
            const avxf lclipMaxZ = msub(node->upper_z[i],rdir.z,org_rdir.z);
            const avxf lnearP = maxi(maxi(mini(lclipMinX, lclipMaxX), mini(lclipMinY, lclipMaxY)), mini(lclipMinZ, lclipMaxZ));
            const avxf lfarP  = mini(mini(maxi(lclipMinX, lclipMaxX), maxi(lclipMinY, lclipMaxY)), maxi(lclipMinZ, lclipMaxZ));
            const avxb lhit   = maxi(lnearP,ray_tnear) <= mini(lfarP,ray_tfar);      
#else
            const avxf lclipMinX = (node->lower_x[i] - org.x) * rdir.x;
            const avxf lclipMinY = (node->lower_y[i] - org.y) * rdir.y;
            const avxf lclipMinZ = (node->lower_z[i] - org.z) * rdir.z;
            const avxf lclipMaxX = (node->upper_x[i] - org.x) * rdir.x;
            const avxf lclipMaxY = (node->upper_y[i] - org.y) * rdir.y;
            const avxf lclipMaxZ = (node->upper_z[i] - org.z) * rdir.z;
            const avxf lnearP = max(max(min(lclipMinX, lclipMaxX), min(lclipMinY, lclipMaxY)), min(lclipMinZ, lclipMaxZ));
            const avxf lfarP  = min(min(max(lclipMinX, lclipMaxX), max(lclipMinY, lclipMaxY)), max(lclipMinZ, lclipMaxZ));
            const avxb lhit   = max(lnearP,ray_tnear) <= min(lfarP,ray_tfar);      
#endif
            
            /* if we hit the child we choose to continue with that child if it 
               is closer than the current next child, or we push it onto the stack */
            if (likely(any(lhit)))
            {
              assert(sptr_node < stackEnd);
              assert(child != BVH4i::emptyNode);
              const avxf childDist = select(lhit,lnearP,inf);
              sptr_node++;
              sptr_near++;
              
              /* push cur node onto stack and continue with hit child */
              if (any(childDist < curDist))
              {
                *(sptr_node-1) = curNode;
                *(sptr_near-1) = curDist; 
                curDist = childDist;
                curNode = child;
              }
              
              /* push hit child onto stack */
              else {
                *(sptr_node-1) = child;
                *(sptr_near-1) = childDist; 
              }
            }	      
          }
        }
        
        /* return if stack is empty */
        if (unlikely(curNode == BVH4i::invalidNode)) {
          assert(sptr_node == stack_node);
          break;
        }
        
        /* intersect leaf */
        const avxb valid_leaf = ray_tfar > curDist;
        STAT3(shadow.trav_leaves,1,popcnt(valid_leaf),8);
        size_t items; const Triangle* prim = (Triangle*) curNode.leaf(accel,items);
        terminated |= TriangleIntersector8::occluded(!terminated,ray,prim,items,bvh->geometry);
        if (all(terminated)) break;
        ray_tfar = select(terminated,avxf(neg_inf),ray_tfar);
      }
      store8i(valid & terminated,&ray.geomID,0);
      AVX_ZERO_UPPER();
    }
示例#11
0
  void BVH2Intersector<TriangleIntersector>::intersect(const Ray& ray, Hit& hit) const
  {
    AVX_ZERO_UPPER();
    STAT3(normal.travs,1,1,1);

    struct StackItem {
      Base* ptr;   //!< node pointer
      float dist;  //!< distance of node
    };

    /*! stack state */
    StackItem stack[1+BVH2::maxDepth];  //!< stack of nodes that still need to get traversed
    StackItem* stackPtr = stack;        //!< current stack pointer
    Base* cur = bvh->root;              //!< in cur we track the ID of the current node

    /*! precomputed shuffles, to switch lower and upper bounds depending on ray direction */
    const ssei identity = _mm_set_epi8(15, 14, 13, 12, 11, 10,  9,  8,  7,  6,  5,  4,  3,  2,  1, 0);
    const ssei swap     = _mm_set_epi8( 7,  6,  5,  4,  3,  2,  1,  0, 15, 14, 13, 12, 11, 10,  9, 8);
    const ssei shuffleX = ray.dir.x >= 0 ? identity : swap;
    const ssei shuffleY = ray.dir.y >= 0 ? identity : swap;
    const ssei shuffleZ = ray.dir.z >= 0 ? identity : swap;

    /*! load the ray into SIMD registers */
    const ssei pn = ssei(0x00000000,0x00000000,0x80000000,0x80000000);
    const sse3f norg(-ray.org.x,-ray.org.y,-ray.org.z);
    const sse3f rdir = sse3f(ssef(ray.rdir.x) ^ pn, ssef(ray.rdir.y) ^ pn, ssef(ray.rdir.z) ^ pn);
    ssef nearFar(ray.near, ray.near, -ray.far, -ray.far);
    hit.t = min(hit.t,ray.far);

    while (true)
    {
      /*! downtraversal loop */
      while (likely(cur->isNode()))
      {
        /*! single ray intersection with box of both children. */
        const Node* node = cur->node();
        const ssef tNearFarX = (shuffle8(node->lower_upper_x,shuffleX) + norg.x) * rdir.x;
        const ssef tNearFarY = (shuffle8(node->lower_upper_y,shuffleY) + norg.y) * rdir.y;
        const ssef tNearFarZ = (shuffle8(node->lower_upper_z,shuffleZ) + norg.z) * rdir.z;
        const ssef tNearFar = max(tNearFarX,tNearFarY,tNearFarZ,nearFar) ^ pn;
        const sseb lrhit = tNearFar <= shuffle8(tNearFar,swap);

        /*! if two children hit, push far node onto stack and continue with closer node */
        if (likely(lrhit[0] != 0 && lrhit[1] != 0)) {
          if (likely(tNearFar[0] < tNearFar[1])) { 
            stackPtr->ptr = node->child[1]; 
            stackPtr->dist = tNearFar[1]; 
            cur = node->child[0]; 
            stackPtr++; 
          }
          else { 
            stackPtr->ptr = node->child[0]; 
            stackPtr->dist = tNearFar[0]; 
            cur = node->child[1]; 
            stackPtr++; 
          }
        }

        /*! if one child hit, continue with that child */
        else {
          if      (likely(lrhit[0] != 0)) cur = node->child[0];
          else if (likely(lrhit[1] != 0)) cur = node->child[1];
          else goto pop_node;
        }
      }

      /*! leaf node, intersect all triangles */
      {
        STAT3(shadow.trav_leaves,1,1,1);
        size_t num; Triangle* tri = (Triangle*) cur->leaf(num);
        for (size_t i=0; i<num; i++)
          TriangleIntersector::intersect(ray,hit,tri[i],bvh->vertices);
        nearFar = shuffle<0,1,2,3>(nearFar,-hit.t);
      }

      /*! pop next node from stack */
pop_node:
      if (unlikely(stackPtr == stack)) break;
      --stackPtr;
      cur = stackPtr->ptr;
      if (unlikely(stackPtr->dist > hit.t)) goto pop_node;
    }
    AVX_ZERO_UPPER();
  }
示例#12
0
    void BVH8Intersector1<robust,PrimitiveIntersector>::intersect(const BVH8* bvh, Ray& ray)
    {
      /*! perform per ray precalculations required by the primitive intersector */
      Precalculations pre(ray,bvh);

      /*! stack state */
      StackItemT<NodeRef> stack[stackSize];  //!< stack of nodes 
      StackItemT<NodeRef>* stackPtr = stack+1;        //!< current stack pointer
      StackItemT<NodeRef>* stackEnd = stack+stackSize;
      stack[0].ptr = bvh->root;
      stack[0].dist = neg_inf;

      /* filter out invalid rays */
#if defined(RTCORE_IGNORE_INVALID_RAYS)
      if (!ray.valid()) return;
#endif

      /* verify correct input */
      assert(ray.tnear > -FLT_MIN);
      //assert(!(types & BVH4::FLAG_NODE_MB) || (ray.time >= 0.0f && ray.time <= 1.0f));

      /*! load the ray into SIMD registers */
      const Vec3f8 norg(-ray.org.x,-ray.org.y,-ray.org.z);
      const Vec3fa ray_rdir = rcp_safe(ray.dir);
      const Vec3f8 rdir(ray_rdir.x,ray_rdir.y,ray_rdir.z);
      const Vec3fa ray_org_rdir = ray.org*ray_rdir;
      const Vec3f8 org_rdir(ray_org_rdir.x,ray_org_rdir.y,ray_org_rdir.z);
      const float8  ray_near(ray.tnear);
      float8 ray_far(ray.tfar);

      /*! offsets to select the side that becomes the lower or upper bound */
      const size_t nearX = ray_rdir.x >= 0.0f ? 0*sizeof(float8) : 1*sizeof(float8);
      const size_t nearY = ray_rdir.y >= 0.0f ? 2*sizeof(float8) : 3*sizeof(float8);
      const size_t nearZ = ray_rdir.z >= 0.0f ? 4*sizeof(float8) : 5*sizeof(float8);
      
      /* pop loop */
      while (true) pop:
      {
        /*! pop next node */
        if (unlikely(stackPtr == stack)) break;
        stackPtr--;
        NodeRef cur = NodeRef(stackPtr->ptr);
        
        /*! if popped node is too far, pop next one */
        if (unlikely(*(float*)&stackPtr->dist > ray.tfar))
          continue;
        
        /* downtraversal loop */
        while (true)
        {
          /*! stop if we found a leaf */
          if (unlikely(cur.isLeaf())) break;
          STAT3(normal.trav_nodes,1,1,1);
          
          /*! single ray intersection with 4 boxes */
          const Node* node = cur.node();
          const size_t farX  = nearX ^ sizeof(float8), farY  = nearY ^ sizeof(float8), farZ  = nearZ ^ sizeof(float8);
#if defined (__AVX2__)
          const float8 tNearX = msub(load8f((const char*)node+nearX), rdir.x, org_rdir.x);
          const float8 tNearY = msub(load8f((const char*)node+nearY), rdir.y, org_rdir.y);
          const float8 tNearZ = msub(load8f((const char*)node+nearZ), rdir.z, org_rdir.z);
          const float8 tFarX  = msub(load8f((const char*)node+farX ), rdir.x, org_rdir.x);
          const float8 tFarY  = msub(load8f((const char*)node+farY ), rdir.y, org_rdir.y);
          const float8 tFarZ  = msub(load8f((const char*)node+farZ ), rdir.z, org_rdir.z);
#else
          const float8 tNearX = (norg.x + load8f((const char*)node+nearX)) * rdir.x;
          const float8 tNearY = (norg.y + load8f((const char*)node+nearY)) * rdir.y;
          const float8 tNearZ = (norg.z + load8f((const char*)node+nearZ)) * rdir.z;
          const float8 tFarX  = (norg.x + load8f((const char*)node+farX )) * rdir.x;
          const float8 tFarY  = (norg.y + load8f((const char*)node+farY )) * rdir.y;
          const float8 tFarZ  = (norg.z + load8f((const char*)node+farZ )) * rdir.z;
#endif

        const float round_down = 1.0f-2.0f*float(ulp);
        const float round_up   = 1.0f+2.0f*float(ulp);

#if defined(__AVX2__)
          const float8 tNear = maxi(maxi(tNearX,tNearY),maxi(tNearZ,ray_near));
          const float8 tFar  = mini(mini(tFarX ,tFarY ),mini(tFarZ ,ray_far ));
          const bool8 vmask = robust ?  (round_down*tNear > round_up*tFar) : cast(tNear) > cast(tFar);
          size_t mask = movemask(vmask)^0xff;
#else
          const float8 tNear = max(tNearX,tNearY,tNearZ,ray_near);
          const float8 tFar  = min(tFarX ,tFarY ,tFarZ ,ray_far);
          const bool8 vmask = robust ?  (round_down*tNear > round_up*tFar) : tNear <= tFar;
          size_t mask = movemask(vmask);
#endif
          
          /*! if no child is hit, pop next node */
          if (unlikely(mask == 0))
            goto pop;
          
          /*! one child is hit, continue with that child */
          size_t r = __bscf(mask);
          if (likely(mask == 0)) {
            cur = node->child(r); cur.prefetch();
            assert(cur != BVH8::emptyNode);
            continue;
          }
          
