static VFontData *objfnt_to_ftvfontdata(PackedFile *pf) { /* Variables */ FT_Face face; const FT_ULong charcode_reserve = 256; FT_ULong charcode = 0, lcode; FT_UInt glyph_index; const char *fontname; VFontData *vfd; #if 0 FT_CharMap found = 0; FT_CharMap charmap; FT_UShort my_platform_id = TT_PLATFORM_MICROSOFT; FT_UShort my_encoding_id = TT_MS_ID_UNICODE_CS; int n; #endif /* load the freetype font */ err = FT_New_Memory_Face(library, pf->data, pf->size, 0, &face); if (err) return NULL; #if 0 for (n = 0; n < face->num_charmaps; n++) { charmap = face->charmaps[n]; if (charmap->platform_id == my_platform_id && charmap->encoding_id == my_encoding_id) { found = charmap; break; } } if (!found) { return NULL; } /* now, select the charmap for the face object */ err = FT_Set_Charmap(face, found); if (err) { return NULL; } #endif /* allocate blender font */ vfd = MEM_callocN(sizeof(*vfd), "FTVFontData"); /* get the name */ fontname = FT_Get_Postscript_Name(face); BLI_strncpy(vfd->name, (fontname == NULL) ? "" : fontname, sizeof(vfd->name)); /* Extract the first 256 character from TTF */ lcode = charcode = FT_Get_First_Char(face, &glyph_index); /* No charmap found from the ttf so we need to figure it out */ if (glyph_index == 0) { FT_CharMap found = NULL; FT_CharMap charmap; int n; for (n = 0; n < face->num_charmaps; n++) { charmap = face->charmaps[n]; if (charmap->encoding == FT_ENCODING_APPLE_ROMAN) { found = charmap; break; } } err = FT_Set_Charmap(face, found); if (err) return NULL; lcode = charcode = FT_Get_First_Char(face, &glyph_index); } /* Adjust font size */ if (face->bbox.yMax != face->bbox.yMin) { vfd->scale = (float)(1.0 / (double)(face->bbox.yMax - face->bbox.yMin)); } else { vfd->scale = 1.0f / 1000.0f; } /* Load characters */ vfd->characters = BLI_ghash_int_new_ex(__func__, charcode_reserve); while (charcode < charcode_reserve) { /* Generate the font data */ freetypechar_to_vchar(face, charcode, vfd); /* Next glyph */ charcode = FT_Get_Next_Char(face, charcode, &glyph_index); /* Check that we won't start infinite loop */ if (charcode <= lcode) break; lcode = charcode; } return vfd; }
static void make_duplis_font(const DupliContext *ctx) { Object *par = ctx->object; GHash *family_gh; Object *ob; Curve *cu; struct CharTrans *ct, *chartransdata = NULL; float vec[3], obmat[4][4], pmat[4][4], fsize, xof, yof; int text_len, a; size_t family_len; const wchar_t *text = NULL; bool text_free = false; /* font dupliverts not supported inside groups */ if (ctx->group) return; copy_m4_m4(pmat, par->obmat); /* in par the family name is stored, use this to find the other objects */ BKE_vfont_to_curve_ex(G.main, par, FO_DUPLI, NULL, &text, &text_len, &text_free, &chartransdata); if (text == NULL || chartransdata == NULL) { return; } cu = par->data; fsize = cu->fsize; xof = cu->xof; yof = cu->yof; ct = chartransdata; /* cache result */ family_len = strlen(cu->family); family_gh = BLI_ghash_int_new_ex(__func__, 256); /* advance matching BLI_strncpy_wchar_from_utf8 */ for (a = 0; a < text_len; a++, ct++) { ob = find_family_object(cu->family, family_len, (unsigned int)text[a], family_gh); if (ob) { vec[0] = fsize * (ct->xof - xof); vec[1] = fsize * (ct->yof - yof); vec[2] = 0.0; mul_m4_v3(pmat, vec); copy_m4_m4(obmat, par->obmat); if (UNLIKELY(ct->rot != 0.0f)) { float rmat[4][4]; zero_v3(obmat[3]); unit_m4(rmat); rotate_m4(rmat, 'Z', -ct->rot); mul_m4_m4m4(obmat, obmat, rmat); } copy_v3_v3(obmat[3], vec); make_dupli(ctx, ob, obmat, a, false, false); } } if (text_free) { MEM_freeN((void *)text); } BLI_ghash_free(family_gh, NULL, NULL); MEM_freeN(chartransdata); }
