int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx) { int ret = 0; BIGNUM *Ri, *R; BIGNUM tmod; BN_ULONG buf[2]; if (BN_is_zero(mod)) { OPENSSL_PUT_ERROR(BN, BN_R_DIV_BY_ZERO); return 0; } BN_CTX_start(ctx); Ri = BN_CTX_get(ctx); if (Ri == NULL) { goto err; } R = &mont->RR; /* grab RR as a temp */ if (!BN_copy(&mont->N, mod)) { goto err; /* Set N */ } mont->N.neg = 0; BN_init(&tmod); tmod.d = buf; tmod.dmax = 2; tmod.neg = 0; #if defined(OPENSSL_BN_ASM_MONT) && (BN_BITS2 <= 32) /* Only certain BN_BITS2<=32 platforms actually make use of * n0[1], and we could use the #else case (with a shorter R * value) for the others. However, currently only the assembler * files do know which is which. */ BN_zero(R); if (!BN_set_bit(R, 2 * BN_BITS2)) { goto err; } tmod.top = 0; if ((buf[0] = mod->d[0])) { tmod.top = 1; } if ((buf[1] = mod->top > 1 ? mod->d[1] : 0)) { tmod.top = 2; } if (BN_mod_inverse(Ri, R, &tmod, ctx) == NULL) { goto err; } if (!BN_lshift(Ri, Ri, 2 * BN_BITS2)) { goto err; /* R*Ri */ } if (!BN_is_zero(Ri)) { if (!BN_sub_word(Ri, 1)) { goto err; } } else { /* if N mod word size == 1 */ if (bn_expand(Ri, (int)sizeof(BN_ULONG) * 2) == NULL) { goto err; } /* Ri-- (mod double word size) */ Ri->neg = 0; Ri->d[0] = BN_MASK2; Ri->d[1] = BN_MASK2; Ri->top = 2; } if (!BN_div(Ri, NULL, Ri, &tmod, ctx)) { goto err; } /* Ni = (R*Ri-1)/N, * keep only couple of least significant words: */ mont->n0[0] = (Ri->top > 0) ? Ri->d[0] : 0; mont->n0[1] = (Ri->top > 1) ? Ri->d[1] : 0; #else BN_zero(R); if (!BN_set_bit(R, BN_BITS2)) { goto err; /* R */ } buf[0] = mod->d[0]; /* tmod = N mod word size */ buf[1] = 0; tmod.top = buf[0] != 0 ? 1 : 0; /* Ri = R^-1 mod N*/ if (BN_mod_inverse(Ri, R, &tmod, ctx) == NULL) { goto err; } if (!BN_lshift(Ri, Ri, BN_BITS2)) { goto err; /* R*Ri */ } if (!BN_is_zero(Ri)) { if (!BN_sub_word(Ri, 1)) { goto err; } } else { /* if N mod word size == 1 */ if (!BN_set_word(Ri, BN_MASK2)) { goto err; /* Ri-- (mod word size) */ } } if (!BN_div(Ri, NULL, Ri, &tmod, ctx)) { goto err; } /* Ni = (R*Ri-1)/N, * keep only least significant word: */ mont->n0[0] = (Ri->top > 0) ? Ri->d[0] : 0; mont->n0[1] = 0; #endif /* RR = (2^ri)^2 == 2^(ri*2) == 1 << (ri*2), which has its (ri*2)th bit set. */ int ri = (BN_num_bits(mod) + (BN_BITS2 - 1)) / BN_BITS2 * BN_BITS2; BN_zero(&(mont->RR)); if (!BN_set_bit(&(mont->RR), ri * 2)) { goto err; } if (!BN_mod(&(mont->RR), &(mont->RR), &(mont->N), ctx)) { goto err; } ret = 1; err: BN_CTX_end(ctx); return ret; }
int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx) { int ret = 0; BIGNUM *Ri, *R; BN_CTX_start(ctx); if ((Ri = BN_CTX_get(ctx)) == NULL) goto err; R = &(mont->RR); /* grab RR as a temp */ if (!BN_copy(&(mont->N), mod)) goto err; /* Set N */ mont->N.neg = 0; #ifdef MONT_WORD { BIGNUM tmod; BN_ULONG buf[2]; BN_init(&tmod); tmod.d = buf; tmod.dmax = 2; tmod.neg = 0; mont->ri = (BN_num_bits(mod) + (BN_BITS2 - 1)) / BN_BITS2 * BN_BITS2; #if defined(OPENSSL_BN_ASM_MONT) && (BN_BITS2<=32) /* Only certain BN_BITS2<=32 platforms actually make use of * n0[1], and we could use the #else case (with a shorter R * value) for the others. However, currently only the assembler * files do know which is which. */ BN_zero(R); if (!(BN_set_bit(R, 2 * BN_BITS2))) goto err; tmod.top = 0; if ((buf[0] = mod->d[0])) tmod.top = 1; if ((buf[1] = mod->top > 1 ? mod->d[1] : 0)) tmod.top = 2; if ((BN_mod_inverse(Ri, R, &tmod, ctx)) == NULL) goto err; if (!BN_lshift(Ri, Ri, 2 * BN_BITS2)) goto err; /* R*Ri */ if (!BN_is_zero(Ri)) { if (!BN_sub_word(Ri, 1)) goto err; } else /* if N mod word size == 1 */ { if (bn_expand(Ri, (int)sizeof(BN_ULONG) * 2) == NULL) goto err; /* Ri-- (mod double word size) */ Ri->neg = 0; Ri->d[0] = BN_MASK2; Ri->d[1] = BN_MASK2; Ri->top = 2; } if (!BN_div(Ri, NULL, Ri, &tmod, ctx)) goto err; /* Ni = (R*Ri-1)/N, * keep only couple of least significant words: */ mont->n0[0] = (Ri->top > 0) ? Ri->d[0] : 0; mont->n0[1] = (Ri->top > 1) ? Ri->d[1] : 0; #else BN_zero(R); if (!