          /*! two children are hit, push far child, and continue with closer child */
          NodeRef c0 = node->child(r); c0.prefetch(); const unsigned int d0 = ((unsigned int*)&tNear)[r];
          r = __bscf(mask);
          NodeRef c1 = node->child(r); c1.prefetch(); const unsigned int d1 = ((unsigned int*)&tNear)[r];
          assert(c0 != BVH8::emptyNode);
          assert(c1 != BVH8::emptyNode);
          if (likely(mask == 0)) {
            assert(stackPtr < stackEnd); 
            if (d0 < d1) { stackPtr->ptr = c1; stackPtr->dist = d1; stackPtr++; cur = c0; continue; }
            else         { stackPtr->ptr = c0; stackPtr->dist = d0; stackPtr++; cur = c1; continue; }
          }
          
          /*! Here starts the slow path for 3 or 4 hit children. We push
           *  all nodes onto the stack to sort them there. */
          assert(stackPtr < stackEnd); 
          stackPtr->ptr = c0; stackPtr->dist = d0; stackPtr++;
          assert(stackPtr < stackEnd); 
          stackPtr->ptr = c1; stackPtr->dist = d1; stackPtr++;
          
          /*! three children are hit, push all onto stack and sort 3 stack items, continue with closest child */
          assert(stackPtr < stackEnd); 
          r = __bscf(mask);
          NodeRef c = node->child(r); c.prefetch(); unsigned int d = ((unsigned int*)&tNear)[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++;
          assert(c != BVH8::emptyNode);
          if (likely(mask == 0)) {
            sort(stackPtr[-1],stackPtr[-2],stackPtr[-3]);
            cur = (NodeRef) stackPtr[-1].ptr; stackPtr--;
            continue;
          }
          
	  /*! four children are hit, push all onto stack and sort 4 stack items, continue with closest child */
          r = __bscf(mask);
          c = node->child(r); c.prefetch(); d = *(unsigned int*)&tNear[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++;
	  if (likely(mask == 0)) {
	    sort(stackPtr[-1],stackPtr[-2],stackPtr[-3],stackPtr[-4]);
	    cur = (NodeRef) stackPtr[-1].ptr; stackPtr--;
	    continue;
	  }

	  /*! fallback case if more than 4 children are hit */
	  while (1)
	  {
	    r = __bscf(mask);
	    assert(stackPtr < stackEnd);
	    c = node->child(r); c.prefetch(); d = *(unsigned int*)&tNear[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++;
	    if (unlikely(mask == 0)) break;
	  }
	  
	  cur = (NodeRef) stackPtr[-1].ptr; stackPtr--;
	}
        
        /*! this is a leaf node */
	assert(cur != BVH8::emptyNode);
        STAT3(normal.trav_leaves,1,1,1);
        size_t num; Primitive* prim = (Primitive*) cur.leaf(num);
        size_t lazy_node = 0;
        PrimitiveIntersector::intersect(pre,ray,prim,num,bvh->scene,lazy_node);
        ray_far = ray.tfar;

        if (unlikely(lazy_node)) {
          stackPtr->ptr = lazy_node;
          stackPtr->dist = inf;
          stackPtr++;
        }
      }

      AVX_ZERO_UPPER();
    }
示例#13
0
  bool BVH2Intersector<TriangleIntersector>::occluded(const Ray& ray) const
  {
    AVX_ZERO_UPPER();

    /*! stack state */
    Base* stack[1+BVH2::maxDepth];   //!< stack of nodes that still need to get traversed
    Base** stackPtr = stack;         //!< current stack pointer
    Base* cur = bvh->root;           //!< in cur we track the ID of the current node

    /*! precomputed shuffles, to switch lower and upper bounds depending on ray direction */
    const ssei identity = _mm_set_epi8(15, 14, 13, 12, 11, 10,  9,  8,  7,  6,  5,  4,  3,  2,  1, 0);
    const ssei swap     = _mm_set_epi8( 7,  6,  5,  4,  3,  2,  1,  0, 15, 14, 13, 12, 11, 10,  9, 8);
    const ssei shuffleX = ray.dir.x >= 0 ? identity : swap;
    const ssei shuffleY = ray.dir.y >= 0 ? identity : swap;
    const ssei shuffleZ = ray.dir.z >= 0 ? identity : swap;

    /*! load the ray into SIMD registers */
    const ssei pn = ssei(0x00000000,0x00000000,0x80000000,0x80000000);
    const sse3f norg(-ray.org.x,-ray.org.y,-ray.org.z);
    const sse3f rdir = sse3f(ssef(ray.rdir.x) ^ pn, ssef(ray.rdir.y) ^ pn, ssef(ray.rdir.z) ^ pn);
    ssef nearFar(ray.near, ray.near, -ray.far, -ray.far);

    while (true)
    {
      /*! this is an inner node */
      while (likely(cur->isNode()))
      {
        /*! Single ray intersection with box of both children. See bvh2i.h for node layout. */
        const Node* node = cur->node();
        const ssef tNearFarX = (shuffle8(node->lower_upper_x,shuffleX) + norg.x) * rdir.x;
        const ssef tNearFarY = (shuffle8(node->lower_upper_y,shuffleY) + norg.y) * rdir.y;
        const ssef tNearFarZ = (shuffle8(node->lower_upper_z,shuffleZ) + norg.z) * rdir.z;
        const ssef tNearFar = max(tNearFarX,tNearFarY,tNearFarZ,nearFar) ^ pn;
        const sseb lrhit = tNearFar <= shuffle8(tNearFar,swap);

        /*! if two children hit, push far node onto stack and continue with closer node */
        if (likely(lrhit[0] != 0 && lrhit[1] != 0)) {
          *stackPtr++ = node->child[0]; cur = node->child[1];
        }

        /*! if one child hit, continue with that child */
        else {
          if      (lrhit[0] != 0) cur = node->child[0];
          else if (lrhit[1] != 0) cur = node->child[1];
          else goto pop_node;
        }
      }

      /*! leaf node, intersect all triangles */
      {
        STAT3(shadow.trav_leaves,1,1,1);
        size_t num; Triangle* tri = (Triangle*) cur->leaf(num);
        for (size_t i=0; i<num; i++)
          if (TriangleIntersector::occluded(ray,tri[i],bvh->vertices)) {
            AVX_ZERO_UPPER();
            return true;
          }
      }

      /*! pop next node from stack */
pop_node:
      if (unlikely(stackPtr == stack)) break;
      cur = *(--stackPtr);
    }
    AVX_ZERO_UPPER();
    return false;
  }
    void BVH4iIntersector4Chunk<TriangleIntersector4>::occluded(sseb* valid_i, BVH4i* bvh, Ray4& ray)
    {
      /* load node and primitive array */
      const Node      * __restrict__ nodes  = (Node    *)bvh->nodePtr();
      const Triangle * __restrict__ accel = (Triangle*)bvh->triPtr();
      
      /* load ray */
      const sseb valid = *valid_i;
      sseb terminated = !valid;
      const sse3f rdir = rcp_safe(ray.dir);
      const sse3f org_rdir = ray.org * rdir;
      ssef ray_tnear = select(valid,ray.tnear,pos_inf);
      ssef ray_tfar  = select(valid,ray.tfar ,neg_inf);
      const ssef inf = ssef(pos_inf);
      
      /* allocate stack and push root node */
      ssef    stack_near[3*BVH4i::maxDepth+1];
      NodeRef stack_node[3*BVH4i::maxDepth+1];
      stack_node[0] = BVH4i::invalidNode;
      stack_near[0] = inf;
      stack_node[1] = bvh->root;
      stack_near[1] = ray_tnear; 
      NodeRef* __restrict__ sptr_node = stack_node + 2;
      ssef*    __restrict__ sptr_near = stack_near + 2;
      
      while (1)
      {
        /* pop next node from stack */
        sptr_node--;
        sptr_near--;
        NodeRef curNode = *sptr_node;
        if (unlikely(curNode == BVH4i::invalidNode)) 
          break;
        
        /* cull node if behind closest hit point */
        ssef curDist = *sptr_near;
        if (unlikely(none(ray_tfar > curDist))) 
          continue;
        
        while (1)
        {
          /* test if this is a leaf node */
          if (unlikely(curNode.isLeaf()))
            break;
          
          const sseb valid_node = ray_tfar > curDist;
          STAT3(shadow.trav_nodes,1,popcnt(valid_node),4);
          const Node* __restrict__ const node = curNode.node(nodes);
          
          /* pop of next node */
          sptr_node--;
          sptr_near--;
          curNode = *sptr_node; // FIXME: this trick creates issues with stack depth
          curDist = *sptr_near;
          
#pragma unroll(4)
          for (unsigned i=0; i<4; i++)
          {
            const NodeRef child = node->children[i];
            if (unlikely(child == BVH4i::emptyNode)) break;
            
#if defined(__AVX2__)
            const ssef lclipMinX = msub(node->lower_x[i],rdir.x,org_rdir.x);
            const ssef lclipMinY = msub(node->lower_y[i],rdir.y,org_rdir.y);
            const ssef lclipMinZ = msub(node->lower_z[i],rdir.z,org_rdir.z);
            const ssef lclipMaxX = msub(node->upper_x[i],rdir.x,org_rdir.x);
            const ssef lclipMaxY = msub(node->upper_y[i],rdir.y,org_rdir.y);
            const ssef lclipMaxZ = msub(node->upper_z[i],rdir.z,org_rdir.z);
            const ssef lnearP = maxi(maxi(mini(lclipMinX, lclipMaxX), mini(lclipMinY, lclipMaxY)), mini(lclipMinZ, lclipMaxZ));
            const ssef lfarP  = mini(mini(maxi(lclipMinX, lclipMaxX), maxi(lclipMinY, lclipMaxY)), maxi(lclipMinZ, lclipMaxZ));
            const sseb lhit   = maxi(lnearP,ray_tnear) <= mini(lfarP,ray_tfar);      
#else
            const ssef lclipMinX = node->lower_x[i] * rdir.x - org_rdir.x;
            const ssef lclipMinY = node->lower_y[i] * rdir.y - org_rdir.y;
            const ssef lclipMinZ = node->lower_z[i] * rdir.z - org_rdir.z;
            const ssef lclipMaxX = node->upper_x[i] * rdir.x - org_rdir.x;
            const ssef lclipMaxY = node->upper_y[i] * rdir.y - org_rdir.y;
            const ssef lclipMaxZ = node->upper_z[i] * rdir.z - org_rdir.z;
            const ssef lnearP = max(max(min(lclipMinX, lclipMaxX), min(lclipMinY, lclipMaxY)), min(lclipMinZ, lclipMaxZ));
            const ssef lfarP  = min(min(max(lclipMinX, lclipMaxX), max(lclipMinY, lclipMaxY)), max(lclipMinZ, lclipMaxZ));
            const sseb lhit   = max(lnearP,ray_tnear) <= min(lfarP,ray_tfar);      
#endif
            
            /* if we hit the child we choose to continue with that child if it 
               is closer than the current next child, or we push it onto the stack */
            if (likely(any(lhit)))
            {
              const ssef childDist = select(lhit,lnearP,inf);
              sptr_node++;
              sptr_near++;
              
              /* push cur node onto stack and continue with hit child */
              if (any(childDist < curDist))
              {
                *(sptr_node-1) = curNode;
                *(sptr_near-1) = curDist; 
                curDist = childDist;
                curNode = child;
              }
              
              /* push hit child onto stack*/
              else {
                *(sptr_node-1) = child;
                *(sptr_near-1) = childDist; 
              }
              assert(sptr_node - stack_node < BVH4i::maxDepth);
            }	      
          }
        }
        
        /* return if stack is empty */
        if (unlikely(curNode == BVH4i::invalidNode)) 
          break;
        
        /* intersect leaf */
        const sseb valid_leaf = ray_tfar > curDist;
        STAT3(shadow.trav_leaves,1,popcnt(valid_leaf),4);
        size_t items; const Triangle* tri  = (Triangle*) curNode.leaf(accel, items);
        terminated |= TriangleIntersector4::occluded(!terminated,ray,tri,items,bvh->geometry);
        if (all(terminated)) break;
        ray_tfar = select(terminated,neg_inf,ray_tfar);
      }
      store4i(valid & terminated,&ray.geomID,0);
      AVX_ZERO_UPPER();
    }
    void BVH8Intersector16Chunk<PrimitiveIntersector16>::occluded(bool16* valid_i, BVH8* bvh, Ray16& ray)
    {
#if defined(__AVX512__)
      
