示例#1
0
int ec_GFp_simple_set_compressed_coordinates(const EC_GROUP *group,
                                             EC_POINT *point, const BIGNUM *x_,
                                             int y_bit, BN_CTX *ctx) {
  BN_CTX *new_ctx = NULL;
  BIGNUM *tmp1, *tmp2, *x, *y;
  int ret = 0;

  ERR_clear_error();

  if (ctx == NULL) {
    ctx = new_ctx = BN_CTX_new();
    if (ctx == NULL) {
      return 0;
    }
  }

  y_bit = (y_bit != 0);

  BN_CTX_start(ctx);
  tmp1 = BN_CTX_get(ctx);
  tmp2 = BN_CTX_get(ctx);
  x = BN_CTX_get(ctx);
  y = BN_CTX_get(ctx);
  if (y == NULL) {
    goto err;
  }

  /* Recover y.  We have a Weierstrass equation
   *     y^2 = x^3 + a*x + b,
   * so  y  is one of the square roots of  x^3 + a*x + b. */

  /* tmp1 := x^3 */
  if (!BN_nnmod(x, x_, &group->field, ctx)) {
    goto err;
  }

  if (group->meth->field_decode == 0) {
    /* field_{sqr,mul} work on standard representation */
    if (!group->meth->field_sqr(group, tmp2, x_, ctx) ||
        !group->meth->field_mul(group, tmp1, tmp2, x_, ctx)) {
      goto err;
    }
  } else {
    if (!BN_mod_sqr(tmp2, x_, &group->field, ctx) ||
        !BN_mod_mul(tmp1, tmp2, x_, &group->field, ctx)) {
      goto err;
    }
  }

  /* tmp1 := tmp1 + a*x */
  if (group->a_is_minus3) {
    if (!BN_mod_lshift1_quick(tmp2, x, &group->field) ||
        !BN_mod_add_quick(tmp2, tmp2, x, &group->field) ||
        !BN_mod_sub_quick(tmp1, tmp1, tmp2, &group->field)) {
      goto err;
    }
  } else {
    if (group->meth->field_decode) {
      if (!group->meth->field_decode(group, tmp2, &group->a, ctx) ||
          !BN_mod_mul(tmp2, tmp2, x, &group->field, ctx)) {
        goto err;
      }
    } else {
      /* field_mul works on standard representation */
      if (!group->meth->field_mul(group, tmp2, &group->a, x, ctx)) {
        goto err;
      }
    }

    if (!BN_mod_add_quick(tmp1, tmp1, tmp2, &group->field)) {
      goto err;
    }
  }

  /* tmp1 := tmp1 + b */
  if (group->meth->field_decode) {
    if (!group->meth->field_decode(group, tmp2, &group->b, ctx) ||
        !BN_mod_add_quick(tmp1, tmp1, tmp2, &group->field)) {
      goto err;
    }
  } else {
    if (!BN_mod_add_quick(tmp1, tmp1, &group->b, &group->field)) {
      goto err;
    }
  }

  if (!BN_mod_sqrt(y, tmp1, &group->field, ctx)) {
    unsigned long err = ERR_peek_last_error();

    if (ERR_GET_LIB(err) == ERR_LIB_BN &&
        ERR_GET_REASON(err) == BN_R_NOT_A_SQUARE) {
      ERR_clear_error();
      OPENSSL_PUT_ERROR(EC, ec_GFp_simple_set_compressed_coordinates, EC_R_INVALID_COMPRESSED_POINT);
    } else {
      OPENSSL_PUT_ERROR(EC, ec_GFp_simple_set_compressed_coordinates, ERR_R_BN_LIB);
    }
    goto err;
  }

  if (y_bit != BN_is_odd(y)) {
    if (BN_is_zero(y)) {
      int kron;

      kron = BN_kronecker(x, &group->field, ctx);
      if (kron == -2) {
        goto err;
      }

      if (kron == 1) {
        OPENSSL_PUT_ERROR(EC, ec_GFp_simple_set_compressed_coordinates,
                          EC_R_INVALID_COMPRESSION_BIT);
      } else {
        /* BN_mod_sqrt() should have cought this error (not a square) */
        OPENSSL_PUT_ERROR(EC, ec_GFp_simple_set_compressed_coordinates,
                          EC_R_INVALID_COMPRESSED_POINT);
      }
      goto err;
    }
    if (!BN_usub(y, &group->field, y)) {
      goto err;
    }
  }
  if (y_bit != BN_is_odd(y)) {
    OPENSSL_PUT_ERROR(EC, ec_GFp_simple_set_compressed_coordinates,
                      ERR_R_INTERNAL_ERROR);
    goto err;
  }