static DerivedMesh *applyModifier( ModifierData *md, Object *ob, DerivedMesh *dm, ModifierApplyFlag UNUSED(flag)) { MaskModifierData *mmd = (MaskModifierData *)md; const bool found_test = (mmd->flag & MOD_MASK_INV) == 0; DerivedMesh *result = NULL; GHash *vertHash = NULL, *edgeHash, *polyHash; GHashIterator gh_iter; MDeformVert *dvert, *dv; int numPolys = 0, numLoops = 0, numEdges = 0, numVerts = 0; int maxVerts, maxEdges, maxPolys; int i; const MVert *mvert_src; const MEdge *medge_src; const MPoly *mpoly_src; const MLoop *mloop_src; MPoly *mpoly_dst; MLoop *mloop_dst; MEdge *medge_dst; MVert *mvert_dst; int *loop_mapping; dvert = dm->getVertDataArray(dm, CD_MDEFORMVERT); if (dvert == NULL) { return found_test ? CDDM_from_template(dm, 0, 0, 0, 0, 0) : dm; } /* Overview of Method: * 1. Get the vertices that are in the vertexgroup of interest * 2. Filter out unwanted geometry (i.e. not in vertexgroup), by populating mappings with new vs old indices * 3. Make a new mesh containing only the mapping data */ /* get original number of verts, edges, and faces */ maxVerts = dm->getNumVerts(dm); maxEdges = dm->getNumEdges(dm); maxPolys = dm->getNumPolys(dm); /* check if we can just return the original mesh * - must have verts and therefore verts assigned to vgroups to do anything useful */ if (!(ELEM(mmd->mode, MOD_MASK_MODE_ARM, MOD_MASK_MODE_VGROUP)) || (maxVerts == 0) || BLI_listbase_is_empty(&ob->defbase)) { return dm; } /* if mode is to use selected armature bones, aggregate the bone groups */ if (mmd->mode == MOD_MASK_MODE_ARM) { /* --- using selected bones --- */ Object *oba = mmd->ob_arm; bPoseChannel *pchan; bDeformGroup *def; bool *bone_select_array; int bone_select_tot = 0; const int defbase_tot = BLI_listbase_count(&ob->defbase); /* check that there is armature object with bones to use, otherwise return original mesh */ if (ELEM(NULL, oba, oba->pose, ob->defbase.first)) return dm; /* determine whether each vertexgroup is associated with a selected bone or not * - each cell is a boolean saying whether bone corresponding to the ith group is selected * - groups that don't match a bone are treated as not existing (along with the corresponding ungrouped verts) */ bone_select_array = MEM_malloc_arrayN((size_t)defbase_tot, sizeof(char), "mask array"); for (i = 0, def = ob->defbase.first; def; def = def->next, i++) { pchan = BKE_pose_channel_find_name(oba->pose, def->name); if (pchan && pchan->bone && (pchan->bone->flag & BONE_SELECTED)) { bone_select_array[i] = true; bone_select_tot++; } else { bone_select_array[i] = false; } } /* verthash gives mapping from original vertex indices to the new indices (including selected matches only) * key = oldindex, value = newindex */ vertHash = BLI_ghash_int_new_ex("mask vert gh", (unsigned int)maxVerts); /* add vertices which exist in vertexgroups into vertHash for filtering * - dv = for each vertex, what vertexgroups does it belong to * - dw = weight that vertex was assigned to a vertexgroup it belongs to */ for (i = 0, dv = dvert; i < maxVerts; i++, dv++) { MDeformWeight *dw = dv->dw; bool found = false; int j; /* check the groups that vertex is assigned to, and see if it was any use */ for (j = 0; j < dv->totweight; j++, dw++) { if (dw->def_nr < defbase_tot) { if (bone_select_array[dw->def_nr]) { if (dw->weight != 0.0f) { found = true; break; } } } } if (found_test != found) { continue; } /* add to ghash for verts (numVerts acts as counter for mapping) */ BLI_ghash_insert(vertHash, SET_INT_IN_POINTER(i), SET_INT_IN_POINTER(numVerts)); numVerts++; } /* free temp hashes */ MEM_freeN(bone_select_array); } else { /* --- Using Nominated VertexGroup only --- */ int defgrp_index = defgroup_name_index(ob, mmd->vgroup); /* if no vgroup (i.e. dverts) found, return the initial mesh */ if (defgrp_index == -1) return dm; /* hashes for quickly providing a mapping from old to new - use key=oldindex, value=newindex */ vertHash = BLI_ghash_int_new_ex("mask vert2 bh", (unsigned int)maxVerts); /* add vertices which exist in vertexgroup into ghash for filtering */ for (i = 0, dv = dvert; i < maxVerts; i++, dv++) { const bool found = defvert_find_weight(dv, defgrp_index) != 0.0f; if (found_test != found) { continue; } /* add to ghash for verts (numVerts acts as counter for