      /* load ray */
      const bool16 valid = *valid_i;
      bool16 terminated = !valid;
      const Vec3f16 rdir = rcp_safe(ray.dir);
      const Vec3f16 org_rdir = ray.org * rdir;
      float16 ray_tnear = select(valid,ray.tnear,pos_inf);
      float16 ray_tfar  = select(valid,ray.tfar ,neg_inf);
      const float16 inf = float16(pos_inf);
      Precalculations pre(valid,ray);

      /* allocate stack and push root node */
      float16    stack_near[3*BVH8::maxDepth+1];
      NodeRef stack_node[3*BVH8::maxDepth+1];
      stack_node[0] = BVH8::invalidNode;
      stack_near[0] = inf;
      stack_node[1] = bvh->root;
      stack_near[1] = ray_tnear; 
      NodeRef* __restrict__ sptr_node = stack_node + 2;
      float16*    __restrict__ sptr_near = stack_near + 2;
      
      while (1)
      {
        /* pop next node from stack */
        sptr_node--;
        sptr_near--;
        NodeRef cur = *sptr_node;
        if (unlikely(cur == BVH8::invalidNode)) 
          break;
        
        /* cull node if behind closest hit point */
        float16 curDist = *sptr_near;
        if (unlikely(none(ray_tfar > curDist))) 
          continue;
        
        while (1)
        {
          /* test if this is a leaf node */
          if (unlikely(cur.isLeaf()))
            break;
          
          const bool16 valid_node = ray_tfar > curDist;
          STAT3(shadow.trav_nodes,1,popcnt(valid_node),8);
          const Node* __restrict__ const node = (Node*)cur.node();
          
          /* pop of next node */
          sptr_node--;
          sptr_near--;
          cur = *sptr_node; // FIXME: this trick creates issues with stack depth
          curDist = *sptr_near;
          
          for (unsigned i=0; i<BVH8::N; i++)
          {
            const NodeRef child = node->children[i];
            if (unlikely(child == BVH8::emptyNode)) break;
            
            const float16 lclipMinX = msub(node->lower_x[i],rdir.x,org_rdir.x);
            const float16 lclipMinY = msub(node->lower_y[i],rdir.y,org_rdir.y);
            const float16 lclipMinZ = msub(node->lower_z[i],rdir.z,org_rdir.z);
            const float16 lclipMaxX = msub(node->upper_x[i],rdir.x,org_rdir.x);
            const float16 lclipMaxY = msub(node->upper_y[i],rdir.y,org_rdir.y);
            const float16 lclipMaxZ = msub(node->upper_z[i],rdir.z,org_rdir.z);
            const float16 lnearP = max(max(min(lclipMinX, lclipMaxX), min(lclipMinY, lclipMaxY)), min(lclipMinZ, lclipMaxZ));
            const float16 lfarP  = min(min(max(lclipMinX, lclipMaxX), max(lclipMinY, lclipMaxY)), max(lclipMinZ, lclipMaxZ));
            const bool16 lhit   = max(lnearP,ray_tnear) <= min(lfarP,ray_tfar);      
            
            /* if we hit the child we choose to continue with that child if it 
               is closer than the current next child, or we push it onto the stack */
            if (likely(any(lhit)))
            {
              const float16 childDist = select(lhit,lnearP,inf);
              sptr_node++;
              sptr_near++;
              
              /* push cur node onto stack and continue with hit child */
              if (any(childDist < curDist))
              {
                *(sptr_node-1) = cur;
                *(sptr_near-1) = curDist; 
                curDist = childDist;
                cur = child;
              }
              
              /* push hit child onto stack*/
              else {
                *(sptr_node-1) = child;
                *(sptr_near-1) = childDist; 
              }
              assert(sptr_node - stack_node < BVH8::maxDepth);
            }	      
          }
        }
        
        /* return if stack is empty */
        if (unlikely(cur == BVH8::invalidNode)) 
          break;
        
        /* intersect leaf */
	assert(cur != BVH8::emptyNode);
        const bool16 valid_leaf = ray_tfar > curDist;
        STAT3(shadow.trav_leaves,1,popcnt(valid_leaf),8);
        size_t items; const Triangle* tri  = (Triangle*) cur.leaf(items);
        terminated |= PrimitiveIntersector16::occluded(!terminated,pre,ray,tri,items,bvh->scene);
        if (all(terminated)) break;
        ray_tfar = select(terminated,neg_inf,ray_tfar);
      }
      store16i(valid & terminated,&ray.geomID,0);
      AVX_ZERO_UPPER();
#endif      
    }
示例#16
0
  __forceinline bool occludedT(const BVH4* bvh, Ray& ray)
  {
    typedef typename TriangleIntersector::Triangle Triangle;
    typedef StackItemT<size_t> StackItem;
    typedef typename BVH4::NodeRef NodeRef;
    typedef typename BVH4::Node Node;

    /*! stack state */
    NodeRef stack[1+3*BVH4::maxDepth];  //!< stack of nodes that still need to get traversed
    NodeRef* stackPtr = stack+1;        //!< current stack pointer
    stack[0]  = bvh->root;
  
    /*! load the ray into SIMD registers */
    const avxf pos_neg = avxf(ssef(+0.0f),ssef(-0.0f));
    const avxf neg_pos = avxf(ssef(-0.0f),ssef(+0.0f));
    const avxf flipSignX = swapX ? neg_pos : pos_neg;
    const avxf flipSignY = swapY ? neg_pos : pos_neg;
    const avxf flipSignZ = swapZ ? neg_pos : pos_neg;
    const avx3f norg(-ray.org.x,-ray.org.y,-ray.org.z);
    const Vector3f ray_rdir = rcp_safe(ray.dir);
    const avx3f rdir(ray_rdir.x^flipSignX,ray_rdir.y^flipSignY,ray_rdir.z^flipSignZ);
    const avx3f org_rdir(avx3f(ray.org.x,ray.org.y,ray.org.z)*rdir);
    const avxf rayNearFar(ssef(ray.tnear),-ssef(ray.tfar));

    const void* nodePtr = bvh->nodePtr();
    const void* triPtr  = bvh->triPtr();
    
    /* pop loop */
    while (true) pop:
    {
      /*! pop next node */
      if (unlikely(stackPtr == stack)) break;
      stackPtr--;
      NodeRef cur = (NodeRef) *stackPtr;
      
      /* downtraversal loop */
      while (true)
      {
        /*! stop if we found a leaf */
        if (unlikely(cur.isLeaf())) break;
        STAT3(shadow.trav_nodes,1,1,1);
	
        /*! single ray intersection with 4 boxes */
        const Node* node = cur.node(nodePtr);
       
#if defined (__AVX2__) || defined(__MIC__)
        const avxf tLowerUpperX = msub(avxf::load(&node->lower_x), rdir.x, org_rdir.x);
        const avxf tLowerUpperY = msub(avxf::load(&node->lower_y), rdir.y, org_rdir.y);
        const avxf tLowerUpperZ = msub(avxf::load(&node->lower_z), rdir.z, org_rdir.z);
#else
        const avxf tLowerUpperX = (norg.x + avxf::load(&node->lower_x)) * rdir.x;
        const avxf tLowerUpperY = (norg.y + avxf::load(&node->lower_y)) * rdir.y;
        const avxf tLowerUpperZ = (norg.z + avxf::load(&node->lower_z)) * rdir.z;
#endif
        const avxf tNearFarX = swapX ? shuffle<1,0>(tLowerUpperX) : tLowerUpperX;
        const avxf tNearFarY = swapY ? shuffle<1,0>(tLowerUpperY) : tLowerUpperY;
        const avxf tNearFarZ = swapZ ? shuffle<1,0>(tLowerUpperZ) : tLowerUpperZ;
        const avxf tNearFar = max(tNearFarX,tNearFarY,tNearFarZ,rayNearFar);
        const ssef tNear = extract<0>(tNearFar);
        const ssef tFar  = extract<1>(tNearFar);
        size_t mask = movemask(-tNear >= tFar);
        
        /*! if no child is hit, pop next node */
        if (unlikely(mask == 0))
          goto pop;

        /*! one child is hit, continue with that child */
        size_t r = __bsf(mask); mask = __btc(mask,r);
        if (likely(mask == 0)) {
          cur = node->child(r);
          continue;
        }

        /*! two children are hit, push far child, and continue with closer child */
        NodeRef c0 = node->child(r); const float d0 = tNear[r];
        r = __bsf(mask); mask = __btc(mask,r);
        NodeRef c1 = node->child(r); const float d1 = tNear[r];
        if (likely(mask == 0)) {
          if (d0 < d1) { *stackPtr = c1; stackPtr++; cur = c0; continue; }
          else         { *stackPtr = c0; stackPtr++; cur = c1; continue; }
        }
        *stackPtr = c0; stackPtr++;
        *stackPtr = c1; stackPtr++;

        /*! three children are hit */
        r = __bsf(mask); mask = __btc(mask,r);
        cur = node->child(r); *stackPtr = cur; stackPtr++;
        if (likely(mask == 0)) {
          stackPtr--;
          continue;
        }

        /*! four children are hit */
        cur = node->child(3);
      }

      /*! this is a leaf node */
      STAT3(shadow.trav_leaves,1,1,1);
      size_t num; Triangle* tri = (Triangle*) cur.leaf(triPtr,num);
      for (size_t i=0; i<num; i++) {
        if (TriangleIntersector::occluded(ray,tri[i],bvh->vertices)) {
          AVX_ZERO_UPPER();
          return true;
        }
      }
    }
   
    AVX_ZERO_UPPER();
    return false;
  }
    void BVH4iIntersector1Scalar<TriangleIntersector>::occluded(const BVH4i* bvh, Ray& ray)
    {
      /*! stack state */
      StackItem stack[1+3*BVH4i::maxDepth];  //!< stack of nodes 
      StackItem *stackPtr = stack+1;        //!< current stack pointer
      stack[0].ptr  = bvh->root;
      stack[0].dist = neg_inf;
      
      
      /*! load the ray into SIMD registers */
      const Vec3f rdir = rcp_safe(ray.dir);
      const Vec3f org_rdir = ray.org*rdir;
      
      const void* nodePtr = bvh->nodePtr();
      const void* triPtr  = bvh->triPtr();
      
      /* pop loop */
      while (true) pop:
      {
        if (unlikely(stackPtr == stack)) break;
        stackPtr--;
        NodeRef cur = NodeRef(stackPtr->ptr);
        
        /* downtraversal loop */
        while (true)
        {
          /*! stop if we found a leaf */
          if (unlikely(cur.isLeaf())) break;
          STAT3(shadow.trav_nodes,1,1,1);
          
          /*! single ray intersection with 4 boxes */
          const Node* node = cur.node(nodePtr);

	  size_t pushed = 0;
	  for (size_t i=0;i<4;i++)
	    {
	      const float nearX = node->lower_x[i] * rdir.x - org_rdir.x;
	      const float farX  = node->upper_x[i] * rdir.x - org_rdir.x;
	      const float nearY = node->lower_y[i] * rdir.y - org_rdir.y;
	      const float farY  = node->upper_y[i] * rdir.y - org_rdir.y;
	      const float nearZ = node->lower_z[i] * rdir.z - org_rdir.z;
	      const float farZ  = node->upper_z[i] * rdir.z - org_rdir.z;
	      const float tNearX = min(nearX,farX);
	      const float tFarX  = max(nearX,farX);
	      const float tNearY = min(nearY,farY);
	      const float tFarY  = max(nearY,farY);
	      const float tNearZ = min(nearZ,farZ);
	      const float tFarZ  = max(nearZ,farZ);
          
	      const float tNear = max(tNearX,tNearY,tNearZ,ray.tnear);
	      const float tFar  = min(tFarX ,tFarY ,tFarZ ,ray.tfar);

	      if (tNear <= tFar)
		{
		  stackPtr->ptr  = node->child(i);
		  stackPtr->dist = tNear;
		  stackPtr++;
		  pushed++;
		}
	      
