cln::cl_N HighPrecisionComplexPolynom::EvalPoly(cln::cl_N* Poly, int Maxpow, cln::cl_N Valu) {
   int  pow;
   cln::cl_N xpow, sum;

   sum = As(cln::cl_N)(complex(ZERO,ZERO));
   xpow = As(cln::cl_N)(complex(ONE,ZERO));

    for(pow = 0; pow < Maxpow+1; pow++)
     { sum = sum+xpow*Poly[pow];
       xpow = xpow*Valu; }

   return sum;
}
示例#2
0
ControlledLeds newControlledLed(Led led) {
    struct LedGroup group = (struct LedGroup){ &led, 1 };
    return newControlledLedGroup(&group);
}

ControlledLeds newControlledLedGroup(LedGroup group) {
    if (group == NULL) return Invalid(ControlledLeds);
    _ControlledLeds leds = kalloc(sizeof(struct _ControlledLeds));
    if (!leds) return Invalid(ControlledLeds);
    LedList *underlying = addNewLedsToList(group);
    if (!underlying) {
        free(leds);
        return Invalid(ControlledLeds);
    }
    leds->mask = 0;
    leds->leds = underlying;
    leds->count = group->count;
    leds->next = NULL;
    ControlledLeds result = As(ControlledLeds, leds);
    controlLeds(result, LedsDisabled);
    LL_APPEND(controlled_leds, leds);
    return result;
}

static void cleanUnderlyingLeds(ControlledLeds leds) {
    LedList elem = NULL, tmp = NULL;
    LL_FOREACH_SAFE(underlying_leds, elem, tmp) {
        for (int i = 0; i < LEDS->count; i++) {
            if (elem == LEDS->leds[i]) {
                reduceRefcount(elem);
            }
        }
    }
}
示例#3
0
static ProcessBase initializeProcessInternal(void *stackPointer) {
	PCB process = kalloc(sizeof(struct PCB));
	if (!process) return Invalid(ProcessBase);
	process->stackPointer = stackPointer;
    process->extra = NULL;
	return As(ProcessBase, process);
}
示例#4
0
Button newButton(Pin pin, ButtonType flags) {
    _Button button = kalloc(sizeof(struct _Button));
    if (!button) return Invalid(Button);
    if (!occupyPin(pin, PinButtonInput)) {
        free(button);
        return Invalid(Button);
    }
    button->pin = pin;
    button->flags = flags;
    button->status = 0;
    initButton(pin, flags);
    return As(Button, button);
}
示例#5
0
ProcessBase createProcessBase(ProcessEntryPoint entryPoint, void *processArgument, uint16_t stackSize) {
    MockProcess process = malloc(sizeof(struct MockProcess));
    if (!process) return Invalid(ProcessBase);
    process->entryPoint = entryPoint;
    process->processArgument = processArgument;
    process->stackSize = stackSize;
    process->destroyed = FALSE;
    process->extra = NULL;
    process->scheduled = 0;
    process->stackTop = malloc(stackSize);
    process->stackPointer = process->stackTop - INITIAL_STACK_SIZE;
    return As(ProcessBase, process);
}
 void VerifyBackedByImageBrush(
     const ComPtr<ICanvasBrushInternal>& brushInternal,
     ComPtr<ID2D1Image>* outTarget = nullptr) // Optionally retrieve the target image
 {
     auto d2dBrush = brushInternal->GetD2DBrush();
     ComPtr<ID2D1ImageBrush> imageBrush;
     ThrowIfFailed(d2dBrush.As(&imageBrush));
     if (outTarget)
     {
         ComPtr<ID2D1Image> target;
         imageBrush->GetImage(&target);
         *outTarget = target;
     }
 }
 void VerifyBackedByBitmapBrush(
     const ComPtr<ICanvasBrushInternal>& brushInternal,
     ComPtr<ID2D1Image>* outTarget = nullptr) // Optionally retrieve the target bitmap
 {
     auto d2dBrush = brushInternal->GetD2DBrush();
     ComPtr<ID2D1BitmapBrush1> bitmapBrush;
     ThrowIfFailed(d2dBrush.As(&bitmapBrush));
     if (outTarget)
     {
         ComPtr<ID2D1Bitmap> target;
         bitmapBrush->GetBitmap(&target);
         *outTarget = target;
     }
 }
/**
 * This describes the basic use of Eigen::AutoDiffScalar
 */
void basic_use_autodiff_scalar(){
   std::cout << "== basic_use_autodiff_scalar() ==" << std::endl;
   typedef Eigen::AutoDiffScalar<Eigen::VectorXd> AScalar;
   // AScalar stores a scalar and a derivative vector.
   