(BN_set_bit(R, BN_BITS2))) goto err; /* R */ buf[0] = mod->d[0]; /* tmod = N mod word size */ buf[1] = 0; tmod.top = buf[0] != 0 ? 1 : 0; /* Ri = R^-1 mod N*/ if ((BN_mod_inverse(Ri, R, &tmod, ctx)) == NULL) goto err; if (!BN_lshift(Ri, Ri, BN_BITS2)) goto err; /* R*Ri */ if (!BN_is_zero(Ri)) { if (!BN_sub_word(Ri, 1)) goto err; } else /* if N mod word size == 1 */ { if (!BN_set_word(Ri, BN_MASK2)) goto err; /* Ri-- (mod word size) */ } if (!BN_div(Ri, NULL, Ri, &tmod, ctx)) goto err; /* Ni = (R*Ri-1)/N, * keep only least significant word: */ mont->n0[0] = (Ri->top > 0) ? Ri->d[0] : 0; mont->n0[1] = 0; #endif } #else /* !MONT_WORD */ { /* bignum version */ mont->ri = BN_num_bits(&mont->N); BN_zero(R); if (!BN_set_bit(R, mont->ri)) goto err; /* R = 2^ri */ /* Ri = R^-1 mod N*/ if ((BN_mod_inverse(Ri, R, &mont->N, ctx)) == NULL) goto err; if (!BN_lshift(Ri, Ri, mont->ri)) goto err; /* R*Ri */ if (!BN_sub_word(Ri, 1)) goto err; /* Ni = (R*Ri-1) / N */ if (!BN_div(&(mont->Ni), NULL, Ri, &mont->N, ctx)) goto err; } #endif /* setup RR for conversions */ BN_zero(&(mont->RR)); if (!BN_set_bit(&(mont->RR), mont->ri*2)) goto err; if (!BN_mod(&(mont->RR), &(mont->RR), &(mont->N), ctx)) goto err; ret = 1; err: BN_CTX_end(ctx); return ret; }
/* * Find the bignum ranges that produce a given prefix. */ static int get_prefix_ranges(int addrtype, const char *pfx, BIGNUM **result, BN_CTX *bnctx) { int i, p, c; int zero_prefix = 0; int check_upper = 0; int b58pow, b58ceil, b58top = 0; int ret = -1; BIGNUM bntarg, bnceil, bnfloor; BIGNUM bnbase; BIGNUM *bnap, *bnbp, *bntp; BIGNUM *bnhigh = NULL, *bnlow = NULL, *bnhigh2 = NULL, *bnlow2 = NULL; BIGNUM bntmp, bntmp2; BN_init(&bntarg); BN_init(&bnceil); BN_init(&bnfloor); BN_init(&bnbase); BN_init(&bntmp); BN_init(&bntmp2); BN_set_word(&bnbase, 58); p = strlen(pfx); for (i = 0; i < p; i++) { c = vg_b58_reverse_map[(int)pfx[i]]; if (c == -1) { fprintf(stderr, "Invalid character '%c' in prefix '%s'\n", pfx[i], pfx); goto out; } if (i == zero_prefix) { if (c == 0) { /* Add another zero prefix */ zero_prefix++; if (zero_prefix > 19) { fprintf(stderr, "Prefix '%s' is too long\n", pfx); goto out; } continue; } /* First non-zero character */ b58top = c; BN_set_word(&bntarg, c); } else { BN_set_word(&bntmp2, c); BN_mul(&bntmp, &bntarg, &bnbase, bnctx); BN_add(&bntarg, &bntmp, &bntmp2); } } /* Power-of-two ceiling and floor values based on leading 1s */ BN_clear(&bntmp); BN_set_bit(&bntmp, 200 - (zero_prefix * 8)); BN_sub(&bnceil, &bntmp, BN_value_one()); BN_set_bit(&bnfloor, 192 - (zero_prefix * 8)); bnlow = BN_new(); bnhigh = BN_new(); if (b58top) { /* * If a non-zero was given in the prefix, find the * numeric boundaries of the prefix. */ BN_copy(&bntmp, &bnceil); bnap = &bntmp; bnbp = &bntmp2; b58pow = 0; while (BN_cmp(bnap, &bnbase) > 0) { b58pow++; BN_div(bnbp, NULL, bnap, &bnbase, bnctx); bntp = bnap; bnap = bnbp; bnbp = bntp; } b58ceil = BN_get_word(bnap); if ((b58pow - (p - zero_prefix)) <= 0) { /* * Do not allow the prefix to constrain the * check value, this is ridiculous. */ fprintf(stderr, "Prefix '%s' is too long\n", pfx); goto out; } BN_set_word(&bntmp2, b58pow - (p - zero_prefix)); BN_exp(&bntmp, &bnbase, &bntmp2, bnctx); BN_mul(bnlow, &bntmp, &bntarg, bnctx); BN_sub(&bntmp2, &bntmp, BN_value_one()); BN_add(bnhigh, bnlow, &bntmp2); if (b58top <= b58ceil) { /* Fill out the upper range too */ check_upper = 1; bnlow2 = BN_new(); bnhigh2 = BN_new(); BN_mul(bnlow2, bnlow, &bnbase, bnctx); BN_mul(&bntmp2, bnhigh, &bnbase, bnctx); BN_set_word(&bntmp, 57); BN_add(bnhigh2, &bntmp2, &bntmp); /* * Addresses above the ceiling will have one * fewer "1" prefix in front than we require. */ if (BN_cmp(&bnceil, bnlow2) < 0) { /* High prefix is above the ceiling */ check_upper = 0; BN_free(bnhigh2); bnhigh2 = NULL; BN_free(bnlow2); bnlow2 = NULL; } else if (BN_cmp(&bnceil, bnhigh2) < 0) /* High prefix is partly above the ceiling */ BN_copy(bnhigh2, &bnceil); /* * Addresses