	    }

	  if (pushed == 0) 
	    {
	      goto pop;
	    }
	  else if (pushed == 1)
	    {
	      cur = (NodeRef) stackPtr[-1].ptr;
	      stackPtr--;
	      continue;
	    }
	  else if (pushed == 2)
	    {
	      sort(stackPtr[-1],stackPtr[-2]);
	      cur = (NodeRef) stackPtr[-1].ptr; 
	      stackPtr--;
	      continue;	      
	    }
	  else if (pushed == 3)
	    {
	      sort(stackPtr[-1],stackPtr[-2],stackPtr[-3]);
	      cur = (NodeRef) stackPtr[-1].ptr; 
	      stackPtr--;
	      continue;	      
	    }
	  else
	    {
	      sort(stackPtr[-1],stackPtr[-2],stackPtr[-3],stackPtr[-4]);
	      cur = (NodeRef) stackPtr[-1].ptr; 
	      stackPtr--;	      
	    }
          
        }
        
        /*! this is a leaf node */
        STAT3(shadow.trav_leaves,1,1,1);
        size_t num; Triangle1* tri = (Triangle1*) cur.leaf(triPtr,num);
	for (size_t i=0;i<num;i++)
	  if (occluded_vec3f(ray,tri[i],bvh->geometry)) 
	    {
	      ray.geomID = 0;
	      break;
	    }
	if (ray.geomID == 0) break;	
      }
      AVX_ZERO_UPPER();
    }
示例#18
0
  void BVH4iIntersector1<TriangleIntersector>::intersect(const BVH4iIntersector1* This, Ray& ray)
  {
    AVX_ZERO_UPPER();
    STAT3(normal.travs,1,1,1);
    
    /*! stack state */
    const BVH4i* bvh = This->bvh;
    StackItem stack[1+3*BVH4i::maxDepth];  //!< stack of nodes 
    StackItem* stackPtr = stack+1;        //!< current stack pointer
    stack[0].ptr  = bvh->root;
    stack[0].dist = neg_inf;

    /*! offsets to select the side that becomes the lower or upper bound */
    const size_t nearX = ray.dir.x >= 0.0f ? 0*sizeof(ssef_m) : 1*sizeof(ssef_m);
    const size_t nearY = ray.dir.y >= 0.0f ? 2*sizeof(ssef_m) : 3*sizeof(ssef_m);
    const size_t nearZ = ray.dir.z >= 0.0f ? 4*sizeof(ssef_m) : 5*sizeof(ssef_m);
   
    /*! load the ray into SIMD registers */
    const sse3f norg(-ray.org.x,-ray.org.y,-ray.org.z);
    const Vector3f ray_rdir = rcp_safe(ray.dir);
    const sse3f rdir(ray_rdir.x,ray_rdir.y,ray_rdir.z);
    const Vector3f ray_org_rdir = ray.org*ray_rdir;
    const sse3f org_rdir(ray_org_rdir.x,ray_org_rdir.y,ray_org_rdir.z);
    const ssef  rayNear(ray.tnear);
    ssef rayFar(ray.tfar);

    const void* nodePtr = bvh->nodePtr();
    const void* triPtr  = bvh->triPtr();
     
    /* pop loop */
    while (true) pop:
    {
      /*! pop next node */
      if (unlikely(stackPtr == stack)) break;
      stackPtr--;
      NodeRef cur = NodeRef(stackPtr->ptr);
      
      /*! if popped node is too far, pop next one */
      if (unlikely(stackPtr->dist > ray.tfar))
        continue;

      /* downtraversal loop */
      while (true)
      {
        /*! stop if we found a leaf */
        if (unlikely(cur.isLeaf())) break;
        STAT3(normal.trav_nodes,1,1,1);
    
        /*! single ray intersection with 4 boxes */
        const Node* node = cur.node(nodePtr);
        const size_t farX  = nearX ^ 16, farY  = nearY ^ 16, farZ  = nearZ ^ 16;
#if defined (__AVX2__)
        const ssef tNearX = msub(ssef((const char*)nodePtr+(size_t)cur+nearX), rdir.x, org_rdir.x);
        const ssef tNearY = msub(ssef((const char*)nodePtr+(size_t)cur+nearY), rdir.y, org_rdir.y);
        const ssef tNearZ = msub(ssef((const char*)nodePtr+(size_t)cur+nearZ), rdir.z, org_rdir.z);
        const ssef tFarX  = msub(ssef((const char*)nodePtr+(size_t)cur+farX ), rdir.x, org_rdir.x);
        const ssef tFarY  = msub(ssef((const char*)nodePtr+(size_t)cur+farY ), rdir.y, org_rdir.y);
        const ssef tFarZ  = msub(ssef((const char*)nodePtr+(size_t)cur+farZ ), rdir.z, org_rdir.z);
#else
        const ssef tNearX = (norg.x + ssef((const char*)nodePtr+(size_t)cur+nearX)) * rdir.x;
        const ssef tNearY = (norg.y + ssef((const char*)nodePtr+(size_t)cur+nearY)) * rdir.y;
        const ssef tNearZ = (norg.z + ssef((const char*)nodePtr+(size_t)cur+nearZ)) * rdir.z;
        const ssef tFarX  = (norg.x + ssef((const char*)nodePtr+(size_t)cur+farX )) * rdir.x;
        const ssef tFarY  = (norg.y + ssef((const char*)nodePtr+(size_t)cur+farY )) * rdir.y;
        const ssef tFarZ  = (norg.z + ssef((const char*)nodePtr+(size_t)cur+farZ )) * rdir.z;
#endif
        const ssef tNear = max(tNearX,tNearY,tNearZ,rayNear);
        const ssef tFar  = min(tFarX ,tFarY ,tFarZ ,rayFar);
    size_t mask = movemask(tNear <= tFar);
        
        /*! if no child is hit, pop next node */
        if (unlikely(mask == 0))
          goto pop;

        /*! one child is hit, continue with that child */
        size_t r = __bsf(mask); mask = __btc(mask,r);
        if (likely(mask == 0)) {
          cur = node->child(r);
          continue;
        }

        /*! two children are hit, push far child, and continue with closer child */
        NodeRef c0 = node->child(r); const float d0 = tNear[r];
        r = __bsf(mask); mask = __btc(mask,r);
        NodeRef c1 = node->child(r); const float d1 = tNear[r];
        if (likely(mask == 0)) {
          if (d0 < d1) { stackPtr->ptr = c1; stackPtr->dist = d1; stackPtr++; cur = c0; continue; }
          else         { stackPtr->ptr = c0; stackPtr->dist = d0; stackPtr++; cur = c1; continue; }
        }

        /*! Here starts the slow path for 3 or 4 hit children. We push
         *  all nodes onto the stack to sort them there. */
        stackPtr->ptr = c0; stackPtr->dist = d0; stackPtr++;
        stackPtr->ptr = c1; stackPtr->dist = d1; stackPtr++;

        /*! three children are hit, push all onto stack and sort 3 stack items, continue with closest child */
        r = __bsf(mask); mask = __btc(mask,r);
        NodeRef c = node->child(r); float d = tNear[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++;
        if (likely(mask == 0)) {
          sort(stackPtr[-1],stackPtr[-2],stackPtr[-3]);
          cur = (NodeRef) stackPtr[-1].ptr; stackPtr--;
          continue;
        }

        /*! four children are hit, push all onto stack and sort 4 stack items, continue with closest child */
        r = __bsf(mask); mask = __btc(mask,r);
        c = node->child(r); d = tNear[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++;
        sort(stackPtr[-1],stackPtr[-2],stackPtr[-3],stackPtr[-4]);
        cur = (NodeRef) stackPtr[-1].ptr; stackPtr--;
      }

      /*! this is a leaf node */
      STAT3(normal.trav_leaves,1,1,1);
      size_t num; Triangle* tri = (Triangle*) cur.leaf(triPtr,num);
      for (size_t i=0; i<num; i++)
        TriangleIntersector::intersect(ray,tri[i],bvh->vertices);
      
      rayFar = ray.tfar;
    }
    AVX_ZERO_UPPER();
  }
示例#19
0
  bool BVH4iIntersector1<TriangleIntersector>::occluded(const BVH4iIntersector1* This, Ray& ray)
  {
    AVX_ZERO_UPPER();
    STAT3(shadow.travs,1,1,1);
    
    /*! stack state */
    const BVH4i* bvh = This->bvh;
    NodeRef stack[1+3*BVH4i::maxDepth];  //!< stack of nodes that still need to get traversed
    NodeRef* stackPtr = stack+1;        //!< current stack pointer
    stack[0]  = bvh->root;

    /*! offsets to select the side that becomes the lower or upper bound */
    const size_t nearX = ray.dir.x >= 0 ? 0*sizeof(ssef_m) : 1*sizeof(ssef_m);
    const size_t nearY = ray.dir.y >= 0 ? 2*sizeof(ssef_m) : 3*sizeof(ssef_m);
    const size_t nearZ = ray.dir.z >= 0 ? 4*sizeof(ssef_m) : 5*sizeof(ssef_m);
    
    /*! load the ray into SIMD registers */
    const sse3f norg(-ray.org.x,-ray.org.y,-ray.org.z);
    const Vector3f ray_rdir = rcp_safe(ray.dir);
    const sse3f rdir(ray_rdir.x,ray_rdir.y,ray_rdir.z);
    const Vector3f ray_org_rdir = ray.org*ray_rdir;
    const sse3f org_rdir(ray_org_rdir.x,ray_org_rdir.y,ray_org_rdir.z);
    const ssef  rayNear(ray.tnear);
    const ssef  rayFar(ray.tfar);

    const void* nodePtr = bvh->nodePtr();
    const void* triPtr  = bvh->triPtr();
    
    /* pop loop */
    while (true) pop:
    {
      /*! pop next node */
      if (unlikely(stackPtr == stack)) break;
      stackPtr--;
      NodeRef cur = (NodeRef) *stackPtr;
      
      /* downtraversal loop */
      while (true)
      {
        /*! stop if we found a leaf */
        if (unlikely(cur.isLeaf())) break;
        STAT3(shadow.trav_nodes,1,1,1);
    
        /*! single ray intersection with 4 boxes */
        const Node* node = cur.node(nodePtr);
        const size_t farX  = nearX ^ 16, farY  = nearY ^ 16, farZ  = nearZ ^ 16;
#if defined (__AVX2__)
        const ssef tNearX = msub(ssef((const char*)nodePtr+(size_t)cur+nearX), rdir.x, org_rdir.x);
        const ssef tNearY = msub(ssef((const char*)nodePtr+(size_t)cur+nearY), rdir.y, org_rdir.y);
        const ssef tNearZ = msub(ssef((const char*)nodePtr+(size_t)cur+nearZ), rdir.z, org_rdir.z);
        const ssef tFarX  = msub(ssef((const char*)nodePtr+(size_t)cur+farX ), rdir.x, org_rdir.x);
        const ssef tFarY  = msub(ssef((const char*)nodePtr+(size_t)cur+farY ), rdir.y, org_rdir.y);
        const ssef tFarZ  = msub(ssef((const char*)nodePtr+(size_t)cur+farZ ), rdir.z, org_rdir.z);
#else
        const ssef tNearX = (norg.x + ssef((const char*)nodePtr+(size_t)cur+nearX)) * rdir.x;
        const ssef tNearY = (norg.y + ssef((const char*)nodePtr+(size_t)cur+nearY)) * rdir.y;
        const ssef tNearZ = (norg.z + ssef((const char*)nodePtr+(size_t)cur+nearZ)) * rdir.z;
        const ssef tFarX  = (norg.x + ssef((const char*)nodePtr+(size_t)cur+farX )) * rdir.x;
        const ssef tFarY  = (norg.y + ssef((const char*)nodePtr+(size_t)cur+farY )) * rdir.y;
        const ssef tFarZ  = (norg.z + ssef((const char*)nodePtr+(size_t)cur+farZ )) * rdir.z;
#endif
        const ssef tNear = max(tNearX,tNearY,tNearZ,rayNear);
        const ssef tFar  = min(tFarX ,tFarY ,tFarZ ,rayFar);
    size_t mask = movemask(tNear <= tFar);
        
        /*! if no child is hit, pop next node */
        if (unlikely(mask == 0))
          goto pop;

        /*! one child is hit, continue with that child */
        size_t r = __bsf(mask); mask = __btc(mask,r);
        if (likely(mask == 0)) {
          cur = node->child(r);
          continue;
        }

        /*! two children are hit, push far child, and continue with closer child */
        NodeRef c0 = node->child(r); const float d0 = tNear[r];
        r = __bsf(mask); mask = __btc(mask,r);
        NodeRef c1 = node->child(r); const float d1 = tNear[r];
        if (likely(mask == 0)) {
          if (d0 < d1) { *stackPtr = c1; stackPtr++; cur = c0; continue; }
          else         { *stackPtr = c0; stackPtr++; cur = c1; continue; }
        }
        *stackPtr = c0; stackPtr++;
        *stackPtr = c1; stackPtr++;

