示例#1
0
void LinearImplicitSystem::solve() {

  clock_t start_mg_time = clock();

  bool isThisFullCycle;
  unsigned grid0;

  if(_mg_type == F_CYCLE) {
    isThisFullCycle = 1;
    grid0 = 1;
  }
  else if(_mg_type == V_CYCLE){
    isThisFullCycle = 0;
    grid0 = _gridn;
  }
  else if(_mg_type == M_CYCLE){
    isThisFullCycle = 0;
    grid0 = _gridr;
  }
  else{
    std::cout << "wrong mg_type for this solver "<<std::endl;
    abort();
  }

  unsigned AMR_counter=0;

  for ( unsigned igridn = grid0; igridn <= _gridn; igridn++) {   //_igridn

    std::cout << std::endl << " ************* Level : " << igridn -1 << " *************\n" << std::endl;

    bool ThisIsAMR = (_mg_type == F_CYCLE && _AMRtest &&  AMR_counter<_maxAMRlevels && igridn==_gridn)?1:0;
    if(ThisIsAMR) _solution[igridn-1]->InitAMREps();

    Vcycle(igridn, isThisFullCycle );

    // ==============  AMR ==============
    if(ThisIsAMR){
      bool conv_test=0;
      if(_AMRnorm==0){
	conv_test=_solution[_gridn-1]->FlagAMRRegionBasedOnl2(_SolSystemPdeIndex,_AMRthreshold);
      }
      else if (_AMRnorm==1){
	conv_test=_solution[_gridn-1]->FlagAMRRegionBasedOnSemiNorm(_SolSystemPdeIndex,_AMRthreshold);
      }
      if(conv_test==0){
	_ml_msh->AddAMRMeshLevel();
	_ml_sol->AddSolutionLevel();
	AddSystemLevel();
	AMR_counter++;
      }
      else{
	_maxAMRlevels=AMR_counter;
	std::cout<<"The AMR solver has converged after "<<AMR_counter<<" refinements.\n";
      }
    }

    // ==============  Solution Prolongation ==============
    if (igridn < _gridn) {
      ProlongatorSol(igridn);
    }

  }

  std::cout << "\t     SOLVER TIME:\t       " << std::setw(11) << std::setprecision(6) << std::fixed
  <<static_cast<double>((clock()-start_mg_time))/CLOCKS_PER_SEC << std::endl;

}
void NonLinearImplicitSystem::solve() {

  clock_t start_mg_time = clock();

  bool full_cycle;
  unsigned igrid0;

  if(_mg_type == F_CYCLE) {
    std::cout<< std::endl<<" *** Start MultiLevel Full-Cycle ***" << std::endl;
    full_cycle=1;
    igrid0=1;
  }
  else if(_mg_type == V_CYCLE){
    std::cout<< std::endl<<" *** Start MultiLevel V-Cycle ***" << std::endl;
    full_cycle=0;
    igrid0=_gridn;
  }
  else {
    std::cout<< std::endl<<" *** Start MultiLevel AMR-Cycle ***" << std::endl;
    full_cycle=0;
    igrid0=_gridr;
  }

  unsigned AMR_counter=0;

  for ( unsigned igridn=igrid0; igridn <= _gridn; igridn++) {   //_igridn

    std::cout << std::endl << " ****** Start Level Max " << igridn << " ******" << std::endl;
    clock_t start_nl_time = clock();

    bool ThisIsAMR = (_mg_type == F_CYCLE && _AMRtest &&  AMR_counter<_maxAMRlevels && igridn==_gridn)?1:0;
    if(ThisIsAMR) _solution[igridn-1]->InitAMREps();


    for ( unsigned nonLinearIterator = 0; nonLinearIterator < _n_max_nonlinear_iterations; nonLinearIterator++ ) { //non linear cycle
      std::cout << std::endl << " ********* Nonlinear iteration " << nonLinearIterator + 1 << " *********" << std::endl;

      Vcycle(igridn, full_cycle, nonLinearIterator );

      // ============== Test for non-linear Convergence ==============
      bool isnonlinearconverged = IsNonLinearConverged(igridn-1);
      if (isnonlinearconverged)
	nonLinearIterator = _n_max_nonlinear_iterations+1;
    }

    if(ThisIsAMR){
      bool conv_test=0;
      if(_AMRnorm==0){
	conv_test=_solution[_gridn-1]->FlagAMRRegionBasedOnl2(_SolSystemPdeIndex,_AMRthreshold);
      }
      else if (_AMRnorm==1){
	conv_test=_solution[_gridn-1]->FlagAMRRegionBasedOnSemiNorm(_SolSystemPdeIndex,_AMRthreshold);
      }
      if(conv_test==0){
	_ml_msh->AddAMRMeshLevel();
	_ml_sol->AddSolutionLevel();
	AddSystemLevel();
	AMR_counter++;
      }
      else{
	_maxAMRlevels=AMR_counter;
	std::cout<<"The AMR solver has converged after "<<AMR_counter<<" refinements.\n";
      }
    }

    if (igridn < _gridn) {
      ProlongatorSol(igridn);
    }

    std::cout << std::endl << " ****** Nonlinear-Cycle TIME: " << std::setw(11) << std::setprecision(6) << std::fixed
    <<static_cast<double>((clock()-start_nl_time))/CLOCKS_PER_SEC << std::endl;

    std::cout << std::endl << " ****** End Level Max "<< igridn << " ******" << std::endl;


  }

  std::cout << std::endl << " *** MultiGrid TIME: " << std::setw(11) << std::setprecision(6) << std::fixed
  <<static_cast<double>((clock()-start_mg_time))/CLOCKS_PER_SEC << std::endl;


}