below the floor will have another * "1" prefix in front instead of our target. */ if (BN_cmp(&bnfloor, bnhigh) >= 0) { /* Low prefix is completely below the floor */ assert(check_upper); check_upper = 0; BN_free(bnhigh); bnhigh = bnhigh2; bnhigh2 = NULL; BN_free(bnlow); bnlow = bnlow2; bnlow2 = NULL; } else if (BN_cmp(&bnfloor, bnlow) > 0) { /* Low prefix is partly below the floor */ BN_copy(bnlow, &bnfloor); } } } else { BN_copy(bnhigh, &bnceil); BN_clear(bnlow); } /* Limit the prefix to the address type */ BN_clear(&bntmp); BN_set_word(&bntmp, addrtype); BN_lshift(&bntmp2, &bntmp, 192); if (check_upper) { if (BN_cmp(&bntmp2, bnhigh2) > 0) { check_upper = 0; BN_free(bnhigh2); bnhigh2 = NULL; BN_free(bnlow2); bnlow2 = NULL; } else if (BN_cmp(&bntmp2, bnlow2) > 0) BN_copy(bnlow2, &bntmp2); } if (BN_cmp(&bntmp2, bnhigh) > 0) { if (!check_upper) goto not_possible; check_upper = 0; BN_free(bnhigh); bnhigh = bnhigh2; bnhigh2 = NULL; BN_free(bnlow); bnlow = bnlow2; bnlow2 = NULL; } else if (BN_cmp(&bntmp2, bnlow) > 0) { BN_copy(bnlow, &bntmp2); } BN_set_word(&bntmp, addrtype + 1); BN_lshift(&bntmp2, &bntmp, 192); if (check_upper) { if (BN_cmp(&bntmp2, bnlow2) < 0) { check_upper = 0; BN_free(bnhigh2); bnhigh2 = NULL; BN_free(bnlow2); bnlow2 = NULL; } else if (BN_cmp(&bntmp2, bnhigh2) < 0) BN_copy(bnlow2, &bntmp2); } if (BN_cmp(&bntmp2, bnlow) < 0) { if (!check_upper) goto not_possible; check_upper = 0; BN_free(bnhigh); bnhigh = bnhigh2; bnhigh2 = NULL; BN_free(bnlow); bnlow = bnlow2; bnlow2 = NULL; } else if (BN_cmp(&bntmp2, bnhigh) < 0) { BN_copy(bnhigh, &bntmp2); } /* Address ranges are complete */ assert(check_upper || ((bnlow2 == NULL) && (bnhigh2 == NULL))); result[0] = bnlow; result[1] = bnhigh; result[2] = bnlow2; result[3] = bnhigh2; bnlow = NULL; bnhigh = NULL; bnlow2 = NULL; bnhigh2 = NULL; ret = 0; if (0) { not_possible: ret = -2; } out: BN_clear_free(&bntarg); BN_clear_free(&bnceil); BN_clear_free(&bnfloor); BN_clear_free(&bnbase); BN_clear_free(&bntmp); BN_clear_free(&bntmp2); if (bnhigh) BN_free(bnhigh); if (bnlow) BN_free(bnlow); if (bnhigh2) BN_free(bnhigh2); if (bnlow2) BN_free(bnlow2); return ret; }
static isc_result_t opensslrsa_generate(dst_key_t *key, int exp, void (*callback)(int)) { #if OPENSSL_VERSION_NUMBER > 0x00908000L BN_GENCB cb; union { void *dptr; void (*fptr)(int); } u; RSA *rsa = RSA_new(); BIGNUM *e = BN_new(); #if USE_EVP EVP_PKEY *pkey = EVP_PKEY_new(); #endif if (rsa == NULL || e == NULL) goto err; #if USE_EVP if (pkey == NULL) goto err; if (!EVP_PKEY_set1_RSA(pkey, rsa)) goto err; #endif if (exp == 0) { /* RSA_F4 0x10001 */ BN_set_bit(e, 0); BN_set_bit(e, 16); } else { /* F5 0x100000001 */ BN_set_bit(e, 0); BN_set_bit(e, 32); } if (callback == NULL) { BN_GENCB_set_old(&cb, NULL, NULL); } else { u.fptr = callback; BN_GENCB_set(&cb, &progress_cb, u.dptr); } if (RSA_generate_key_ex(rsa, key->key_size, e, &cb)) { BN_free(e); SET_FLAGS(rsa); #if USE_EVP key->keydata.pkey = pkey; RSA_free(rsa); #else key->keydata.rsa = rsa; #endif return (ISC_R_SUCCESS); } err: #if USE_EVP if (pkey != NULL) EVP_PKEY_free(pkey); #endif if (e != NULL) BN_free(e); if (rsa != NULL) RSA_free(rsa); return (dst__openssl_toresult(DST_R_OPENSSLFAILURE)); #else RSA *rsa; unsigned long e; #if USE_EVP EVP_PKEY *pkey = EVP_PKEY_new(); UNUSED(callback); if (pkey == NULL) return (ISC_R_NOMEMORY); #else UNUSED(callback); #endif if (exp == 0) e = RSA_F4; else e = 0x40000003; rsa = RSA_generate_key(key->key_size, e, NULL, NULL); if (rsa == NULL) { #if USE_EVP EVP_PKEY_free(pkey); #endif return (dst__openssl_toresult(DST_R_OPENSSLFAILURE)); } SET_FLAGS(rsa); #if USE_EVP if (!EVP_PKEY_set1_RSA(pkey, rsa)) { EVP_PKEY_free(pkey); RSA_free(rsa); return (dst__openssl_toresult(DST_R_OPENSSLFAILURE)); } key->keydata.pkey = pkey; RSA_free(rsa); #else key->keydata.rsa = rsa; #endif return (ISC_R_SUCCESS); #endif }