        /*! three children are hit */
        r = __bsf(mask); mask = __btc(mask,r);
        cur = node->child(r); *stackPtr = cur; stackPtr++;
        if (likely(mask == 0)) {
          stackPtr--;
          continue;
        }

        /*! four children are hit */
        cur = node->child(3);
      }

      /*! this is a leaf node */
      STAT3(shadow.trav_leaves,1,1,1);
      size_t num; Triangle* tri = (Triangle*) cur.leaf(triPtr,num);
      for (size_t i=0; i<num; i++) {
        if (TriangleIntersector::occluded(ray,tri[i],bvh->vertices)) {
          AVX_ZERO_UPPER();
          return true;
        }
      }
    }
    AVX_ZERO_UPPER();
    return false;
  }
示例#20
0
 void BVH4MBIntersector1<TriangleIntersector>::occluded(const BVH4MB* bvh, Ray& ray)
 {
   AVX_ZERO_UPPER();
   STAT3(shadow.travs,1,1,1);
   
   /*! stack state */
   Base* stack[1+3*BVH4MB::maxDepth];  //!< stack of nodes that still need to get traversed
   Base** stackPtr = stack+1;          //!< current stack pointer
   stack[0] = bvh->root;               //!< push first node onto stack
   
   /*! offsets to select the side that becomes the lower or upper bound */
   const size_t nearX = (ray.dir.x >= 0) ? 0*2*sizeof(ssef) : 1*2*sizeof(ssef);
   const size_t nearY = (ray.dir.y >= 0) ? 2*2*sizeof(ssef) : 3*2*sizeof(ssef);
   const size_t nearZ = (ray.dir.z >= 0) ? 4*2*sizeof(ssef) : 5*2*sizeof(ssef);
   const size_t farX  = nearX ^ 32;
   const size_t farY  = nearY ^ 32;
   const size_t farZ  = nearZ ^ 32;
   
   /*! load the ray into SIMD registers */
   const sse3f norg(-ray.org.x,-ray.org.y,-ray.org.z);
   const Vec3fa ray_rdir = rcp_safe(ray.dir);
   const sse3f rdir(ray_rdir.x,ray_rdir.y,ray_rdir.z);
   const ssef rayNear(ray.tnear);
   const ssef rayFar (ray.tfar);
   
   /*! pop node from stack */
   while (true)
   {
     /* finish when the stack is empty */
     if (unlikely(stackPtr == stack)) break;
     Base* cur = *(--stackPtr);
     
     /*! this is an inner node */
     if (likely(cur->isNode()))
     {
       STAT3(shadow.trav_nodes,1,1,1);
       
       /*! single ray intersection with 4 boxes */
       const Node* node = cur->node();
       const ssef* pNearX = (const ssef*)((const char*)node+nearX);
       const ssef* pNearY = (const ssef*)((const char*)node+nearY);
       const ssef* pNearZ = (const ssef*)((const char*)node+nearZ);
       const ssef tNearX = (norg.x + ssef(pNearX[0]) + ray.time*pNearX[1]) * rdir.x;
       const ssef tNearY = (norg.y + ssef(pNearY[0]) + ray.time*pNearY[1]) * rdir.y;
       const ssef tNearZ = (norg.z + ssef(pNearZ[0]) + ray.time*pNearZ[1]) * rdir.z;
       const ssef tNear = max(tNearX,tNearY,tNearZ,rayNear);
       const ssef* pFarX = (const ssef*)((const char*)node+farX);
       const ssef* pFarY = (const ssef*)((const char*)node+farY);
       const ssef* pFarZ = (const ssef*)((const char*)node+farZ);
       const ssef tFarX = (norg.x + ssef(pFarX[0]) + ray.time*pFarX[1]) * rdir.x;
       const ssef tFarY = (norg.y + ssef(pFarY[0]) + ray.time*pFarY[1]) * rdir.y;
       const ssef tFarZ = (norg.z + ssef(pFarZ[0]) + ray.time*pFarZ[1]) * rdir.z;
       const ssef tFar = min(tFarX,tFarY,tFarZ,rayFar);
       size_t _hit = movemask(tNear <= tFar);
       
       /*! push hit nodes onto stack */
       if (likely(_hit == 0)) continue;
       size_t r = __bsf(_hit); _hit = __btc(_hit,r);
       *stackPtr = node->child[r]; stackPtr++;
       if (likely(_hit == 0)) continue;
       r = __bsf(_hit); _hit = __btc(_hit,r);
       *stackPtr = node->child[r]; stackPtr++;
       if (likely(_hit == 0)) continue;
       r = __bsf(_hit); _hit = __btc(_hit,r);
       *stackPtr = node->child[r]; stackPtr++;
       if (likely(_hit == 0)) continue;
       r = __bsf(_hit); _hit = __btc(_hit,r);
       *stackPtr = node->child[r]; stackPtr++;
     }
     
     /*! this is a leaf node */
     else 
     {
       STAT3(shadow.trav_leaves,1,1,1);
       size_t num; Triangle* tri = (Triangle*) cur->leaf(num);
       for (size_t i=0; i<num; i++)
         if (TriangleIntersector::occluded(ray,tri[i],bvh->geometry)) {
           ray.geomID = 0;
           break;
         }
     }
   }
   AVX_ZERO_UPPER();
 }
    void BVH4Intersector4Hybrid<PrimitiveIntersector4>::intersect(sseb* valid_i, BVH4* bvh, Ray4& ray)
    {
      /* load ray */
      const sseb valid0 = *valid_i;
      sse3f ray_org = ray.org, ray_dir = ray.dir;
      ssef ray_tnear = ray.tnear, ray_tfar  = ray.tfar;
#if defined(__FIX_RAYS__)
      const ssef float_range = 0.1f*FLT_MAX;
      ray_org = clamp(ray_org,sse3f(-float_range),sse3f(+float_range));
      ray_dir = clamp(ray_dir,sse3f(-float_range),sse3f(+float_range));
      ray_tnear = max(ray_tnear,FLT_MIN); 
      ray_tfar  = min(ray_tfar,float(inf)); 
#endif
      const sse3f rdir = rcp_safe(ray_dir);
      const sse3f org(ray_org), org_rdir = org * rdir;
      ray_tnear = select(valid0,ray_tnear,ssef(pos_inf));
      ray_tfar  = select(valid0,ray_tfar ,ssef(neg_inf));
      const ssef inf = ssef(pos_inf);
      
      /* allocate stack and push root node */
      ssef    stack_near[stackSizeChunk]; 
      NodeRef stack_node[stackSizeChunk];
      stack_node[0] = BVH4::invalidNode;
      stack_near[0] = inf;
      stack_node[1] = bvh->root;
      stack_near[1] = ray_tnear; 
      NodeRef* stackEnd = stack_node+stackSizeChunk;
      NodeRef* __restrict__ sptr_node = stack_node + 2;
      ssef*    __restrict__ sptr_near = stack_near + 2;
      
      while (1)
      {
        /* pop next node from stack */
        assert(sptr_node > stack_node);
        sptr_node--;
        sptr_near--;
        NodeRef curNode = *sptr_node;
        if (unlikely(curNode == BVH4::invalidNode)) {
          assert(sptr_node == stack_node);
          break;
        }
        
        /* cull node if behind closest hit point */
        ssef curDist = *sptr_near;
        const sseb active = curDist < ray_tfar;
        if (unlikely(none(active))) 
          continue;
        
        /* switch to single ray traversal */
#if !defined(__WIN32__) || defined(__X86_64__)
        size_t bits = movemask(active);
        if (unlikely(__popcnt(bits) <= SWITCH_THRESHOLD)) {
          for (size_t i=__bsf(bits); bits!=0; bits=__btc(bits,i), i=__bsf(bits)) {
            intersect1(bvh,curNode,i,ray,ray_org,ray_dir,rdir,ray_tnear,ray_tfar);
          }
          ray_tfar = ray.tfar;
          continue;
        }
#endif
        
        while (1)
        {
          /* test if this is a leaf node */
          if (unlikely(curNode.isLeaf()))
            break;
          
          const sseb valid_node = ray_tfar > curDist;
          STAT3(normal.trav_nodes,1,popcnt(valid_node),4);
          const Node* __restrict__ const node = curNode.node();
          
          /* pop of next node */
          assert(sptr_node > stack_node);
          sptr_node--;
          sptr_near--;
          curNode = *sptr_node; 
          curDist = *sptr_near;
          
#pragma unroll(4)
          for (unsigned i=0; i<4; i++)
          {
            const NodeRef child = node->children[i];
            if (unlikely(child == BVH4::emptyNode)) break;
            
#if defined(__AVX2__)
            const ssef lclipMinX = msub(node->lower_x[i],rdir.x,org_rdir.x);
            const ssef lclipMinY = msub(node->lower_y[i],rdir.y,org_rdir.y);
            const ssef lclipMinZ = msub(node->lower_z[i],rdir.z,org_rdir.z);
            const ssef lclipMaxX = msub(node->upper_x[i],rdir.x,org_rdir.x);
            const ssef lclipMaxY = msub(node->upper_y[i],rdir.y,org_rdir.y);
            const ssef lclipMaxZ = msub(node->upper_z[i],rdir.z,org_rdir.z);
#else
            const ssef lclipMinX = (node->lower_x[i] - org.x) * rdir.x;
            const ssef lclipMinY = (node->lower_y[i] - org.y) * rdir.y;
            const ssef lclipMinZ = (node->lower_z[i] - org.z) * rdir.z;
            const ssef lclipMaxX = (node->upper_x[i] - org.x) * rdir.x;
            const ssef lclipMaxY = (node->upper_y[i] - org.y) * rdir.y;
            const ssef lclipMaxZ = (node->upper_z[i] - org.z) * rdir.z;
#endif
    
#if defined(__SSE4_1__)
            const ssef lnearP = maxi(maxi(mini(lclipMinX, lclipMaxX), mini(lclipMinY, lclipMaxY)), mini(lclipMinZ, lclipMaxZ));
            const ssef lfarP  = mini(mini(maxi(lclipMinX, lclipMaxX), maxi(lclipMinY, lclipMaxY)), maxi(lclipMinZ, lclipMaxZ));
            const sseb lhit   = maxi(lnearP,ray_tnear) <= mini(lfarP,ray_tfar);      
#else
            const ssef lnearP = max(max(min(lclipMinX, lclipMaxX), min(lclipMinY, lclipMaxY)), min(lclipMinZ, lclipMaxZ));
            const ssef lfarP  = min(min(max(lclipMinX, lclipMaxX), max(lclipMinY, lclipMaxY)), max(lclipMinZ, lclipMaxZ));
            const sseb lhit   = max(lnearP,ray_tnear) <= min(lfarP,ray_tfar);      
#endif
        
            /* if we hit the child we choose to continue with that child if it 
               is closer than the current next child, or we push it onto the stack */
            if (likely(any(lhit)))
            {
              assert(sptr_node < stackEnd);
              const ssef childDist = select(lhit,lnearP,inf);
              const NodeRef child = node->children[i];
              assert(child != BVH4::emptyNode);
              sptr_node++;
              sptr_near++;

              /* push cur node onto stack and continue with hit child */
              if (any(childDist < curDist))
              {
                *(sptr_node-1) = curNode;
                *(sptr_near-1) = curDist; 
                curDist = childDist;
                curNode = child;
              }
              
              /* push hit child onto stack */
              else {
                *(sptr_node-1) = child;
                *(sptr_near-1) = childDist; 
              }
            }	      
          }
        }
        
        /* return if stack is empty */
        if (unlikely(curNode == BVH4::invalidNode)) {
          assert(sptr_node == stack_node);
          break;
        }
        
        /* intersect leaf */
        const sseb valid_leaf = ray_tfar > curDist;
        STAT3(normal.trav_leaves,1,popcnt(valid_leaf),4);
        size_t items; const Primitive* prim = (Primitive*) curNode.leaf(items);
        PrimitiveIntersector4::intersect(valid_leaf,ray,prim,items,bvh->geometry);
        ray_tfar = select(valid_leaf,ray.tfar,ray_tfar);
      }
      AVX_ZERO_UPPER();
    }
示例#22
0
 void BVH4MBIntersector1<TriangleIntersector>::intersect(const BVH4MB* bvh, Ray& ray)
 {
   AVX_ZERO_UPPER();
   STAT3(normal.travs,1,1,1);
   