   // Instantiate an AutoDiffScalar variable with a normal Scalar
   double s = 0.3;
   AScalar As(s);

   // Get the value from the Instance
   std::cout << "value: " << As.value() << std::endl;

   // The derivative vector
   As.derivatives();   // gives you a reference of 
               // the contained derivative vector
   
   // Resize the derivative vector
   As.derivatives().resize(2);
   /**
    * Important note:
    * All ActiveScalars which are used in one computation must have
    * either a common derivative vector length or a zero-length
    * derivative vector.
    */

   // Set the initial derivative vector
   As.derivatives() = Eigen::VectorXd::Unit(2,0);
   std::cout << "Derivative vector : " << 
       As.derivatives().transpose() << std::endl;

   // Instantiate another AScalar
   AScalar Ab(4);
   Ab.derivatives() = Eigen::VectorXd::Unit(2,1);

   // Do the most simple calculation
   AScalar Ac = As * Ab;

   std::cout << "Result/Ac.value()" << Ac.value() << std::endl;
   std::cout << "Gradient: " << Ac.derivatives().transpose() << std::endl;
}
示例#9
0
int main(void)
{
    const int N = 101;
    mcon::Vector<double> As(N);

    for ( int A = 0; A < N; ++A )
    {
        double alpha = 0.0;
        if ( A <= 21 )
        {
        }
        else if ( A < 50 )
        {
            alpha = 0.5842 * pow( A-21 , 0.4) + 0.07886 * (A-21);
        }
        else
        {
            alpha = 0.1102 * (A-8.7);
        }
        As[A] = alpha;
    }
    mfio::Csv::Write("Kaiser.csv", As);
    return 0;
}
示例#10
0
int main(int argc, char** argv) {
  int rv = MPI_Init(&argc, &argv);
  assert(rv == MPI_SUCCESS);

  int size;
  rv = MPI_Comm_size(MPI_COMM_WORLD, &size);
  assert(rv == MPI_SUCCESS);

  int rank;
  rv = MPI_Comm_rank(MPI_COMM_WORLD, &rank);
  assert(rv == MPI_SUCCESS);

  MPI_Status status;

  assert(size == 2);
  assert(M % 2 == 0);

  double start_time = MPI_Wtime();

  std::vector<Value> A(M + 1);
  std::vector<Value> B(M + 1);
  std::vector<Value> C(M + 1);
  std::vector<Value> F(M + 1);

  A[0] = Value(0.0, 0.0);  // Not used.
  for (int m = 1; m <= M - 1; m++) {
    A[m] = Value(d / h / h, D / h / h);
  }
  A[M] = Value(1.0, 1.0);

  B[0] = Value(1.0, 1.0);
  for (int m = 1; m <= M - 1; m++) {
    B[m] = Value(-2.0 * d / h / h - 1.0 / tau, -2.0 * D / h / h - 1.0 / tau);
  }
  B[M] = Value(-1.0, -1.0);

  C[0] = Value(-1.0, -1.0);
  for (int m = 1; m <= M - 1; m++) {
    C[m] = Value(d / h / h, D / h / h);
  }
  C[M] = Value(0.0, 0.0);  // Not used.