/* * Supplemental function to return BIGNUM containing value n = RndOddNum(k) algorithm * @param: k numbits and char pointer to binary read in using x = ceil(k/8) bytes * @return: BIGNUM n */ BIGNUM *RndOddNum(int k, char *temp, int x_byte) { BIGNUM *result = NULL; result = BN_new(); if(result == NULL) { fprintf(stderr, "Can't allocate space to hold returned result for RndOddNum function\n"); return NULL; } BN_zero(result); if(BN_bin2bn((unsigned char*)temp, x_byte, result) != NULL) { //Set bit 0 and k-1 if(BN_set_bit(result, 0)) { if(BN_set_bit(result, k-1)) { //Get total number of bits in result int total_num_bits = BN_num_bits(result); //Clear all higher order bit while(k < total_num_bits) { if(BN_clear_bit(result, k) == 0) //error: can't clear bit { //error: can't clear bit fprintf(stderr, "ERROR: can't clear bit %dth\n", k); BN_free(result); return NULL; } k += 1; } } else { //error: can't set bit k-1 fprintf(stderr, "ERROR: can't set bit k-1\n"); BN_free(result); return NULL; } } else { //error: can't set bit 0 fprintf(stderr, "ERROR: can't set bit 0\n"); BN_free(result); return NULL; } } else { //error: can't convert from bin to bn fprintf(stderr, "ERROR: can't convert binary read from rndfile to bn\n"); BN_free(result); return NULL; } return result; //It is the calling function responsibility to free BIGNUM result }
static int vg_prefix_context_add_patterns(vg_context_t *vcp, const char ** const patterns, int npatterns) { vg_prefix_context_t *vcpp = (vg_prefix_context_t *) vcp; prefix_case_iter_t caseiter; vg_prefix_t *vp, *vp2; BN_CTX *bnctx; BIGNUM bntmp, bntmp2, bntmp3; BIGNUM *ranges[4]; int ret = 0; int i, impossible = 0; int case_impossible; unsigned long npfx; char *dbuf; bnctx = BN_CTX_new(); BN_init(&bntmp); BN_init(&bntmp2); BN_init(&bntmp3); npfx = 0; for (i = 0; i < npatterns; i++) { if (!vcpp->vcp_caseinsensitive) { vp = NULL; ret = get_prefix_ranges(vcpp->base.vc_addrtype, patterns[i], ranges, bnctx); if (!ret) { vp = vg_prefix_add_ranges(&vcpp->vcp_avlroot, patterns[i], ranges, NULL); } } else { /* Case-enumerate the prefix */ if (!prefix_case_iter_init(&caseiter, patterns[i])) { fprintf(stderr, "Prefix '%s' is too long\n", patterns[i]); continue; } if (caseiter.ci_nbits > 16) { fprintf(stderr, "WARNING: Prefix '%s' has " "2^%d case-varied derivatives\n", patterns[i], caseiter.ci_nbits); } case_impossible = 0; vp = NULL; do { ret = get_prefix_ranges(vcpp->base.vc_addrtype, caseiter.ci_prefix, ranges, bnctx); if (ret == -2) { case_impossible++; ret = 0; continue; } if (ret) break; vp2 = vg_prefix_add_ranges(&vcpp->vcp_avlroot, patterns[i], ranges, vp); if (!vp2) { ret = -1; break; } if (!vp) vp = vp2; } while (prefix_case_iter_next(&caseiter)); if (!vp && case_impossible) ret = -2; if (ret && vp) { vg_prefix_delete(&vcpp->vcp_avlroot, vp); vp = NULL; } } if (ret == -2) { fprintf(stderr, "Prefix '%s' not possible\n", patterns[i]); impossible++; } if (!vp) continue; npfx++; /* Determine the probability of finding a match */ vg_prefix_range_sum(vp, &bntmp, &bntmp2); BN_add(&bntmp2, &vcpp->vcp_difficulty, &bntmp); BN_copy(&vcpp->vcp_difficulty, &bntmp2); if (vcp->vc_verbose > 1) { BN_clear(&bntmp2); BN_set_bit(&bntmp2, 192); BN_div(&bntmp3, NULL, &bntmp2, &bntmp, bnctx); dbuf = BN_bn2dec(&bntmp3); fprintf(stderr, "Prefix difficulty: %20s %s\n", dbuf, patterns[i]); OPENSSL_free(dbuf); } } vcpp->base.vc_npatterns += npfx; vcpp->base.vc_npatterns_start += npfx; if (!npfx && impossible) { const char *ats = "bitcoin", *bw = "\"1\""; switch (vcpp->base.vc_addrtype) { case 5: ats = "bitcoin script"; bw = "\"3\""; break; case 111: ats = "testnet"; bw = "\"m\" or \"n\""; break; case 52: ats = "namecoin"; bw = "\"M\" or \"N\""; break; case 48: ats = "litecoin"; bw = "\"L\""; break; default: break; } fprintf(stderr, "Hint: valid %s addresses begin with %s\n", ats, bw); } if (npfx) vg_prefix_context_next_difficulty(vcpp, &bntmp, &bntmp2, bnctx); ret = (npfx != 0); BN_clear_free(&bntmp); BN_clear_free(&bntmp2); BN_clear_free(&bntmp3); BN_CTX_free(bnctx); return ret; }