  if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx))
    goto err;

  ret = 1;

err:
  BN_CTX_end(ctx);
  if (new_ctx != NULL)
    BN_CTX_free(new_ctx);
  return ret;
}
示例#2
0
int test_kron(BIO *bp, BN_CTX *ctx)
	{
	BIGNUM *a,*b,*r,*t;
	int i;
	int legendre, kronecker;
	int ret = 0;

	a = BN_new();
	b = BN_new();
	r = BN_new();
	t = BN_new();
	if (a == NULL || b == NULL || r == NULL || t == NULL) goto err;
	
	/* We test BN_kronecker(a, b, ctx) just for  b  odd (Jacobi symbol).
	 * In this case we know that if  b  is prime, then BN_kronecker(a, b, ctx)
	 * is congruent to $a^{(b-1)/2}$, modulo $b$ (Legendre symbol).
	 * So we generate a random prime  b  and compare these values
	 * for a number of random  a's.  (That is, we run the Solovay-Strassen
	 * primality test to confirm that  b  is prime, except that we
	 * don't want to test whether  b  is prime but whether BN_kronecker
	 * works.) */

	if (!BN_generate_prime(b, 512, 0, NULL, NULL, genprime_cb, NULL)) goto err;
	b->neg = rand_neg();
	putc('\n', stderr);

	for (i = 0; i < num0; i++)
		{
		if (!BN_bntest_rand(a, 512, 0, 0)) goto err;
		a->neg = rand_neg();

		/* t := (|b|-1)/2  (note that b is odd) */
		if (!BN_copy(t, b)) goto err;
		t->neg = 0;
		if (!BN_sub_word(t, 1)) goto err;
		if (!BN_rshift1(t, t)) goto err;
		/* r := a^t mod b */
		b->neg=0;
		
		if (!BN_mod_exp_recp(r, a, t, b, ctx)) goto err;
		b->neg=1;

		if (BN_is_word(r, 1))
			legendre = 1;
		else if (BN_is_zero(r))
			legendre = 0;
		else
			{
			if (!BN_add_word(r, 1)) goto err;
			if (0 != BN_ucmp(r, b))
				{
				fprintf(stderr, "Legendre symbol computation failed\n");
				goto err;
				}
			legendre = -1;
			}
		
		kronecker = BN_kronecker(a, b, ctx);
		if (kronecker < -1) goto err;
		/* we actually need BN_kronecker(a, |b|) */
		if (a->neg && b->neg)
			kronecker = -kronecker;
		
		if (legendre != kronecker)
			{
			fprintf(stderr, "legendre != kronecker; a = ");
			BN_print_fp(stderr, a);
			fprintf(stderr, ", b = ");
			BN_print_fp(stderr, b);
			fprintf(stderr, "\n");
			goto err;
			}

		putc('.', stderr);
		fflush(stderr);
		}

	putc('\n', stderr);
	fflush(stderr);
	ret = 1;
 err:
	if (a != NULL) BN_free(a);
	if (b != NULL) BN_free(b);
	if (r != NULL) BN_free(r);
	if (t != NULL) BN_free(t);
	return ret;
	}
BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) 
/* Returns 'ret' such that
 *      ret^2 == a (mod p),
 * using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course
 * in Algebraic Computational Number Theory", algorithm 1.5.1).
 * 'p' must be prime!
 */
	{
	BIGNUM *ret = in;
	int err = 1;
	int r;
	BIGNUM *A, *b, *q, *t, *x, *y;
	int e, i, j;
	
	if (!BN_is_odd(p) || BN_abs_is_word(p, 1))
		{
		if (BN_abs_is_word(p, 2))
			{
			if (ret == NULL)
				ret = BN_new();
			if (ret == NULL)
				goto end;
			if (!BN_set_word(ret, BN_is_bit_set(a, 0)))
				{
				if (ret != in)
					BN_free(ret);
				return NULL;
				}
			bn_check_top(ret);
			return ret;
			}

		BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
		return(NULL);
		}

	if (BN_is_zero(a) || BN_is_one(a))
		{
		if (ret == NULL)
			ret = BN_new();
		if (ret == NULL)
			goto end;
		if (!BN_set_word(ret, BN_is_one(a)))
			{
			if (ret != in)
				BN_free(ret);
			return NULL;
			}
		bn_check_top(ret);
		return ret;
		}

	BN_CTX_start(ctx);
	A = BN_CTX_get(ctx);
	b = BN_CTX_get(ctx);
	q = BN_CTX_get(ctx);
	t = BN_CTX_get(ctx);
	x = BN_CTX_get(ctx);
	y = BN_CTX_get(ctx);
	if (y == NULL) goto end;
	
	if (ret == NULL)
		ret = BN_new();
	if (ret == NULL) goto end;

	/* A = a mod p */
	if (!BN_nnmod(A, a, p, ctx)) goto end;

	/* now write  |p| - 1  as  2^e*q  where  q  is odd */
	e = 1;
	while (!BN_is_bit_set(p, e))
		e++;
	/* we'll set  q  later (if needed) */

	if (e == 1)
		{
		/* The easy case:  (|p|-1)/2  is odd, so 2 has an inverse
		 * modulo  (|p|-1)/2,  and square roots can be computed
		 * directly by modular exponentiation.
		 * We have
		 *     2 * (|p|+1)/4 == 1   (mod (|p|-1)/2),
		 * so we can use exponent  (|p|+1)/4,  i.e.  (|p|-3)/4 + 1.
		 */
		if (!BN_rshift(q, p, 2)) goto end;
		q->neg = 0;
		if (!BN_add_word(q, 1)) goto end;
		if (!BN_mod_exp(ret, A, q, p, ctx)) goto end;
		err = 0;
		goto vrfy;
		}
	
	if (e == 2)
		{
		/* |p| == 5  (mod 8)
		 *
		 * In this case  2  is always a non-square since
		 * Legendre(2,p) = (-1)^((p^2-1)/8)  for any odd prime.
		 * So if  a  really is a square, then  2*a  is a non-square.
		 * Thus for
		 *      b := (2*a)^((|p|-5)/8),
		 *      i := (2*a)*b^2
		 * we have
		 *     i^2 = (2*a)^((1 + (|p|-5)/4)*2)
		 *         = (2*a)^((p-1)/2)
		 *         = -1;
		 * so if we set
		 *      x := a*b*(i-1),
		 * then
		 *     x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
		 *         = a^2 * b^2 * (-2*i)
		 *         = a*(-i)*(2*a*b^2)
		 *         = a*(-i)*i
		 *         = a.
		 *
		 * (This is due to A.O.L. Atkin, 
		 * <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>,
		 * November 1992.)
		 */

		/* t := 2*a */
		if (!BN_mod_lshift1_quick(t, A, p)) goto end;

		/* b := (2*a)^((|p|-5)/8) */
		if (!BN_rshift(q, p, 3)) goto end;
		q->neg = 0;
		if (!BN_mod_exp(b, t, q, p, ctx)) goto end;

		/* y := b^2 */
		if (!BN_mod_sqr(y, b, p, ctx)) goto end;

		/* t := (2*a)*b^2 - 1*/
		if (!BN_mod_mul(t, t, y, p, ctx)) goto end;
		if (!BN_sub_word(t, 1)) goto end;

		/* x = a*b*t */
		if (!BN_mod_mul(x, A, b, p, ctx)) goto end;
		if (!BN_mod_mul(x, x, t, p, ctx)) goto end;

		if (!BN_copy(ret, x)) goto end;
		err = 0;
		goto vrfy;
		}
	
	/* e > 2, so we really have to use the Tonelli/Shanks algorithm.
	 * First, find some  y  that is not a square. */
	if (!BN_copy(q, p)) goto end; /* use 'q' as temp */
	q->neg = 0;
	i = 2;
	do
		{
		/* For efficiency, try small numbers first;
		 * if this fails, try random numbers.
		 */
		if (i < 22)
			{
			if (!BN_set_word(y, i)) goto end;
			}
		else
			{
			if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) goto end;
			if (BN_ucmp(y, p) >= 0)
				{
				if (!(p->neg ? BN_add : BN_sub)(y, y, p)) goto end;
				}
			/* now 0 <= y < |p| */
			if (BN_is_zero(y))
				if (!BN_set_word(y, i)) goto end;
			}
		
		r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */
		if (r < -1) goto end;
		if (r == 0)
			{
			/* m divides p */
			BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
			goto end;
			}
		}
	while (r == 1 && ++i < 82);
	
	if (r != -1)
		{
		/* Many rounds and still no non-square -- this is more likely
		 * a bug than just bad luck.
		 * Even if  p  is not prime, we should have found some  y
		 * such that r == -1.
		 */
		BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS);
		goto end;
		}