  std::vector<Value> As(M + 1);
  std::vector<Value> Bs(M + 1);
  std::vector<Value> Cs(M + 1);
  std::vector<Value> Fs(M + 1);

  As[0] = Value(0.0, 0.0);
  for (int m = 1; m <= M; m++) {
    As[m] = -A[m] * A[m - 1] / B[m - 1];
  }

  Bs[0] = B[0] - C[0] * A[1] / B[1];
  for (int m = 1; m <= M - 1; m++) {
    Bs[m] = B[m] - A[m] * C[m - 1] / B[m - 1] - C[m] * A[m + 1] / B[m + 1];
  }
  Bs[M] = B[M] - A[M] * C[M - 1] / B[M - 1];

  for (int m = 0; m <= M - 1; m++) {
    Cs[m] = -C[m] * C[m + 1] / B[m + 1];
  }
  Cs[M] = Value(0.0, 0.0);

  std::vector<Value> prev_values(M + 1);
  std::vector<Value> curr_values(M + 1);

  InitializeValues(curr_values);

  std::vector<Value> P(M + 1);
  std::vector<Value> Q(M + 1);

  for (int n = 0; n < N; n++) {
    prev_values.swap(curr_values);

    F[0] = Value(0.0, 0.0);
    for (int m = 1; m <= M - 1; m++) {
      if (m % 2 == rank) {
        F[m].u = -prev_values[m].u / tau - f(prev_values[m]);
        F[m].v = -prev_values[m].v / tau - g(prev_values[m]);
      }
    }
    F[M] = Value(0.0, 0.0);

    for (int m = 1; m <= M - 1; m++) {
      if (m % 2 == rank) {
        rv = MPI_Send(&F[m].u, 1, MPI_DOUBLE, (rank + 1) % 2, m, MPI_COMM_WORLD);
        assert(rv == MPI_SUCCESS);
        rv = MPI_Send(&F[m].v, 1, MPI_DOUBLE, (rank + 1) % 2, m, MPI_COMM_WORLD);
        assert(rv == MPI_SUCCESS);
      } else {
        rv = MPI_Recv(&F[m].u, 1, MPI_DOUBLE, (rank + 1) % 2, m, MPI_COMM_WORLD, &status);
        assert(rv == MPI_SUCCESS);
        rv = MPI_Recv(&F[m].v, 1, MPI_DOUBLE, (rank + 1) % 2, m, MPI_COMM_WORLD, &status);
        assert(rv == MPI_SUCCESS);
      }
    }

    Fs[0] = F[0] - C[0] / B[1] * F[1];
    for (int m = 1; m <= M - 1; m++) {
      if (m % 2 == rank) {
        Fs[m] = F[m] - A[m] / B[m - 1] * F[m - 1] - C[m] / B[m + 1] * F[m + 1];
      }
    }
    Fs[M] = F[M] - A[M] / B[M - 1] * F[M - 1];

    if (rank == 0) {
      P[0] = -Cs[0] / Bs[0];
      Q[0] = Fs[0] / Bs[0];
    } else {
      P[1] = -Cs[1] / Bs[1];
      Q[1] = Fs[1] / Bs[1];
    }

    for (int m = 2; m <= M; m++) {
      if (m % 2 == rank) {
        P[m] = -Cs[m] / (As[m] * P[m - 2] + Bs[m]);
        Q[m] = (Fs[m] - As[m] * Q[m - 2]) / (As[m] * P[m - 2] + Bs[m]);
      }
    }

    if (M % 2 == rank) {
      curr_values[M] = Q[M];
    } else {
      curr_values[M - 1] = Q[M - 1];
    }

    for (int m = M - 2; m >= 0; m--) {
      if (m % 2 == rank) {
        curr_values[m] = P[m] * curr_values[m + 2] + Q[m];
      }
    }
  }