static int ecdsa_sign_setup(EC_KEY *eckey, BN_CTX *ctx_in, BIGNUM **kinvp, BIGNUM **rp, const unsigned char *dgst, int dlen) { BN_CTX *ctx = NULL; BIGNUM *k = NULL, *r = NULL, *X = NULL; const BIGNUM *order; EC_POINT *tmp_point = NULL; const EC_GROUP *group; int ret = 0; int order_bits; if (eckey == NULL || (group = EC_KEY_get0_group(eckey)) == NULL) { ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (!EC_KEY_can_sign(eckey)) { ECerr(EC_F_ECDSA_SIGN_SETUP, EC_R_CURVE_DOES_NOT_SUPPORT_SIGNING); return 0; } if (ctx_in == NULL) { if ((ctx = BN_CTX_new()) == NULL) { ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_MALLOC_FAILURE); return 0; } } else ctx = ctx_in; k = BN_new(); /* this value is later returned in *kinvp */ r = BN_new(); /* this value is later returned in *rp */ X = BN_new(); if (k == NULL || r == NULL || X == NULL) { ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_MALLOC_FAILURE); goto err; } if ((tmp_point = EC_POINT_new(group)) == NULL) { ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_EC_LIB); goto err; } order = EC_GROUP_get0_order(group); if (order == NULL) { ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_EC_LIB); goto err; } /* Preallocate space */ order_bits = BN_num_bits(order); if (!BN_set_bit(k, order_bits) || !BN_set_bit(r, order_bits) || !BN_set_bit(X, order_bits)) goto err; do { /* get random k */ do if (dgst != NULL) { if (!BN_generate_dsa_nonce (k, order, EC_KEY_get0_private_key(eckey), dgst, dlen, ctx)) { ECerr(EC_F_ECDSA_SIGN_SETUP, EC_R_RANDOM_NUMBER_GENERATION_FAILED); goto err; } } else { if (!BN_priv_rand_range(k, order)) { ECerr(EC_F_ECDSA_SIGN_SETUP, EC_R_RANDOM_NUMBER_GENERATION_FAILED); goto err; } } while (BN_is_zero(k)); /* compute r the x-coordinate of generator * k */ if (!EC_POINT_mul(group, tmp_point, k, NULL, NULL, ctx)) { ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_EC_LIB); goto err; } if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) == NID_X9_62_prime_field) { if (!EC_POINT_get_affine_coordinates_GFp (group, tmp_point, X, NULL, ctx)) { ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_EC_LIB); goto err; } } #ifndef OPENSSL_NO_EC2M else { /* NID_X9_62_characteristic_two_field */ if (!EC_POINT_get_affine_coordinates_GF2m(group, tmp_point, X, NULL, ctx)) { ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_EC_LIB); goto err; } } #endif if (!BN_nnmod(r, X, order, ctx)) { ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB); goto err; } } while (BN_is_zero(r)); /* Check if optimized inverse is implemented */ if (EC_GROUP_do_inverse_ord(group, k, k, ctx) == 0) { /* compute the inverse of k */ if (group->mont_data != NULL) { /* * We want inverse in constant time, therefore we utilize the fact * order must be prime and use Fermats Little Theorem instead. */ if (!BN_set_word(X, 2)) { ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB); goto err; } if (!BN_mod_sub(X, order, X, order, ctx)) { ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB); goto err; } BN_set_flags(X, BN_FLG_CONSTTIME); if (!BN_mod_exp_mont_consttime(k, k, X, order, ctx, group->mont_data)) { ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB); goto err; } } else { if (!BN_mod_inverse(k, k, order, ctx)) { ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB); goto err; } } } /* clear old values if necessary */ BN_clear_free(*rp); BN_clear_free(*kinvp); /* save the pre-computed values */ *rp = r; *kinvp = k; ret = 1; err: if (!ret) { BN_clear_free(k); BN_clear_free(r); } if (ctx != ctx_in) BN_CTX_free(ctx); EC_POINT_free(tmp_point); BN_clear_free(X); return ret; }