	/* Here's our actual 'q': */
	if (!BN_rshift(q, q, e)) goto end;

	/* Now that we have some non-square, we can find an element
	 * of order  2^e  by computing its q'th power. */
	if (!BN_mod_exp(y, y, q, p, ctx)) goto end;
	if (BN_is_one(y))
		{
		BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
		goto end;
		}

	/* Now we know that (if  p  is indeed prime) there is an integer
	 * k,  0 <= k < 2^e,  such that
	 *
	 *      a^q * y^k == 1   (mod p).
	 *
	 * As  a^q  is a square and  y  is not,  k  must be even.
	 * q+1  is even, too, so there is an element
	 *
	 *     X := a^((q+1)/2) * y^(k/2),
	 *
	 * and it satisfies
	 *
	 *     X^2 = a^q * a     * y^k
	 *         = a,
	 *
	 * so it is the square root that we are looking for.
	 */
	
	/* t := (q-1)/2  (note that  q  is odd) */
	if (!BN_rshift1(t, q)) goto end;
	
	/* x := a^((q-1)/2) */
	if (BN_is_zero(t)) /* special case: p = 2^e + 1 */
		{
		if (!BN_nnmod(t, A, p, ctx)) goto end;
		if (BN_is_zero(t))
			{
			/* special case: a == 0  (mod p) */
			BN_zero(ret);
			err = 0;
			goto end;
			}
		else
			if (!BN_one(x)) goto end;
		}
	else
		{
		if (!BN_mod_exp(x, A, t, p, ctx)) goto end;
		if (BN_is_zero(x))
			{
			/* special case: a == 0  (mod p) */
			BN_zero(ret);
			err = 0;
			goto end;
			}
		}

	/* b := a*x^2  (= a^q) */
	if (!BN_mod_sqr(b, x, p, ctx)) goto end;
	if (!BN_mod_mul(b, b, A, p, ctx)) goto end;
	
	/* x := a*x    (= a^((q+1)/2)) */
	if (!BN_mod_mul(x, x, A, p, ctx)) goto end;

	while (1)
		{
		/* Now  b  is  a^q * y^k  for some even  k  (0 <= k < 2^E
		 * where  E  refers to the original value of  e,  which we
		 * don't keep in a variable),  and  x  is  a^((q+1)/2) * y^(k/2).
		 *
		 * We have  a*b = x^2,
		 *    y^2^(e-1) = -1,
		 *    b^2^(e-1) = 1.
		 */

		if (BN_is_one(b))
			{
			if (!BN_copy(ret, x)) goto end;
			err = 0;
			goto vrfy;
			}


		/* find smallest  i  such that  b^(2^i) = 1 */
		i = 1;
		if (!BN_mod_sqr(t, b, p, ctx)) goto end;
		while (!BN_is_one(t))
			{
			i++;
			if (i == e)
				{
				BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
				goto end;
				}
			if (!BN_mod_mul(t, t, t, p, ctx)) goto end;
			}
		

		/* t := y^2^(e - i - 1) */
		if (!BN_copy(t, y)) goto end;
		for (j = e - i - 1; j > 0; j--)
			{
			if (!BN_mod_sqr(t, t, p, ctx)) goto end;
			}
		if (!BN_mod_mul(y, t, t, p, ctx)) goto end;
		if (!BN_mod_mul(x, x, t, p, ctx)) goto end;
		if (!BN_mod_mul(b, b, y, p, ctx)) goto end;
		e = i;
		}

 vrfy:
	if (!err)
		{
		/* verify the result -- the input might have been not a square
		 * (test added in 0.9.8) */
		
		if (!BN_mod_sqr(x, ret, p, ctx))
			err = 1;
		
		if (!err && 0 != BN_cmp(x, A))
			{
			BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
			err = 1;
			}
		}