  for (int m = 0; m <= M; m++) {
    if (m % 2 == rank) {
      rv = MPI_Send(&curr_values[m].u, 1, MPI_DOUBLE, (rank + 1) % 2, m, MPI_COMM_WORLD);
      assert(rv == MPI_SUCCESS);
      rv = MPI_Send(&curr_values[m].v, 1, MPI_DOUBLE, (rank + 1) % 2, m, MPI_COMM_WORLD);
      assert(rv == MPI_SUCCESS);
    } else {
      rv = MPI_Recv(&curr_values[m].u, 1, MPI_DOUBLE, (rank + 1) % 2, m, MPI_COMM_WORLD, &status);
      assert(rv == MPI_SUCCESS);
      rv = MPI_Recv(&curr_values[m].v, 1, MPI_DOUBLE, (rank + 1) % 2, m, MPI_COMM_WORLD, &status);
      assert(rv == MPI_SUCCESS);
    }
  }

  if (rank == 0) {
    printf("%lf\n", MPI_Wtime() - start_time);
    /*
    for (int m = 0; m < M; m++) {
      double coord = X * m / M;
      printf("%lf %lf %lf\n", coord, curr_values[m].u, curr_values[m].v);
    }
    */
  }

  rv = MPI_Finalize();
  assert(rv == MPI_SUCCESS);

  return EXIT_SUCCESS;
}
//
//  Find the complex roots of a complex polynomial       Poly
//  The order is                                         Maxpow
//  The result will be in the array                      Root
//
void HighPrecisionComplexPolynom::Polyrootc(cln::cl_N* Poly, int Maxpow, cln::cl_N* Root) {
  
  int  ord, pow, fnd, pov, maxp;

  cln::cl_N poly[1+Maxpow], polc[1+Maxpow], coef[1+Maxpow], coen[1+Maxpow];


  // Put coefficients in an array

  for(pow = 0; pow < Maxpow+1; pow++) { 
    poly[pow] = As(cln::cl_N)(Poly[pow]);
    coef[pow] = As(cln::cl_N)(Poly[pow]); 
  }

  for(pow = 0; pow < Maxpow+1; pow++) {
    polc[pow] = As(cln::cl_N)(complex(ZERO,ZERO));
  }

  polc[0] = As(cln::cl_N)(complex(ONE,ZERO));
  fnd = -1;

  // Loop for finding all roots

  for(ord = 0; ord < Maxpow; ord++) {
    fnd++;
    pov = Maxpow-fnd;

    if(fnd < Maxpow) {
      if(LogLevel>4) {
	printf(" root number: %d\n",fnd+1);
      }

      if((ord%2 == 1) && (Maxpow%2 == 0) && (false)) {
	Root[fnd] = As(cln::cl_N)(conjugate(Root[fnd-1]));
 	cln::cl_N val0 = EvalPoly(poly, Maxpow, Root[fnd]);
	
 	if(LogLevel>3) {
 	  printf("root = %f +i*%f\n", double_approx(realpart(Root[fnd])), double_approx(imagpart(Root[fnd])));
 	  printf("value at root: %f +i*%f\n", double_approx(realpart(val0)), double_approx(imagpart(val0))); 
 	}
      }
      else {
	Root[fnd] = Lasolv(poly,pov, complex(ONE,ONE), 150);
      }

      for(pow = Maxpow; pow > 0; pow--) {
	polc[pow] = polc[pow-1]-Root[fnd]*polc[pow];
      }

      polc[0] = -Root[fnd]*polc[pow];