   /*! stack state */
   Base* popCur  = bvh->root;              //!< pre-popped top node from the stack
   float popDist = neg_inf;                //!< pre-popped distance of top node from the stack
   StackItem stack[1+3*BVH4MB::maxDepth];  //!< stack of nodes that still need to get traversed
   StackItem* stackPtr = stack+1;          //!< current stack pointer
   
   /*! offsets to select the side that becomes the lower or upper bound */
   const size_t nearX = ray.dir.x >= 0 ? 0*2*sizeof(ssef) : 1*2*sizeof(ssef);
   const size_t nearY = ray.dir.y >= 0 ? 2*2*sizeof(ssef) : 3*2*sizeof(ssef);
   const size_t nearZ = ray.dir.z >= 0 ? 4*2*sizeof(ssef) : 5*2*sizeof(ssef);
   const size_t farX  = nearX ^ 32;
   const size_t farY  = nearY ^ 32;
   const size_t farZ  = nearZ ^ 32;
   
   /*! load the ray into SIMD registers */
   const sse3f norg(-ray.org.x,-ray.org.y,-ray.org.z);
   const Vec3fa ray_rdir = rcp_safe(ray.dir);
   const sse3f rdir(ray_rdir.x,ray_rdir.y,ray_rdir.z);
   const ssef rayNear(ray.tnear);
   ssef rayFar(ray.tfar);
   
   while (true)
   {
     /*! pop next node */
     if (unlikely(stackPtr == stack)) break;
     stackPtr--;
     Base* cur = popCur;
     
     /*! if popped node is too far, pop next one */
     if (unlikely(popDist > ray.tfar)) {
       popCur  = (Base*)stackPtr[-1].ptr;
       popDist = stackPtr[-1].dist;
       continue;
     }
     
   next:
     
     /*! we mostly go into the inner node case */
     if (likely(cur->isNode()))
     {
       STAT3(normal.trav_nodes,1,1,1);
       
       /*! single ray intersection with 4 boxes */
       const Node* node = cur->node();
       const ssef* pNearX = (const ssef*)((const char*)node+nearX);
       const ssef* pNearY = (const ssef*)((const char*)node+nearY);
       const ssef* pNearZ = (const ssef*)((const char*)node+nearZ);
       const ssef tNearX = (norg.x + ssef(pNearX[0]) + ray.time*pNearX[1]) * rdir.x;
       const ssef tNearY = (norg.y + ssef(pNearY[0]) + ray.time*pNearY[1]) * rdir.y;
       const ssef tNearZ = (norg.z + ssef(pNearZ[0]) + ray.time*pNearZ[1]) * rdir.z;
       const ssef tNear = max(tNearX,tNearY,tNearZ,rayNear);
       const ssef* pFarX = (const ssef*)((const char*)node+farX);
       const ssef* pFarY = (const ssef*)((const char*)node+farY);
       const ssef* pFarZ = (const ssef*)((const char*)node+farZ);
       const ssef tFarX = (norg.x + ssef(pFarX[0]) + ray.time*pFarX[1]) * rdir.x;
       const ssef tFarY = (norg.y + ssef(pFarY[0]) + ray.time*pFarY[1]) * rdir.y;
       const ssef tFarZ = (norg.z + ssef(pFarZ[0]) + ray.time*pFarZ[1]) * rdir.z;
       popCur = (Base*) stackPtr[-1].ptr;      //!< pre-pop of topmost stack item
       popDist = stackPtr[-1].dist;            //!< pre-pop of distance of topmost stack item
       const ssef tFar = min(tFarX,tFarY,tFarZ,rayFar);
       size_t _hit = movemask(tNear <= tFar);
       
       /*! if no child is hit, pop next node */
       if (unlikely(_hit == 0))
         continue;
       
       /*! one child is hit, continue with that child */
       size_t r = __bsf(_hit); _hit = __btc(_hit,r);
       if (likely(_hit == 0)) {
         cur = node->child[r];
         goto next;
       }
       
       /*! two children are hit, push far child, and continue with closer child */
       Base* c0 = node->child[r]; const float d0 = tNear[r];
       r = __bsf(_hit); _hit = __btc(_hit,r);
       Base* c1 = node->child[r]; const float d1 = tNear[r];
       if (likely(_hit == 0)) {
         if (d0 < d1) { stackPtr->ptr = c1; stackPtr->dist = d1; stackPtr++; cur = c0; goto next; }
         else         { stackPtr->ptr = c0; stackPtr->dist = d0; stackPtr++; cur = c1; goto next; }
       }
       
       /*! Here starts the slow path for 3 or 4 hit children. We push
        *  all nodes onto the stack to sort them there. */
       stackPtr->ptr = c0; stackPtr->dist = d0; stackPtr++;
       stackPtr->ptr = c1; stackPtr->dist = d1; stackPtr++;
       
       /*! three children are hit, push all onto stack and sort 3 stack items, continue with closest child */
       r = __bsf(_hit); _hit = __btc(_hit,r);
       Base* c = node->child[r]; float d = tNear[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++;
       if (likely(_hit == 0)) {
         sort(stackPtr[-1],stackPtr[-2],stackPtr[-3]);
         cur = (Base*) stackPtr[-1].ptr; stackPtr--;
         goto next;
       }
       
       /*! four children are hit, push all onto stack and sort 4 stack items, continue with closest child */
       r = __bsf(_hit); _hit = __btc(_hit,r);
       c = node->child[r]; d = tNear[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++;
       sort(stackPtr[-1],stackPtr[-2],stackPtr[-3],stackPtr[-4]);
       cur = (Base*) stackPtr[-1].ptr; stackPtr--;
       goto next;
     }
     
     /*! this is a leaf node */
     else 
     {
       STAT3(normal.trav_leaves,1,1,1);
       size_t num; Triangle* tri = (Triangle*) cur->leaf(num);
       for (size_t i=0; i<num; i++)
         TriangleIntersector::intersect(ray,tri[i],bvh->geometry);
       
       popCur = (Base*) stackPtr[-1].ptr;  //!< pre-pop of topmost stack item
       popDist = stackPtr[-1].dist;        //!< pre-pop of distance of topmost stack item
       rayFar = ray.tfar;
     }
   }
   AVX_ZERO_UPPER();
 }
示例#23
0
    void BVH4Intersector1<PrimitiveIntersector>::occluded(const BVH4* bvh, Ray& ray)
    {
      /*! stack state */
      NodeRef stack[stackSize];  //!< stack of nodes that still need to get traversed
      NodeRef* stackPtr = stack+1;        //!< current stack pointer
      NodeRef* stackEnd = stack+stackSize;
      stack[0] = bvh->root;
      
      /*! offsets to select the side that becomes the lower or upper bound */
      const size_t nearX = ray.dir.x >= 0 ? 0*sizeof(ssef) : 1*sizeof(ssef);
      const size_t nearY = ray.dir.y >= 0 ? 2*sizeof(ssef) : 3*sizeof(ssef);
      const size_t nearZ = ray.dir.z >= 0 ? 4*sizeof(ssef) : 5*sizeof(ssef);
      
#if 0 // FIXME: why is this slower
      /*! load the ray */
      Vec3fa ray_org = ray.org;
      Vec3fa ray_dir = ray.dir;
      ssef ray_near  = max(ray.tnear,FLT_MIN); // we do not support negative tnear values in this kernel due to integer optimizations
      ssef ray_far   = ray.tfar; 
#if defined(__FIX_RAYS__)
      const float float_range = 0.1f*FLT_MAX;
      ray_org = clamp(ray_org,Vec3fa(-float_range),Vec3fa(+float_range));
      ray_dir = clamp(ray_dir,Vec3fa(-float_range),Vec3fa(+float_range));
      ray_far = min(ray_far,float(inf)); 
#endif
      const Vec3fa ray_rdir = rcp_safe(ray_dir);
      const sse3f org(ray_org), dir(ray_dir);
      const sse3f norg(-ray_org), rdir(ray_rdir), org_rdir(ray_org*ray_rdir);
#else
      /*! load the ray into SIMD registers */
      const sse3f norg(-ray.org.x,-ray.org.y,-ray.org.z);
      const Vec3fa ray_rdir = rcp_safe(ray.dir);
      const sse3f rdir(ray_rdir.x,ray_rdir.y,ray_rdir.z);
      const Vec3fa ray_org_rdir = ray.org*ray_rdir;
      const sse3f org_rdir(ray_org_rdir.x,ray_org_rdir.y,ray_org_rdir.z);
      const ssef  ray_near(ray.tnear);
      ssef ray_far(ray.tfar);
#endif
      
      /* pop loop */
      while (true) pop:
      {
        /*! pop next node */
        if (unlikely(stackPtr == stack)) break;
        stackPtr--;
        NodeRef cur = (NodeRef) *stackPtr;
        
        /* downtraversal loop */
        while (true)
        {
          /*! stop if we found a leaf */
          if (unlikely(cur.isLeaf())) break;
          STAT3(shadow.trav_nodes,1,1,1);
          
          /*! single ray intersection with 4 boxes */
          const Node* node = cur.node();
          const size_t farX  = nearX ^ 16, farY  = nearY ^ 16, farZ  = nearZ ^ 16;
#if defined (__AVX2__)
          const ssef tNearX = msub(load4f((const char*)node+nearX), rdir.x, org_rdir.x);
          const ssef tNearY = msub(load4f((const char*)node+nearY), rdir.y, org_rdir.y);
          const ssef tNearZ = msub(load4f((const char*)node+nearZ), rdir.z, org_rdir.z);
          const ssef tFarX  = msub(load4f((const char*)node+farX ), rdir.x, org_rdir.x);
          const ssef tFarY  = msub(load4f((const char*)node+farY ), rdir.y, org_rdir.y);
          const ssef tFarZ  = msub(load4f((const char*)node+farZ ), rdir.z, org_rdir.z);
#else
          const ssef tNearX = (norg.x + load4f((const char*)node+nearX)) * rdir.x;
          const ssef tNearY = (norg.y + load4f((const char*)node+nearY)) * rdir.y;
          const ssef tNearZ = (norg.z + load4f((const char*)node+nearZ)) * rdir.z;
          const ssef tFarX  = (norg.x + load4f((const char*)node+farX )) * rdir.x;
          const ssef tFarY  = (norg.y + load4f((const char*)node+farY )) * rdir.y;
          const ssef tFarZ  = (norg.z + load4f((const char*)node+farZ )) * rdir.z;
#endif
          
#if defined(__SSE4_1__)
          const ssef tNear = maxi(maxi(tNearX,tNearY),maxi(tNearZ,ray_near));
          const ssef tFar  = mini(mini(tFarX ,tFarY ),mini(tFarZ ,ray_far ));
          const sseb vmask = cast(tNear) > cast(tFar);
          size_t mask = movemask(vmask)^0xf;
#else
          const ssef tNear = max(tNearX,tNearY,tNearZ,ray_near);
          const ssef tFar  = min(tFarX ,tFarY ,tFarZ ,ray_far);
          const sseb vmask = tNear <= tFar;
          size_t mask = movemask(vmask);
#endif
          
          /*! if no child is hit, pop next node */
          if (unlikely(mask == 0))
            goto pop;
          
          /*! one child is hit, continue with that child */
          size_t r = __bscf(mask);
          if (likely(mask == 0)) {
            cur = node->child(r);
            assert(cur != BVH4::emptyNode);
            continue;
          }
          
          /*! two children are hit, push far child, and continue with closer child */
          NodeRef c0 = node->child(r); const unsigned int d0 = ((unsigned int*)&tNear)[r];
          r = __bscf(mask);
          NodeRef c1 = node->child(r); const unsigned int d1 = ((unsigned int*)&tNear)[r];
          assert(c0 != BVH4::emptyNode);
          assert(c1 != BVH4::emptyNode);
          if (likely(mask == 0)) {
            assert(stackPtr < stackEnd);
            if (d0 < d1) { *stackPtr = c1; stackPtr++; cur = c0; continue; }
            else         { *stackPtr = c0; stackPtr++; cur = c1; continue; }
          }
          assert(stackPtr < stackEnd);
          *stackPtr = c0; stackPtr++;
          assert(stackPtr < stackEnd);
          *stackPtr = c1; stackPtr++;
          