 end:
	if (err)
		{
		if (ret != NULL && ret != in)
			{
			BN_clear_free(ret);
			}
		ret = NULL;
		}
	BN_CTX_end(ctx);
	bn_check_top(ret);
	return ret;
	}
void do_mul_exp(BIGNUM *r, BIGNUM *a, BIGNUM *b, BIGNUM *c, BN_CTX *ctx)
	{
	int i,k;
	double tm;
	long num;

	num=BASENUM;
	for (i=NUM_START; i<NUM_SIZES; i++)
		{
#ifdef C_PRIME
#  ifdef TEST_SQRT
		if (!BN_set_word(a, 64)) goto err;
		if (!BN_set_word(b, P_MOD_64)) goto err;
#    define ADD a
#    define REM b
#  else
#    define ADD NULL
#    define REM NULL
#  endif
		if (!BN_generate_prime(c,sizes[i],0,ADD,REM,genprime_cb,NULL)) goto err;
		putc('\n', stderr);
		fflush(stderr);
#endif

		for (k=0; k<num; k++)
			{
			if (k%50 == 0) /* Average over num/50 different choices of random numbers. */
				{
				if (!BN_pseudo_rand(a,sizes[i],1,0)) goto err;

				if (!BN_pseudo_rand(b,sizes[i],1,0)) goto err;

#ifndef C_PRIME
				if (!BN_pseudo_rand(c,sizes[i],1,1)) goto err;
#endif

#ifdef TEST_SQRT				
				if (!BN_mod_sqr(a,a,c,ctx)) goto err;
				if (!BN_mod_sqr(b,b,c,ctx)) goto err;
#else
				if (!BN_nnmod(a,a,c,ctx)) goto err;
				if (!BN_nnmod(b,b,c,ctx)) goto err;
#endif

				if (k == 0)
					Time_F(START);
				}

#if defined(TEST_EXP)
			if (!BN_mod_exp(r,a,b,c,ctx)) goto err;
#elif defined(TEST_MUL)
			{
			int i = 0;
			for (i = 0; i < 50; i++)
				if (!BN_mod_mul(r,a,b,c,ctx)) goto err;
			}
#elif defined(TEST_SQR)
			{
			int i = 0;
			for (i = 0; i < 50; i++)
				{
				if (!BN_mod_sqr(r,a,c,ctx)) goto err;
				if (!BN_mod_sqr(r,b,c,ctx)) goto err;
				}
			}
#elif defined(TEST_GCD)
			if (!BN_gcd(r,a,b,ctx)) goto err;
			if (!BN_gcd(r,b,c,ctx)) goto err;
			if (!BN_gcd(r,c,a,ctx)) goto err;
#elif defined(TEST_KRON)
			if (-2 == BN_kronecker(a,b,ctx)) goto err;
			if (-2 == BN_kronecker(b,c,ctx)) goto err;
			if (-2 == BN_kronecker(c,a,ctx)) goto err;
#elif defined(TEST_INV)
			if (!BN_mod_inverse(r,a,c,ctx)) goto err;
			if (!BN_mod_inverse(r,b,c,ctx)) goto err;
#else /* TEST_SQRT */
			if (!BN_mod_sqrt(r,a,c,ctx)) goto err;
			if (!BN_mod_sqrt(r,b,c,ctx)) goto err;
#endif
			}
		tm=Time_F(STOP);
		printf(
#if defined(TEST_EXP)
			"modexp %4d ^ %4d %% %4d"
#elif defined(TEST_MUL)
			"50*modmul %4d %4d %4d"
#elif defined(TEST_SQR)
			"100*modsqr %4d %4d %4d"
#elif defined(TEST_GCD)
			"3*gcd %4d %4d %4d"
#elif defined(TEST_KRON)
			"3*kronecker %4d %4d %4d"
#elif defined(TEST_INV)
			"2*inv %4d %4d mod %4d"
#else /* TEST_SQRT */
			"2*sqrt [prime == %d (mod 64)] %4d %4d mod %4d"
#endif
			" -> %8.3fms %5.1f (%ld)\n",
#ifdef TEST_SQRT
			P_MOD_64,
#endif
			sizes[i],sizes[i],sizes[i],tm*1000.0/num,tm*mul_c[i]/num, num);
		num/=7;
		if (num <= 0) num=1;
		}
	return;

 err:
	ERR_print_errors_fp(stderr);
	}