      // Divide the polynomial by the root

      maxp = Maxpow-fnd-1;
      coen[maxp] = coef[maxp+1];

      for(pow = maxp-1; pow > -1; pow--) {
	coen[pow] = coef[pow+1]+Root[fnd]*coen[pow+1];
      }

      for(pow = 0; pow < maxp+1; pow++) {
	coef[pow] = coen[pow];
	poly[pow] = coef[pow]; 
      } 
    }

    else {
      break;
    }
  }

// Compare input with product of root factors

  for(pow = 0; pow < Maxpow+1; pow++) {
    polc[pow] = Poly[pow]-poly[0]*polc[pow];
  }

  if(LogLevel>4) {
    printf("control polynomial should be close to zero:\n");

    for(pow = 0; pow < Maxpow+1; pow++) {
      printf("  x^{%d}\n",pow);
      printf("%1.15f +i*%1.15f\n",double_approx(realpart(polc[pow])), double_approx(imagpart(polc[pow])));
    } 
  }
}
//
//  Find a root of a complex polynomial by Laguerre iteration.
//
//  The polynomial is                                    Poly
//  The order is                                         Maxpow
//
//  The precision:                                       Digit
cln::cl_N HighPrecisionComplexPolynom::Lasolv(cln::cl_N* Poly, int Maxpow, cln::cl_N root, int itemax) {
   int  pow, ite;
   
   root = complex(ZERO,ZERO);
   
   cln::cl_F angl, small = As(cln::cl_F)(expt(cln::cl_float(0.1,clnDIGIT),DIGIT/2));

   cln::cl_N dif1[Maxpow], dif2[Maxpow-1];
   cln::cl_N val0, val, val1, val2, denp, denm, las1, las2, sqrv;
   //   cln::cl_N root;
    for(pow = 0; pow < Maxpow; pow++)
    dif1[pow] = (pow+1)*Poly[pow+1];

    for(pow = 0; pow < Maxpow-1; pow++)
    dif2[pow] = (pow+1)*dif1[pow+1];

// The maximal allowed number of iterations is set here;
// this can be chosen larger, but 100 usually suffices

//   root = As(cln::cl_N)(complex(ZERO,ZERO));
   val0 = EvalPoly(Poly,Maxpow,root);

// Iteration

    for(ite = 0; ite < itemax; ite++)
     { 
       val = val0;
       val1 = EvalPoly(dif1,Maxpow-1,root);
       val2 = EvalPoly(dif2,Maxpow-2,root);

       sqrv = (Maxpow-1)*((Maxpow-1)*val1*val1-Maxpow*val0*val2);
       angl = HALF*cln::cl_float(phase(sqrv),clnDIGIT);
       sqrv = sqrt(abs(sqrv))*complex(cos(angl),sin(angl));
       denp = val1+sqrv;
       denm = val1-sqrv;

        if(denp == complex(ZERO,ZERO))
        root = root-Maxpow*val0/denm;

        else
         {  if(denm == complex(ZERO,ZERO))
            root = root-Maxpow*val0/denp;

            else
             { las1 = -Maxpow*val0/denp;
               las2 = -Maxpow*val0/denm;

                if(realpart(las1*conjugate(las1)) <
                   realpart(las2*conjugate(las2)))
                root = root+las1;

                else
                root = root+las2; } }

//  Look whether the root is good enough

       val0 = EvalPoly(Poly,Maxpow,root);

        if(abs(val0) == ZERO || (abs(val0) < small) && abs(val0/val) > 0.7) {
            if(LogLevel>4) { 
	       printf("Laguerre iterations: %d\n", ite);
               printf("root = %f +i* %f\n", double_approx(realpart(root)), double_approx(imagpart(root)));
               printf("value at root: %f +i* %f\n", double_approx(realpart(val0)), double_approx(imagpart(val0))); 
	    }

           break; 
	} 
    }

    if(ite >= itemax) {
      printf("Laguerre iteration did not converge\n");
      exit(5);
    }

   return root;

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
void scalarGeneralExchange::manipulateScalarField(volScalarField& explicitEulerSource,
                                                  volScalarField& implicitEulerSource,
                                                  int speciesID) const
{

    // reset Scalar field
    explicitEulerSource.internalField() = 0.0;
    implicitEulerSource.internalField() = 0.0;

    if(speciesID>=0 && particleSpeciesValue_[speciesID]<0.0)    //skip if species is not active
        return;