          /*! three children are hit */
          r = __bscf(mask);
          cur = node->child(r); 
          assert(cur != BVH4::emptyNode);
          if (likely(mask == 0)) continue;
          assert(stackPtr < stackEnd);
          *stackPtr = cur; stackPtr++;
          
          /*! four children are hit */
          cur = node->child(3);
          assert(cur != BVH4::emptyNode);
        }
        
        /*! this is a leaf node */
        STAT3(shadow.trav_leaves,1,1,1);
        size_t num; Primitive* prim = (Primitive*) cur.leaf(num);
        if (PrimitiveIntersector::occluded(ray,prim,num,bvh->geometry)) {
          ray.geomID = 0;
          break;
        }
      }
      AVX_ZERO_UPPER();
    }
示例#24
0
    void BVH8Intersector8Chunk<PrimitiveIntersector8>::intersect(avxb* valid_i, BVH8* bvh, Ray8& ray)
    {
#if defined(__AVX__)
      
      /* load ray */
      const avxb valid0 = *valid_i;
      const avx3f rdir = rcp_safe(ray.dir);
      const avx3f org_rdir = ray.org * rdir;
      avxf ray_tnear = select(valid0,ray.tnear,pos_inf);
      avxf ray_tfar  = select(valid0,ray.tfar ,neg_inf);
      const avxf inf = avxf(pos_inf);
      Precalculations pre(valid0,ray);
      
      /* allocate stack and push root node */
      avxf    stack_near[3*BVH8::maxDepth+1];
      NodeRef stack_node[3*BVH8::maxDepth+1];
      stack_node[0] = BVH8::invalidNode;
      stack_near[0] = inf;
      stack_node[1] = bvh->root;
      stack_near[1] = ray_tnear; 
      NodeRef* __restrict__ sptr_node = stack_node + 2;
      avxf*    __restrict__ sptr_near = stack_near + 2;
      
      while (1)
      {
        /* pop next node from stack */
        sptr_node--;
        sptr_near--;
        NodeRef cur = *sptr_node;
        if (unlikely(cur == BVH8::invalidNode)) 
          break;
        
        /* cull node if behind closest hit point */
        avxf curDist = *sptr_near;
        if (unlikely(none(ray_tfar > curDist))) 
          continue;
        
        while (1)
        {
          /* test if this is a leaf node */
          if (unlikely(cur.isLeaf()))
            break;
          
          const avxb valid_node = ray_tfar > curDist;
          STAT3(normal.trav_nodes,1,popcnt(valid_node),8);
          const Node* __restrict__ const node = (BVH8::Node*)cur.node();
          
          /* pop of next node */
          sptr_node--;
          sptr_near--;
          cur = *sptr_node; // FIXME: this trick creates issues with stack depth
          curDist = *sptr_near;
          
          for (unsigned i=0; i<BVH8::N; i++)
          {
            const NodeRef child = node->children[i];
            if (unlikely(child == BVH8::emptyNode)) break;
            
#if defined(__AVX2__)
            const avxf lclipMinX = msub(node->lower_x[i],rdir.x,org_rdir.x);
            const avxf lclipMinY = msub(node->lower_y[i],rdir.y,org_rdir.y);
            const avxf lclipMinZ = msub(node->lower_z[i],rdir.z,org_rdir.z);
            const avxf lclipMaxX = msub(node->upper_x[i],rdir.x,org_rdir.x);
            const avxf lclipMaxY = msub(node->upper_y[i],rdir.y,org_rdir.y);
            const avxf lclipMaxZ = msub(node->upper_z[i],rdir.z,org_rdir.z);
            const avxf lnearP = maxi(maxi(mini(lclipMinX, lclipMaxX), mini(lclipMinY, lclipMaxY)), mini(lclipMinZ, lclipMaxZ));
            const avxf lfarP  = mini(mini(maxi(lclipMinX, lclipMaxX), maxi(lclipMinY, lclipMaxY)), maxi(lclipMinZ, lclipMaxZ));
            const avxb lhit   = maxi(lnearP,ray_tnear) <= mini(lfarP,ray_tfar);      
#else
            const avxf lclipMinX = node->lower_x[i] * rdir.x - org_rdir.x;
            const avxf lclipMinY = node->lower_y[i] * rdir.y - org_rdir.y;
            const avxf lclipMinZ = node->lower_z[i] * rdir.z - org_rdir.z;
            const avxf lclipMaxX = node->upper_x[i] * rdir.x - org_rdir.x;
            const avxf lclipMaxY = node->upper_y[i] * rdir.y - org_rdir.y;
            const avxf lclipMaxZ = node->upper_z[i] * rdir.z - org_rdir.z;
            const avxf lnearP = max(max(min(lclipMinX, lclipMaxX), min(lclipMinY, lclipMaxY)), min(lclipMinZ, lclipMaxZ));
            const avxf lfarP  = min(min(max(lclipMinX, lclipMaxX), max(lclipMinY, lclipMaxY)), max(lclipMinZ, lclipMaxZ));
            const avxb lhit   = max(lnearP,ray_tnear) <= min(lfarP,ray_tfar);      
#endif
            
            /* if we hit the child we choose to continue with that child if it 
               is closer than the current next child, or we push it onto the stack */
            if (likely(any(lhit)))
            {
              const avxf childDist = select(lhit,lnearP,inf);
              const NodeRef child = node->children[i];
              
              /* push cur node onto stack and continue with hit child */
              if (any(childDist < curDist))
              {
                *sptr_node = cur;
                *sptr_near = curDist; 
		sptr_node++;
		sptr_near++;

                curDist = childDist;
                cur = child;
              }
              
              /* push hit child onto stack*/
              else {
                *sptr_node = child;
                *sptr_near = childDist; 
		sptr_node++;
		sptr_near++;

              }
              assert(sptr_node - stack_node < BVH8::maxDepth);
            }	      
          }
        }
        
        /* return if stack is empty */
        if (unlikely(cur == BVH8::invalidNode)) 
          break;
        
        /* intersect leaf */
	assert(cur != BVH8::emptyNode);
        const avxb valid_leaf = ray_tfar > curDist;
        STAT3(normal.trav_leaves,1,popcnt(valid_leaf),8);
        size_t items; const Triangle* tri  = (Triangle*) cur.leaf(items);
        PrimitiveIntersector8::intersect(valid_leaf,pre,ray,tri,items,bvh->geometry);
        ray_tfar = select(valid_leaf,ray.tfar,ray_tfar);
      }
      AVX_ZERO_UPPER();
#endif       
    }
    void BVH8Intersector8Hybrid<PrimitiveIntersector8>::occluded(bool8* valid_i, BVH8* bvh, Ray8& ray)
    {
      /* load ray */
      const bool8 valid = *valid_i;
      bool8 terminated = !valid;
      Vec3f8 ray_org = ray.org, ray_dir = ray.dir;
      float8 ray_tnear = ray.tnear, ray_tfar  = ray.tfar;
      const Vec3f8 rdir = rcp_safe(ray_dir);
      const Vec3f8 org(ray_org), org_rdir = org * rdir;
      ray_tnear = select(valid,ray_tnear,float8(pos_inf));
      ray_tfar  = select(valid,ray_tfar ,float8(neg_inf));
      const float8 inf = float8(pos_inf);
      Precalculations pre(valid,ray);

      /* compute near/far per ray */
      Vec3i8 nearXYZ;
      nearXYZ.x = select(rdir.x >= 0.0f,int8(0*(int)sizeof(float8)),int8(1*(int)sizeof(float8)));
      nearXYZ.y = select(rdir.y >= 0.0f,int8(2*(int)sizeof(float8)),int8(3*(int)sizeof(float8)));
      nearXYZ.z = select(rdir.z >= 0.0f,int8(4*(int)sizeof(float8)),int8(5*(int)sizeof(float8)));

      /* allocate stack and push root node */
      float8    stack_near[stackSizeChunk];
      NodeRef stack_node[stackSizeChunk];
      stack_node[0] = BVH8::invalidNode;
      stack_near[0] = inf;
      stack_node[1] = bvh->root;
      stack_near[1] = ray_tnear; 
      NodeRef* stackEnd = stack_node+stackSizeChunk;
      NodeRef* __restrict__ sptr_node = stack_node + 2;
      float8*    __restrict__ sptr_near = stack_near + 2;

      while (1)
      {
        /* pop next node from stack */
        assert(sptr_node > stack_node);
        sptr_node--;
        sptr_near--;
        NodeRef cur = *sptr_node;
        if (unlikely(cur == BVH8::invalidNode)) {
          assert(sptr_node == stack_node);
          break;
        }

        /* cull node if behind closest hit point */
        float8 curDist = *sptr_near;
        const bool8 active = curDist < ray_tfar;
        if (unlikely(none(active))) 
          continue;
        
        /* switch to single ray traversal */
#if !defined(__WIN32__) || defined(__X86_64__)
        size_t bits = movemask(active);
        if (unlikely(__popcnt(bits) <= SWITCH_THRESHOLD)) {
          for (size_t i=__bsf(bits); bits!=0; bits=__btc(bits,i), i=__bsf(bits)) {
            if (occluded1(bvh,cur,i,pre,ray,ray_org,ray_dir,rdir,ray_tnear,ray_tfar,nearXYZ))
              terminated[i] = -1;
          }
          if (all(terminated)) break;
          ray_tfar = select(terminated,float8(neg_inf),ray_tfar);
          continue;
        }
#endif
                
        while (1)
        {
          /* test if this is a leaf node */
          if (unlikely(cur.isLeaf()))
            break;
          
          const bool8 valid_node = ray_tfar > curDist;
          STAT3(shadow.trav_nodes,1,popcnt(valid_node),8);
          const Node* __restrict__ const node = (Node*)cur.node();
          
          /* pop of next node */
          assert(sptr_node > stack_node);
          sptr_node--;
          sptr_near--;
          cur = *sptr_node;
          curDist = *sptr_near;
          
          for (unsigned i=0; i<BVH8::N; i++)
          {
            const NodeRef child = node->children[i];
            if (unlikely(child == BVH8::emptyNode)) break;
            
#if defined(__AVX2__)
            const float8 lclipMinX = msub(node->lower_x[i],rdir.x,org_rdir.x);
            const float8 lclipMinY = msub(node->lower_y[i],rdir.y,org_rdir.y);
            const float8 lclipMinZ = msub(node->lower_z[i],rdir.z,org_rdir.z);
            const float8 lclipMaxX = msub(node->upper_x[i],rdir.x,org_rdir.x);
            const float8 lclipMaxY = msub(node->upper_y[i],rdir.y,org_rdir.y);
            const float8 lclipMaxZ = msub(node->upper_z[i],rdir.z,org_rdir.z);
            const float8 lnearP = maxi(maxi(mini(lclipMinX, lclipMaxX), mini(lclipMinY, lclipMaxY)), mini(lclipMinZ, lclipMaxZ));
            const float8 lfarP  = mini(mini(maxi(lclipMinX, lclipMaxX), maxi(lclipMinY, lclipMaxY)), maxi(lclipMinZ, lclipMaxZ));
            const bool8 lhit   = maxi(lnearP,ray_tnear) <= mini(lfarP,ray_tfar);      
#else
            const float8 lclipMinX = (node->lower_x[i] - org.x) * rdir.x;
            const float8 lclipMinY = (node->lower_y[i] - org.y) * rdir.y;
            const float8 lclipMinZ = (node->lower_z[i] - org.z) * rdir.z;
            const float8 lclipMaxX = (node->upper_x[i] - org.x) * rdir.x;
            const float8 lclipMaxY = (node->upper_y[i] - org.y) * rdir.y;
            const float8 lclipMaxZ = (node->upper_z[i] - org.z) * rdir.z;
            const float8 lnearP = max(max(min(lclipMinX, lclipMaxX), min(lclipMinY, lclipMaxY)), min(lclipMinZ, lclipMaxZ));
            const float8 lfarP  = min(min(max(lclipMinX, lclipMaxX), max(lclipMinY, lclipMaxY)), max(lclipMinZ, lclipMaxZ));
            const bool8 lhit   = max(lnearP,ray_tnear) <= min(lfarP,ray_tfar);      
#endif
            
            /* if we hit the child we choose to continue with that child if it 
               is closer than the current next child, or we push it onto the stack */
            if (likely(any(lhit)))
            {
              assert(sptr_node < stackEnd);
              assert(child != BVH8::emptyNode);
              const float8 childDist = select(lhit,lnearP,inf);
              sptr_node++;
              sptr_near++;
              