RSA *RSA_generate_key(int bits, unsigned long e_value, void (*callback)(int,int,void *), void *cb_arg) { RSA *rsa=NULL; BIGNUM *r0=NULL,*r1=NULL,*r2=NULL,*r3=NULL,*tmp; int bitsp,bitsq,ok= -1,n=0; unsigned i; BN_CTX *ctx=NULL,*ctx2=NULL; ctx=BN_CTX_new(); if (ctx == NULL) goto err; ctx2=BN_CTX_new(); if (ctx2 == NULL) goto err; BN_CTX_start(ctx); r0 = BN_CTX_get(ctx); r1 = BN_CTX_get(ctx); r2 = BN_CTX_get(ctx); r3 = BN_CTX_get(ctx); if (r3 == NULL) goto err; bitsp=(bits+1)/2; bitsq=bits-bitsp; rsa=RSA_new(); if (rsa == NULL) goto err; /* set e */ rsa->e=BN_new(); if (rsa->e == NULL) goto err; #if 1 /* The problem is when building with 8, 16, or 32 BN_ULONG, * unsigned long can be larger */ for (i=0; i<sizeof(unsigned long)*8; i++) { if (e_value & (((unsigned long)1)<<i)) BN_set_bit(rsa->e,i); } #else if (!BN_set_word(rsa->e,e_value)) goto err; #endif /* generate p and q */ for (;;) { rsa->p=BN_generate_prime(NULL,bitsp,0,NULL,NULL,callback,cb_arg); if (rsa->p == NULL) goto err; if (!BN_sub(r2,rsa->p,BN_value_one())) goto err; if (!BN_gcd(r1,r2,rsa->e,ctx)) goto err; if (BN_is_one(r1)) break; if (callback != NULL) callback(2,n++,cb_arg); BN_free(rsa->p); } if (callback != NULL) callback(3,0,cb_arg); for (;;) { rsa->q=BN_generate_prime(NULL,bitsq,0,NULL,NULL,callback,cb_arg); if (rsa->q == NULL) goto err; if (!BN_sub(r2,rsa->q,BN_value_one())) goto err; if (!BN_gcd(r1,r2,rsa->e,ctx)) goto err; if (BN_is_one(r1) && (BN_cmp(rsa->p,rsa->q) != 0)) break; if (callback != NULL) callback(2,n++,cb_arg); BN_free(rsa->q); } if (callback != NULL) callback(3,1,cb_arg); if (BN_cmp(rsa->p,rsa->q) < 0) { tmp=rsa->p; rsa->p=rsa->q; rsa->q=tmp; } /* calculate n */ rsa->n=BN_new(); if (rsa->n == NULL) goto err; if (!BN_mul(rsa->n,rsa->p,rsa->q,ctx)) goto err; /* calculate d */ if (!BN_sub(r1,rsa->p,BN_value_one())) goto err; /* p-1 */ if (!BN_sub(r2,rsa->q,BN_value_one())) goto err; /* q-1 */ if (!BN_mul(r0,r1,r2,ctx)) goto err; /* (p-1)(q-1) */ /* should not be needed, since gcd(p-1,e) == 1 and gcd(q-1,e) == 1 */ /* for (;;) { if (!BN_gcd(r3,r0,rsa->e,ctx)) goto err; if (BN_is_one(r3)) break; if (1) { if (!BN_add_word(rsa->e,2L)) goto err; continue; } RSAerr(RSA_F_RSA_GENERATE_KEY,RSA_R_BAD_E_VALUE); goto err; } */ rsa->d=BN_mod_inverse(NULL,rsa->e,r0,ctx2); /* d */ if (rsa->d == NULL) goto err; /* calculate d mod (p-1) */ rsa->dmp1=BN_new(); if (rsa->dmp1 == NULL) goto err; if (!BN_mod(rsa->dmp1,rsa->d,r1,ctx)) goto err; /* calculate d mod (q-1) */ rsa->dmq1=BN_new(); if (rsa->dmq1 == NULL) goto err; if (!BN_mod(rsa->dmq1,rsa->d,r2,ctx)) goto err; /* calculate inverse of q mod p */ rsa->iqmp=BN_mod_inverse(NULL,rsa->q,rsa->p,ctx2); if (rsa->iqmp == NULL) goto err; ok=1; err: if (ok == -1) { RSAerr(RSA_F_RSA_GENERATE_KEY,ERR_LIB_BN); ok=0; } BN_CTX_end(ctx); BN_CTX_free(ctx); BN_CTX_free(ctx2); if (!ok) { if (rsa != NULL) RSA_free(rsa); return(NULL); } else return(rsa); }
int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx) { int ret = 0; BIGNUM *Ri, *R; BIGNUM tmod; BN_ULONG buf[2]; if (BN_is_zero(mod)) { OPENSSL_PUT_ERROR(BN, BN_R_DIV_BY_ZERO); return 0; } BN_CTX_start(ctx); Ri = BN_CTX_get(ctx); if (Ri == NULL) { goto err; } R = &mont->RR; /* grab RR as a temp */ if (!BN_copy(&mont->N, mod)) { goto err; /* Set N */ } mont->N.neg = 0; BN_init(&tmod); tmod.d = buf; tmod.dmax = 2; tmod.neg = 0; BN_zero(R); if (!BN_set_bit(R, BN_MONT_CTX_N0_LIMBS * BN_BITS2)) { goto err; } tmod.top = 0; buf[0] = mod->d[0]; if (buf[0] != 0) { tmod.top = 1; } buf[1] = 0; if (BN_MONT_CTX_N0_LIMBS == 2 && mod->top > 1 && mod->d[1] != 0) { buf[1] = mod->d[1]; tmod.top = 2; } if (BN_mod_inverse(Ri, R, &tmod, ctx) == NULL) { goto err; } if (!BN_lshift(Ri, Ri, BN_MONT_CTX_N0_LIMBS * BN_BITS2)) { goto err; /* R*Ri */ } const BIGNUM *Ri_dividend; if (!BN_is_zero(Ri)) { if (!BN_sub_word(Ri, 1)) { goto err; } Ri_dividend = Ri; } else { /* Ri == 0 so Ri - 1 == -1. -1 % tmod == 0xff..ff. */ static const BN_ULONG kMinusOneLimbs[BN_MONT_CTX_N0_LIMBS] = { BN_MASK2, #if BN_MONT_CTX_N0_LIMBS == 2 BN_MASK2 #endif }; STATIC_BIGNUM_DIAGNOSTIC_PUSH static const BIGNUM kMinusOne = STATIC_BIGNUM(kMinusOneLimbs); STATIC_BIGNUM_DIAGNOSTIC_POP Ri_dividend = &kMinusOne; } if (!BN_div(Ri, NULL, Ri_dividend, &tmod, ctx)) { goto err; } mont->n0[0] = 0; if (Ri->top > 0) { mont->n0[0] = Ri->d[0]; } mont->n0[1] = 0; if (BN_MONT_CTX_N0_LIMBS == 2 && Ri->top > 1) { mont->n0[1] = Ri->d[1]; } /* RR = (2^ri)^2 == 2^(ri*2) == 1 << (ri*2), which has its (ri*2)th bit set. */ int ri = (BN_num_bits(mod) + (BN_BITS2 - 1)) / BN_BITS2 * BN_BITS2; BN_zero(&(mont->RR)); if (!BN_set_bit(&(mont->RR), ri * 2)) { goto err; } if (!BN_mod(&(mont->RR), &(mont->RR), &(mont->N), ctx)) { goto err; } ret = 1; err: BN_CTX_end(ctx); return ret; }