    //Set the names of the exchange fields
    word    fieldName;
    word    partDatName;
    word    partFluxName;
    word    partTransCoeffName;
    word    partFluidName;
    scalar  transportParameter;

    // realloc the arrays to pull particle data


    if(speciesID<0) //this is the temperature - always pull from LIGGGHTS
    {
        fieldName          = tempFieldName_;
        partDatName        = partTempName_;
        partFluxName       = partHeatFluxName_;
        partTransCoeffName = partHeatTransCoeffName_;
        partFluidName      = partHeatFluidName_;
        transportParameter = lambda_;

        allocateMyArrays(0.0);
        particleCloud_.dataExchangeM().getData(partDatName,"scalar-atom", partDat_);
    }
    else
    {
        fieldName          = eulerianFieldNames_[speciesID];
        partDatName        = partSpeciesNames_[speciesID];
        partFluxName       = partSpeciesFluxNames_[speciesID]; 
        partTransCoeffName = partSpeciesTransCoeffNames_[speciesID]; 
        partFluidName      = partSpeciesFluidNames_[speciesID]; 
        transportParameter = DMolecular_[speciesID];

        allocateMyArrays(0.0);
        if(particleSpeciesValue_[speciesID]>ALARGECONCENTRATION)   
            particleCloud_.dataExchangeM().getData(partDatName,"scalar-atom", partDat_);
    }

    if (scaleDia_ > 1)
        Info << typeName << " using scale = " << scaleDia_ << endl;
    else if (particleCloud_.cg() > 1)
    {
        scaleDia_=particleCloud_.cg();
        Info << typeName << " using scale from liggghts cg = " << scaleDia_ << endl;
    }

    //==============================
    // get references
    const volScalarField& voidfraction_(particleCloud_.mesh().lookupObject<volScalarField> (voidfractionFieldName_));    // ref to voidfraction field
    const volVectorField& U_(particleCloud_.mesh().lookupObject<volVectorField> (velFieldName_));
    const volScalarField& fluidScalarField_(particleCloud_.mesh().lookupObject<volScalarField> (fieldName));            // ref to scalar field
    const volScalarField& nufField = forceSubM(0).nuField();
    //==============================

    // calc La based heat flux
    vector position(0,0,0);
    scalar voidfraction(1);
    vector Ufluid(0,0,0);
    scalar fluidValue(0);
    label  cellI=0;
    vector Us(0,0,0);
    vector Ur(0,0,0);
    scalar dscaled(0);
    scalar nuf(0);
    scalar magUr(0);
    scalar As(0);
    scalar Rep(0);
    scalar Pr(0);

    scalar sDth(scaleDia_*scaleDia_*scaleDia_);

    interpolationCellPoint<scalar> voidfractionInterpolator_(voidfraction_);
    interpolationCellPoint<vector> UInterpolator_(U_);
    interpolationCellPoint<scalar> fluidScalarFieldInterpolator_(fluidScalarField_);

    #include "setupProbeModel.H"

    for(int index = 0;index < particleCloud_.numberOfParticles(); ++index)
    {
            cellI = particleCloud_.cellIDs()[index][0];
            if(cellI >= 0)
            {
                if(forceSubM(0).interpolation())
                {
	                position = particleCloud_.position(index);
                    voidfraction = voidfractionInterpolator_.interpolate(position,cellI);
                    Ufluid = UInterpolator_.interpolate(position,cellI);
                    fluidValue = fluidScalarFieldInterpolator_.interpolate(position,cellI);
                }else
                {
					voidfraction = voidfraction_[cellI];
                    Ufluid       = U_[cellI];
                    fluidValue   = fluidScalarField_[cellI];
                }