              /* push cur node onto stack and continue with hit child */
              if (any(childDist < curDist))
              {
                *(sptr_node-1) = cur;
                *(sptr_near-1) = curDist; 
                curDist = childDist;
                cur = child;
              }
              
              /* push hit child onto stack */
              else {
                *(sptr_node-1) = child;
                *(sptr_near-1) = childDist; 
              }
            }	      
          }
        }
        
        /* return if stack is empty */
        if (unlikely(cur == BVH8::invalidNode)) {
          assert(sptr_node == stack_node);
          break;
        }
        
        /* intersect leaf */
	assert(cur != BVH8::emptyNode);
        const bool8 valid_leaf = ray_tfar > curDist;
        STAT3(shadow.trav_leaves,1,popcnt(valid_leaf),8);
        size_t items; const Triangle* prim = (Triangle*) cur.leaf(items);
        terminated |= PrimitiveIntersector8::occluded(!terminated,pre,ray,prim,items,bvh->scene);
        if (all(terminated)) break;
        ray_tfar = select(terminated,float8(neg_inf),ray_tfar);
      }
      store8i(valid & terminated,&ray.geomID,0);
      AVX_ZERO_UPPER();
    }
  void SubdivMeshAVX::interpolate(unsigned primID, float u, float v, RTCBufferType buffer, float* P, float* dPdu, float* dPdv, float* ddPdudu, float* ddPdvdv, float* ddPdudv, size_t numFloats) 
  {
#if defined(DEBUG)
    if ((parent->aflags & RTC_INTERPOLATE) == 0) 
      throw_RTCError(RTC_INVALID_OPERATION,"rtcInterpolate can only get called when RTC_INTERPOLATE is enabled for the scene");
#endif

    /* calculate base pointer and stride */
    assert((buffer >= RTC_VERTEX_BUFFER0 && buffer <= RTC_VERTEX_BUFFER1) ||
           (buffer >= RTC_USER_VERTEX_BUFFER0 && buffer <= RTC_USER_VERTEX_BUFFER1));
    const char* src = nullptr; 
    size_t stride = 0;
    size_t bufID = buffer&0xFFFF;
    std::vector<SharedLazyTessellationCache::CacheEntry>* baseEntry = nullptr;
    if (buffer >= RTC_USER_VERTEX_BUFFER0) {
      src    = userbuffers[buffer&0xFFFF]->getPtr();
      stride = userbuffers[buffer&0xFFFF]->getStride();
      baseEntry = &user_buffer_tags[bufID];
    } else {
      src    = vertices[buffer&0xFFFF].getPtr();
      stride = vertices[buffer&0xFFFF].getStride();
      baseEntry = &vertex_buffer_tags[bufID];
    }

    for (size_t i=0,slot=0; i<numFloats; slot++)
    {
      if (i+4 >= numFloats)
      {
        vfloat4 Pt, dPdut, dPdvt, ddPdudut, ddPdvdvt, ddPdudvt;; 
        isa::PatchEval<vfloat4>(baseEntry->at(interpolationSlot(primID,slot,stride)),parent->commitCounterSubdiv,
                                getHalfEdge(primID),src+i*sizeof(float),stride,u,v,
                                P ? &Pt : nullptr, 
                                dPdu ? &dPdut : nullptr, 
                                dPdv ? &dPdvt : nullptr,
                                ddPdudu ? &ddPdudut : nullptr, 
                                ddPdvdv ? &ddPdvdvt : nullptr, 
                                ddPdudv ? &ddPdudvt : nullptr);
        
        if (P) {
          for (size_t j=i; j<min(i+4,numFloats); j++) 
            P[j] = Pt[j-i];
        }
        if (dPdu) 
        {
          for (size_t j=i; j<min(i+4,numFloats); j++) {
            dPdu[j] = dPdut[j-i];
            dPdv[j] = dPdvt[j-i];
          }
        }
        if (ddPdudu) 
        {
          for (size_t j=i; j<min(i+4,numFloats); j++) {
            ddPdudu[j] = ddPdudut[j-i];
            ddPdvdv[j] = ddPdvdvt[j-i];
            ddPdudv[j] = ddPdudvt[j-i];
          }
        }
        i+=4;
      }
      else
      {
        vfloat8 Pt, dPdut, dPdvt, ddPdudut, ddPdvdvt, ddPdudvt; 
        isa::PatchEval<vfloat8>(baseEntry->at(interpolationSlot(primID,slot,stride)),parent->commitCounterSubdiv,
                                getHalfEdge(primID),src+i*sizeof(float),stride,u,v,
                                P ? &Pt : nullptr, 
                                dPdu ? &dPdut : nullptr, 
                                dPdv ? &dPdvt : nullptr,
                                ddPdudu ? &ddPdudut : nullptr, 
                                ddPdvdv ? &ddPdvdvt : nullptr, 
                                ddPdudv ? &ddPdudvt : nullptr);
                                    
        if (P) {
          for (size_t j=i; j<i+8; j++) 
            P[j] = Pt[j-i];
        }
        if (dPdu) 
        {
          for (size_t j=i; j<i+8; j++) {
            dPdu[j] = dPdut[j-i];
            dPdv[j] = dPdvt[j-i];
          }
        }
        if (ddPdudu) 
        {
          for (size_t j=i; j<i+8; j++) {
            ddPdudu[j] = ddPdudut[j-i];
            ddPdvdv[j] = ddPdvdvt[j-i];
            ddPdudv[j] = ddPdudvt[j-i];
          }
        }
        i+=8;
      }
    }
    AVX_ZERO_UPPER();
  }
示例#27
0
    void BVH8Intersector1<robust,PrimitiveIntersector>::occluded(const BVH8* bvh, Ray& ray)
    {
      /*! perform per ray precalculations required by the primitive intersector */
      Precalculations pre(ray,bvh);

      /*! stack state */
      NodeRef stack[stackSize];  //!< stack of nodes that still need to get traversed
      NodeRef* stackPtr = stack+1;        //!< current stack pointer
      NodeRef* stackEnd = stack+stackSize;
      stack[0] = bvh->root;
        
      /* filter out invalid rays */
#if defined(RTCORE_IGNORE_INVALID_RAYS)
      if (!ray.valid()) return;
#endif

      /* verify correct input */
      assert(ray.tnear > -FLT_MIN);
      //assert(!(types & BVH4::FLAG_NODE_MB) || (ray.time >= 0.0f && ray.time <= 1.0f));

      /*! load the ray into SIMD registers */
      const Vec3f8 norg(-ray.org.x,-ray.org.y,-ray.org.z);
      const Vec3fa ray_rdir = rcp_safe(ray.dir);
      const Vec3f8 rdir(ray_rdir.x,ray_rdir.y,ray_rdir.z);
      const Vec3fa ray_org_rdir = ray.org*ray_rdir;
      const Vec3f8 org_rdir(ray_org_rdir.x,ray_org_rdir.y,ray_org_rdir.z);
      const float8  ray_near(ray.tnear);
      float8 ray_far(ray.tfar);
      
      /*! offsets to select the side that becomes the lower or upper bound */
      const size_t nearX = ray_rdir.x >= 0 ? 0*sizeof(float8) : 1*sizeof(float8);
      const size_t nearY = ray_rdir.y >= 0 ? 2*sizeof(float8) : 3*sizeof(float8);
      const size_t nearZ = ray_rdir.z >= 0 ? 4*sizeof(float8) : 5*sizeof(float8);

      /* pop loop */
      while (true) pop:
      {
        /*! pop next node */
        if (unlikely(stackPtr == stack)) break;
        stackPtr--;
        NodeRef cur = (NodeRef) *stackPtr;
        
        /* downtraversal loop */
        while (true)
        {
          /*! stop if we found a leaf */
          if (unlikely(cur.isLeaf())) break;
          STAT3(shadow.trav_nodes,1,1,1);
          
          /*! single ray intersection with 4 boxes */
          const Node* node = cur.node();
          const size_t farX  = nearX ^ sizeof(float8), farY  = nearY ^ sizeof(float8), farZ  = nearZ ^ sizeof(float8);
#if defined (__AVX2__)
          const float8 tNearX = msub(load8f((const char*)node+nearX), rdir.x, org_rdir.x);
          const float8 tNearY = msub(load8f((const char*)node+nearY), rdir.y, org_rdir.y);
          const float8 tNearZ = msub(load8f((const char*)node+nearZ), rdir.z, org_rdir.z);
          const float8 tFarX  = msub(load8f((const char*)node+farX ), rdir.x, org_rdir.x);
          const float8 tFarY  = msub(load8f((const char*)node+farY ), rdir.y, org_rdir.y);
          const float8 tFarZ  = msub(load8f((const char*)node+farZ ), rdir.z, org_rdir.z);
#else
          const float8 tNearX = (norg.x + load8f((const char*)node+nearX)) * rdir.x;
          const float8 tNearY = (norg.y + load8f((const char*)node+nearY)) * rdir.y;
          const float8 tNearZ = (norg.z + load8f((const char*)node+nearZ)) * rdir.z;
          const float8 tFarX  = (norg.x + load8f((const char*)node+farX )) * rdir.x;
          const float8 tFarY  = (norg.y + load8f((const char*)node+farY )) * rdir.y;
          const float8 tFarZ  = (norg.z + load8f((const char*)node+farZ )) * rdir.z;
#endif
          
#if defined(__AVX2__)
          const float8 tNear = maxi(maxi(tNearX,tNearY),maxi(tNearZ,ray_near));
          const float8 tFar  = mini(mini(tFarX ,tFarY ),mini(tFarZ ,ray_far ));
          const bool8 vmask = cast(tNear) > cast(tFar);
          size_t mask = movemask(vmask)^0xff;
#else
          const float8 tNear = max(tNearX,tNearY,tNearZ,ray_near);
          const float8 tFar  = min(tFarX ,tFarY ,tFarZ ,ray_far);
          const bool8 vmask = tNear <= tFar;
          size_t mask = movemask(vmask);
#endif
          
          /*! if no child is hit, pop next node */
          if (unlikely(mask == 0))
            goto pop;
          
          /*! one child is hit, continue with that child */
          size_t r = __bscf(mask);
          if (likely(mask == 0)) {
            cur = node->child(r); cur.prefetch(); 
            assert(cur != BVH8::emptyNode);
            continue;
          }
          
          /*! two children are hit, push far child, and continue with closer child */
          NodeRef c0 = node->child(r); c0.prefetch(); const unsigned int d0 = ((unsigned int*)&tNear)[r];
          r = __bscf(mask);
          NodeRef c1 = node->child(r); c1.prefetch(); const unsigned int d1 = ((unsigned int*)&tNear)[r];
          assert(c0 != BVH8::emptyNode);
          assert(c1 != BVH8::emptyNode);
          if (likely(mask == 0)) {
            assert(stackPtr < stackEnd);
            if (d0 < d1) { *stackPtr = c1; stackPtr++; cur = c0; continue; }
            else         { *stackPtr = c0; stackPtr++; cur = c1; continue; }
          }
          assert(stackPtr < stackEnd);
          *stackPtr = c0; stackPtr++;
          assert(stackPtr < stackEnd);
          *stackPtr = c1; stackPtr++;
          
	  /*! three children are hit */
          r = __bscf(mask);
          cur = node->child(r); cur.prefetch(); *stackPtr = cur; stackPtr++;
          if (likely(mask == 0)) {
            stackPtr--;
            continue;
          }

	  /*! process more than three children */
	  while(1)
	  {
	    r = __bscf(mask);
	    NodeRef c = node->child(r); c.prefetch(); *stackPtr = c; stackPtr++;
	    if (unlikely(mask == 0)) break;
	  }
	  cur = (NodeRef) stackPtr[-1]; stackPtr--;
        }
        
        /*! this is a leaf node */
	assert(cur != BVH8::emptyNode);
        STAT3(shadow.trav_leaves,1,1,1);
        size_t num; Primitive* prim = (Primitive*) cur.leaf(num);
        size_t lazy_node = 0;
        if (PrimitiveIntersector::occluded(pre,ray,prim,num,bvh->scene,lazy_node)) {
          ray.geomID = 0;
          break;
        }

        if (unlikely(lazy_node)) {
          *stackPtr = (NodeRef)lazy_node;
          stackPtr++;
        }
      }
      AVX_ZERO_UPPER();
    }