static int test_BN_bit(void) { BIGNUM *bn; int ret = 0; bn = BN_new(); /* test setting and getting of "word" */ if (!BN_set_word(bn, 1)) return 1; if (!BN_is_bit_set(bn, 0)) ret += 1; if (!BN_is_bit_set(bn, 0)) ret += 1; if (!BN_set_word(bn, 2)) return 1; if (!BN_is_bit_set(bn, 1)) ret += 1; if (!BN_set_word(bn, 3)) return 1; if (!BN_is_bit_set(bn, 0)) ret += 1; if (!BN_is_bit_set(bn, 1)) ret += 1; if (!BN_set_word(bn, 0x100)) return 1; if (!BN_is_bit_set(bn, 8)) ret += 1; if (!BN_set_word(bn, 0x1000)) return 1; if (!BN_is_bit_set(bn, 12)) ret += 1; /* test bitsetting */ if (!BN_set_word(bn, 1)) return 1; if (!BN_set_bit(bn, 1)) return 1; if (BN_get_word(bn) != 3) return 1; if (!BN_clear_bit(bn, 0)) return 1; if (BN_get_word(bn) != 2) return 1; /* test bitsetting past end of current end */ BN_clear(bn); if (!BN_set_bit(bn, 12)) return 1; if (BN_get_word(bn) != 0x1000) return 1; /* test bit and byte counting functions */ if (BN_num_bits(bn) != 13) return 1; if (BN_num_bytes(bn) != 2) return 1; BN_free(bn); return ret; }
CHECK_RETVAL_BOOL \ static BOOLEAN selfTestGeneralOps2( void ) { BIGNUM a; int status; /* More complex tests that need higher-level routines like importBignum(), run after the tests of components of importBignum() have concluded */ BN_init( &a ); #if BN_BITS2 == 64 status = importBignum( &a, "\x01\x00\x00\x00\x00\x00\x00\x00\x00", 9, 1, 128, NULL, KEYSIZE_CHECK_NONE ); #else status = importBignum( &a, "\x01\x00\x00\x00\x00", 5, 1, 128, NULL, KEYSIZE_CHECK_NONE ); #endif /* 64- vs 32-bit */ if( cryptStatusError( status ) ) return( FALSE ); if( BN_is_zero( &a ) || BN_is_one( &a ) ) return( FALSE ); if( BN_is_word( &a, 0 ) || BN_is_word( &a, 1 ) ) return( FALSE ); if( BN_is_odd( &a ) ) return( FALSE ); if( BN_get_word( &a ) != BN_NAN ) return( FALSE ); if( BN_num_bytes( &a ) != ( BN_BITS2 / 8 ) + 1 ) return( FALSE ); if( BN_num_bits( &a ) != BN_BITS2 + 1 ) return( FALSE ); if( !BN_is_bit_set( &a, BN_BITS2 ) ) return( FALSE ); if( BN_is_bit_set( &a, 17 ) || !BN_set_bit( &a, 17 ) || \ !BN_is_bit_set( &a, 17 ) ) return( FALSE ); #if BN_BITS2 == 64 status = importBignum( &a, "\x01\x00\x00\x00\x00\x00\x00\x00\x01", 9, 1, 128, NULL, KEYSIZE_CHECK_NONE ); #else status = importBignum( &a, "\x01\x00\x00\x00\x01", 5, 1, 128, NULL, KEYSIZE_CHECK_NONE ); #endif /* 64- vs 32-bit */ if( cryptStatusError( status ) ) return( FALSE ); if( BN_is_zero( &a ) || BN_is_one( &a ) ) return( FALSE ); if( BN_is_word( &a, 0 ) || BN_is_word( &a, 1 ) ) return( FALSE ); if( !BN_is_odd( &a ) ) return( FALSE ); if( BN_num_bytes( &a ) != ( BN_BITS2 / 8 ) + 1 ) return( FALSE ); if( BN_get_word( &a ) != BN_NAN ) return( FALSE ); if( BN_num_bits( &a ) != BN_BITS2 + 1 ) return( FALSE ); if( !BN_is_bit_set( &a, BN_BITS2 ) ) return( FALSE ); if( BN_is_bit_set( &a, BN_BITS2 + 27 ) || \ !BN_set_bit( &a, BN_BITS2 + 27 ) || \ !BN_is_bit_set( &a, BN_BITS2 + 27 ) ) return( FALSE ); /* Setting a bit off the end of a bignum extends its size, which is why the following value doesn't match the one from a few lines earlier */ if( BN_num_bytes( &a ) != ( BN_BITS2 / 8 ) + 4 ) return( FALSE ); /* The bit index for indexing bits is zero-based (since 1 == 1 << 0) but for counting bits is one-based, which is why the following comparison looks wrong. Yet another one of OpenSSL's many booby-traps */ if( BN_num_bits( &a ) != BN_BITS2 + 28 ) return( FALSE ); BN_clear( &a ); return( TRUE ); }