                // calc relative velocity
                Us      = particleCloud_.velocity(index);
                Ur      = Ufluid-Us;
                magUr   = mag(Ur);
                dscaled = 2*particleCloud_.radius(index)/scaleDia_;
                As      = dscaled*dscaled*M_PI*sDth;
                nuf     = nufField[cellI];
                Rep     = dscaled*magUr/nuf;
                if(speciesID<0) //have temperature
                    Pr      = Prandtl_; 
                else
                    Pr      = max(SMALL,nuf/transportParameter); //This is Sc for species

                scalar alpha = transportParameter*(this->*Nusselt)(Rep,Pr,voidfraction)/(dscaled);

                // calc convective heat flux [W]
                scalar areaTimesTransferCoefficient = alpha * As;
                scalar tmpPartFlux     =  areaTimesTransferCoefficient 
                                       * (fluidValue - partDat_[index][0]);
                partDatFlux_[index][0] = tmpPartFlux;

                // split implicit/explicit contribution
                forceSubM(0).explicitCorrScalar( partDatTmpImpl_[index][0], 
                                                 partDatTmpExpl_[index][0],
                                                 areaTimesTransferCoefficient,
                                                 fluidValue,
                                                 fluidScalarField_[cellI],
                                                 partDat_[index][0],
                                                 forceSubM(0).verbose()
                                               );

                if(validPartTransCoeff_)
                    partDatTransCoeff_[index][0] = alpha;

                if(validPartFluid_)
                    partDatFluid_[index][0]      = fluidValue;


                if( forceSubM(0).verbose())
                {
                    Pout << "fieldName = " << fieldName << endl;
                    Pout << "partTransCoeffName = " << partTransCoeffName << endl;
                    Pout << "index    = " <<index << endl;
                    Pout << "partFlux = " << tmpPartFlux << endl;
                    Pout << "magUr = " << magUr << endl;
                    Pout << "As = " << As << endl;
                    Pout << "r = " << particleCloud_.radius(index) << endl;
                    Pout << "dscaled = " << dscaled << endl;
                    Pout << "nuf = " << nuf << endl;
                    Pout << "Rep = " << Rep << endl;
                    Pout << "Pr/Sc = " << Pr << endl;
                    Pout << "Nup/Shp = " << (this->*Nusselt)(Rep,Pr,voidfraction) << endl;
                    Pout << "partDatTransCoeff: " <<  partDatTransCoeff_[index][0] << endl;
                    Pout << "voidfraction = " << voidfraction << endl;
                    Pout << "partDat_[index][0] = " << partDat_[index][0] << endl  ;
                    Pout << "fluidValue = " << fluidValue << endl  ;
                }
                
                //Set value fields and write the probe
                if(probeIt_)
                {
                    #include "setupProbeModelfields.H"
                    vValues.append(Ur);                
                    sValues.append((this->*Nusselt)(Rep,Pr,voidfraction));
                    sValues.append(Rep);
                    particleCloud_.probeM().writeProbe(index, sValues, vValues);
                }
            }
    }

    //Handle explicit and implicit source terms on the Euler side
    //these are simple summations!
    particleCloud_.averagingM().setScalarSum
    (
        explicitEulerSource,
        partDatTmpExpl_,
        particleCloud_.particleWeights(),
        NULL
    );

    particleCloud_.averagingM().setScalarSum
    (
        implicitEulerSource,
        partDatTmpImpl_,
        particleCloud_.particleWeights(),
        NULL
    );

    // scale with the cell volume to get (total) volume-specific source 
    explicitEulerSource.internalField() /= -explicitEulerSource.mesh().V();
    implicitEulerSource.internalField() /= -implicitEulerSource.mesh().V();

    // limit explicit source term
    scalar explicitEulerSourceInCell;
    forAll(explicitEulerSource,cellI)
    {
        explicitEulerSourceInCell = explicitEulerSource[cellI];

        if(mag(explicitEulerSourceInCell) > maxSource_ )
        {
             explicitEulerSource[cellI] = sign(explicitEulerSourceInCell) * maxSource_;
        }
    }