示例#1
0
void FCV_BPINIT(long int *N, long int *mu, long int *ml, int *ier)
{
  /* 
     Call CVBandPrecInit to initialize the CVBANDPRE module:
     N      is the vector size
     mu, ml are the half-bandwidths of the retained preconditioner blocks
  */

  *ier = CVBandPrecInit(CV_cvodemem, *N, *mu, *ml);

  return;
}
示例#2
0
int CVBandPrecInitB(void *cvode_mem, int which, int nB, int muB, int mlB)
{
  CVodeMem cv_mem;
  CVadjMem ca_mem;
  CVodeBMem cvB_mem;
  void *cvodeB_mem;
  int flag;

  /* Check if cvode_mem exists */
  if (cvode_mem == NULL) {
    cvProcessError(NULL, CVSPILS_MEM_NULL, "CVBANDPRE", "CVBandPrecInitB", MSGBP_MEM_NULL);
    return(CVSPILS_MEM_NULL);
  }
  cv_mem = (CVodeMem) cvode_mem;

  /* Was ASA initialized? */
  if (cv_mem->cv_adjMallocDone == FALSE) {
    cvProcessError(cv_mem, CVSPILS_NO_ADJ, "CVBANDPRE", "CVBandPrecInitB", MSGBP_NO_ADJ);
    return(CVSPILS_NO_ADJ);
  } 
  ca_mem = cv_mem->cv_adj_mem;

  /* Check which */
  if ( which >= ca_mem->ca_nbckpbs ) {
    cvProcessError(cv_mem, CVSPILS_ILL_INPUT, "CVBANDPRE", "CVBandPrecInitB", MSGBP_BAD_WHICH);
    return(CVSPILS_ILL_INPUT);
  }

  /* Find the CVodeBMem entry in the linked list corresponding to which */
  cvB_mem = ca_mem->cvB_mem;
  while (cvB_mem != NULL) {
    if ( which == cvB_mem->cv_index ) break;
    cvB_mem = cvB_mem->cv_next;
  }

  cvB_mem->cv_pfree = NULL;

  cvodeB_mem = (void *) (cvB_mem->cv_mem);

  flag = CVBandPrecInit(cvodeB_mem, nB, muB, mlB);

  return(flag);
}
示例#3
0
int main()
{
  realtype abstol, reltol, t, tout;
  N_Vector u;
  UserData data;
  void *cvode_mem;
  int flag, iout, jpre;
  long int ml, mu;

  u = NULL;
  data = NULL;
  cvode_mem = NULL;

  /* Allocate and initialize u, and set problem data and tolerances */ 
  u = N_VNew_Serial(NEQ);
  if(check_flag((void *)u, "N_VNew_Serial", 0)) return(1);
  data = (UserData) malloc(sizeof *data);
  if(check_flag((void *)data, "malloc", 2)) return(1);
  InitUserData(data);
  SetInitialProfiles(u, data->dx, data->dy);
  abstol = ATOL; 
  reltol = RTOL;

  /* Call CVodeCreate to create the solver memory and specify the 
   * Backward Differentiation Formula and the use of a Newton iteration */
  cvode_mem = CVodeCreate(CV_BDF, CV_NEWTON);
  if(check_flag((void *)cvode_mem, "CVodeCreate", 0)) return(1);

  /* Set the pointer to user-defined data */
  flag = CVodeSetUserData(cvode_mem, data);
  if(check_flag(&flag, "CVodeSetUserData", 1)) return(1);

  /* Call CVodeInit to initialize the integrator memory and specify the
   * user's right hand side function in u'=f(t,u), the inital time T0, and
   * the initial dependent variable vector u. */
  flag = CVodeInit(cvode_mem, f, T0, u);
  if(check_flag(&flag, "CVodeInit", 1)) return(1);

  /* Call CVodeSStolerances to specify the scalar relative tolerance
   * and scalar absolute tolerances */
  flag = CVodeSStolerances(cvode_mem, reltol, abstol);
  if (check_flag(&flag, "CVodeSStolerances", 1)) return(1);

  /* Call CVSpgmr to specify the linear solver CVSPGMR 
     with left preconditioning and the maximum Krylov dimension maxl */
  flag = CVSpgmr(cvode_mem, PREC_LEFT, 0);
  if(check_flag(&flag, "CVSpgmr", 1)) return(1);