static isc_result_t opensslrsa_generate(dst_key_t *key, int exp, void (*callback)(int)) { #if OPENSSL_VERSION_NUMBER > 0x00908000L isc_result_t ret = DST_R_OPENSSLFAILURE; union { void *dptr; void (*fptr)(int); } u; RSA *rsa = RSA_new(); BIGNUM *e = BN_new(); #if OPENSSL_VERSION_NUMBER < 0x10100000L || defined(LIBRESSL_VERSION_NUMBER) BN_GENCB _cb; #endif BN_GENCB *cb = BN_GENCB_new(); #if USE_EVP EVP_PKEY *pkey = EVP_PKEY_new(); #endif /* * Reject incorrect RSA key lengths. */ switch (key->key_alg) { case DST_ALG_RSAMD5: case DST_ALG_RSASHA1: case DST_ALG_NSEC3RSASHA1: /* From RFC 3110 */ if (key->key_size > 4096) goto err; break; case DST_ALG_RSASHA256: /* From RFC 5702 */ if ((key->key_size < 512) || (key->key_size > 4096)) goto err; break; case DST_ALG_RSASHA512: /* From RFC 5702 */ if ((key->key_size < 1024) || (key->key_size > 4096)) goto err; break; default: INSIST(0); } if (rsa == NULL || e == NULL || cb == NULL) goto err; #if USE_EVP if (pkey == NULL) goto err; if (!EVP_PKEY_set1_RSA(pkey, rsa)) goto err; #endif if (exp == 0) { /* RSA_F4 0x10001 */ BN_set_bit(e, 0); BN_set_bit(e, 16); } else { /* (phased-out) F5 0x100000001 */ BN_set_bit(e, 0); BN_set_bit(e, 32); } if (callback == NULL) { BN_GENCB_set_old(cb, NULL, NULL); } else { u.fptr = callback; BN_GENCB_set(cb, &progress_cb, u.dptr); } if (RSA_generate_key_ex(rsa, key->key_size, e, cb)) { BN_free(e); BN_GENCB_free(cb); SET_FLAGS(rsa); #if USE_EVP key->keydata.pkey = pkey; RSA_free(rsa); #else key->keydata.rsa = rsa; #endif return (ISC_R_SUCCESS); } BN_GENCB_free(cb); ret = dst__openssl_toresult2("RSA_generate_key_ex", DST_R_OPENSSLFAILURE); err: #if USE_EVP if (pkey != NULL) EVP_PKEY_free(pkey); #endif if (e != NULL) BN_free(e); if (rsa != NULL) RSA_free(rsa); if (cb != NULL) BN_GENCB_free(cb); return (dst__openssl_toresult(ret)); #else RSA *rsa; unsigned long e; #if USE_EVP EVP_PKEY *pkey = EVP_PKEY_new(); UNUSED(callback); if (pkey == NULL) return (ISC_R_NOMEMORY); #else UNUSED(callback); #endif if (exp == 0) e = RSA_F4; else e = 0x40000003; rsa = RSA_generate_key(key->key_size, e, NULL, NULL); if (rsa == NULL) { #if USE_EVP EVP_PKEY_free(pkey); #endif return (dst__openssl_toresult2("RSA_generate_key", DST_R_OPENSSLFAILURE)); } SET_FLAGS(rsa); #if USE_EVP if (!EVP_PKEY_set1_RSA(pkey, rsa)) { EVP_PKEY_free(pkey); RSA_free(rsa); return (dst__openssl_toresult(DST_R_OPENSSLFAILURE)); } key->keydata.pkey = pkey; RSA_free(rsa); #else key->keydata.rsa = rsa; #endif return (ISC_R_SUCCESS); #endif }
int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx) { int ret = 0; BIGNUM *Ri,*R; BN_CTX_start(ctx); if((Ri = BN_CTX_get(ctx)) == NULL) goto err; R= &(mont->RR); /* grab RR as a temp */ if (!BN_copy(&(mont->N),mod)) goto err; /* Set N */ mont->N.neg = 0; #ifdef MONT_WORD { BIGNUM tmod; BN_ULONG buf[2]; mont->ri=(BN_num_bits(mod)+(BN_BITS2-1))/BN_BITS2*BN_BITS2; BN_zero(R); if (!(BN_set_bit(R,BN_BITS2))) goto err; /* R */ buf[0]=mod->d[0]; /* tmod = N mod word size */ buf[1]=0; tmod.d=buf; tmod.top = buf[0] != 0 ? 1 : 0; tmod.dmax=2; tmod.neg=0; /* Ri = R^-1 mod N*/ if ((BN_mod_inverse(Ri,R,&tmod,ctx)) == NULL) goto err; if (!BN_lshift(Ri,Ri,BN_BITS2)) goto err; /* R*Ri */ if (!BN_is_zero(Ri)) { if (!BN_sub_word(Ri,1)) goto err; } else /* if N mod word size == 1 */ { if (!BN_set_word(Ri,BN_MASK2)) goto err; /* Ri-- (mod word size) */ } if (!BN_div(Ri,NULL,Ri,&tmod,ctx)) goto err; /* Ni = (R*Ri-1)/N, * keep only least significant word: */ mont->n0 = (Ri->top > 0) ? Ri->d[0] : 0; } #else /* !MONT_WORD */ { /* bignum version */ mont->ri=BN_num_bits(&mont->N); BN_zero(R); if (!BN_set_bit(R,mont->ri)) goto err; /* R = 2^ri */ /* Ri = R^-1 mod N*/ if ((BN_mod_inverse(Ri,R,&mont->N,ctx)) == NULL) goto err; if (!BN_lshift(Ri,Ri,mont->ri)) goto err; /* R*Ri */ if (!BN_sub_word(Ri,1)) goto err; /* Ni = (R*Ri-1) / N */ if (!BN_div(&(mont->Ni),NULL,Ri,&mont->N,ctx)) goto err; } #endif /* setup RR for conversions */ BN_zero(&(mont->RR)); if (!BN_set_bit(&(mont->RR),mont->ri*2)) goto err; if (!BN_mod(&(mont->RR),&(mont->RR),&(mont->N),ctx)) goto err; ret = 1; err: BN_CTX_end(ctx); return ret; }