mapping) */ BLI_ghash_insert(vertHash, SET_INT_IN_POINTER(i), SET_INT_IN_POINTER(numVerts)); numVerts++; } } /* hashes for quickly providing a mapping from old to new - use key=oldindex, value=newindex */ edgeHash = BLI_ghash_int_new_ex("mask ed2 gh", (unsigned int)maxEdges); polyHash = BLI_ghash_int_new_ex("mask fa2 gh", (unsigned int)maxPolys); mvert_src = dm->getVertArray(dm); medge_src = dm->getEdgeArray(dm); mpoly_src = dm->getPolyArray(dm); mloop_src = dm->getLoopArray(dm); /* overalloc, assume all polys are seen */ loop_mapping = MEM_malloc_arrayN((size_t)maxPolys, sizeof(int), "mask loopmap"); /* loop over edges and faces, and do the same thing to * ensure that they only reference existing verts */ for (i = 0; i < maxEdges; i++) { const MEdge *me = &medge_src[i]; /* only add if both verts will be in new mesh */ if (BLI_ghash_haskey(vertHash, SET_INT_IN_POINTER(me->v1)) && BLI_ghash_haskey(vertHash, SET_INT_IN_POINTER(me->v2))) { BLI_ghash_insert(edgeHash, SET_INT_IN_POINTER(i), SET_INT_IN_POINTER(numEdges)); numEdges++; } } for (i = 0; i < maxPolys; i++) { const MPoly *mp_src = &mpoly_src[i]; const MLoop *ml_src = &mloop_src[mp_src->loopstart]; bool ok = true; int j; for (j = 0; j < mp_src->totloop; j++, ml_src++) { if (!BLI_ghash_haskey(vertHash, SET_INT_IN_POINTER(ml_src->v))) { ok = false; break; } } /* all verts must be available */ if (ok) { BLI_ghash_insert(polyHash, SET_INT_IN_POINTER(i), SET_INT_IN_POINTER(numPolys)); loop_mapping[numPolys] = numLoops; numPolys++; numLoops += mp_src->totloop; } } /* now we know the number of verts, edges and faces, * we can create the new (reduced) mesh */ result = CDDM_from_template(dm, numVerts, numEdges, 0, numLoops, numPolys); mpoly_dst = CDDM_get_polys(result); mloop_dst = CDDM_get_loops(result); medge_dst = CDDM_get_edges(result); mvert_dst = CDDM_get_verts(result); /* using ghash-iterators, map data into new mesh */ /* vertices */ GHASH_ITER (gh_iter, vertHash) { const MVert *v_src; MVert *v_dst; const int i_src = GET_INT_FROM_POINTER(BLI_ghashIterator_getKey(&gh_iter)); const int i_dst = GET_INT_FROM_POINTER(BLI_ghashIterator_getValue(&gh_iter)); v_src = &mvert_src[i_src]; v_dst = &mvert_dst[i_dst]; *v_dst = *v_src; DM_copy_vert_data(dm, result, i_src, i_dst, 1); } /* edges */ GHASH_ITER (gh_iter, edgeHash) { const MEdge *e_src; MEdge *e_dst; const int i_src = GET_INT_FROM_POINTER(BLI_ghashIterator_getKey(&gh_iter)); const int i_dst = GET_INT_FROM_POINTER(BLI_ghashIterator_getValue(&gh_iter)); e_src = &medge_src[i_src]; e_dst = &medge_dst[i_dst]; DM_copy_edge_data(dm, result, i_src, i_dst, 1); *e_dst = *e_src; e_dst->v1 = GET_UINT_FROM_POINTER(BLI_ghash_lookup(vertHash, SET_UINT_IN_POINTER(e_src->v1))); e_dst->v2 = GET_UINT_FROM_POINTER(BLI_ghash_lookup(vertHash, SET_UINT_IN_POINTER(e_src->v2))); } /* faces */ GHASH_ITER (gh_iter, polyHash) { const int i_src = GET_INT_FROM_POINTER(BLI_ghashIterator_getKey(&gh_iter)); const int i_dst = GET_INT_FROM_POINTER(BLI_ghashIterator_getValue(&gh_iter)); const MPoly *mp_src = &mpoly_src[i_src]; MPoly *mp_dst = &mpoly_dst[i_dst]; const int i_ml_src = mp_src->loopstart; const int i_ml_dst = loop_mapping[i_dst]; const MLoop *ml_src = &mloop_src[i_ml_src]; MLoop *ml_dst = &mloop_dst[i_ml_dst]; DM_copy_poly_data(dm, result, i_src, i_dst, 1); DM_copy_loop_data(dm, result, i_ml_src, i_ml_dst, mp_src->totloop); *mp_dst = *mp_src; mp_dst->loopstart = i_ml_dst; for (i = 0; i < mp_src->totloop; i++) { ml_dst[i].v = GET_UINT_FROM_POINTER(BLI_ghash_lookup(vertHash, SET_UINT_IN_POINTER(ml_src[i].v))); ml_dst[i].e = GET_UINT_FROM_POINTER(BLI_ghash_lookup(edgeHash, SET_UINT_IN_POINTER(ml_src[i].e))); } } MEM_freeN(loop_mapping); /* why is this needed? - campbell */ /* recalculate normals */ result->dirty |= DM_DIRTY_NORMALS; /* free hashes */ BLI_ghash_free(vertHash, NULL, NULL); BLI_ghash_free(edgeHash, NULL, NULL); BLI_ghash_free(polyHash, NULL, NULL); /* return the new mesh */ return result; }