  /* Call CVBandPreInit to initialize band preconditioner */
  ml = mu = 2;
  flag = CVBandPrecInit(cvode_mem, NEQ, mu, ml);
  if(check_flag(&flag, "CVBandPrecInit", 0)) return(1);

  PrintIntro(mu, ml);

  /* Loop over jpre (= PREC_LEFT, PREC_RIGHT), and solve the problem */

  for (jpre = PREC_LEFT; jpre <= PREC_RIGHT; jpre++) {
    
    /* On second run, re-initialize u, the solver, and CVSPGMR */
    
    if (jpre == PREC_RIGHT) {
      
      SetInitialProfiles(u, data->dx, data->dy);
      
      flag = CVodeReInit(cvode_mem, T0, u);
      if(check_flag(&flag, "CVodeReInit", 1)) return(1);

      flag = CVSpilsSetPrecType(cvode_mem, PREC_RIGHT);
      check_flag(&flag, "CVSpilsSetPrecType", 1);
      
      printf("\n\n-------------------------------------------------------");
      printf("------------\n");
    }
    
    printf("\n\nPreconditioner type is:  jpre = %s\n\n",
           (jpre == PREC_LEFT) ? "PREC_LEFT" : "PREC_RIGHT");
    
    /* In loop over output points, call CVode, print results, test for error */
    
    for (iout = 1, tout = TWOHR; iout <= NOUT; iout++, tout += TWOHR) {
      flag = CVode(cvode_mem, tout, u, &t, CV_NORMAL);
      check_flag(&flag, "CVode", 1);
      PrintOutput(cvode_mem, u, t);
      if (flag != CV_SUCCESS) {
        break;
      }
    }
    
    /* Print final statistics */
    
    PrintFinalStats(cvode_mem);
    
  } /* End of jpre loop */

  /* Free memory */
  N_VDestroy_Serial(u);
  free(data);
  CVodeFree(&cvode_mem);

  return(0);
}
示例#4
0
void CvodeSolver::initialize(const double &pVoiStart,
                             const int &pRatesStatesCount, double *pConstants,
                             double *pRates, double *pStates,
                             double *pAlgebraic,
                             ComputeRatesFunction pComputeRates)
{
    if (!mSolver) {
        // Retrieve some of the CVODE properties

        double maximumStep = MaximumStepDefaultValue;
        int maximumNumberOfSteps = MaximumNumberOfStepsDefaultValue;
        QString integrationMethod = IntegrationMethodDefaultValue;
        QString iterationType = IterationTypeDefaultValue;
        QString linearSolver = LinearSolverDefaultValue;
        QString preconditioner = PreconditionerDefaultValue;
        int upperHalfBandwidth = UpperHalfBandwidthDefaultValue;
        int lowerHalfBandwidth = LowerHalfBandwidthDefaultValue;
        double relativeTolerance = RelativeToleranceDefaultValue;
        double absoluteTolerance = AbsoluteToleranceDefaultValue;

        if (mProperties.contains(MaximumStepId)) {
            maximumStep = mProperties.value(MaximumStepId).toDouble();
        } else {
            emit error(QObject::tr("the 'maximum step' property value could not be retrieved"));

            return;
        }

        if (mProperties.contains(MaximumNumberOfStepsId)) {
            maximumNumberOfSteps = mProperties.value(MaximumNumberOfStepsId).toInt();
        } else {
            emit error(QObject::tr("the 'maximum number of steps' property value could not be retrieved"));

            return;
        }

        if (mProperties.contains(IntegrationMethodId)) {
            integrationMethod = mProperties.value(IntegrationMethodId).toString();
        } else {
            emit error(QObject::tr("the 'integration method' property value could not be retrieved"));

            return;
        }

        if (mProperties.contains(IterationTypeId)) {
            iterationType = mProperties.value(IterationTypeId).toString();

            if (!iterationType.compare(NewtonIteration)) {
                // We are dealing with a Newton iteration, so retrieve and check
                // its linear solver

                if (mProperties.contains(LinearSolverId)) {
                    linearSolver = mProperties.value(LinearSolverId).toString();

                    bool needUpperAndLowerHalfBandwidths = false;

                    if (   !linearSolver.compare(DenseLinearSolver)
                        || !linearSolver.compare(DiagonalLinearSolver)) {
                        // We are dealing with a dense/diagonal linear solver,
                        // so nothing more to do
                    } else if (!linearSolver.compare(BandedLinearSolver)) {
                        // We are dealing with a banded linear solver, so we
                        // need both an upper and a lower half bandwidth

                        needUpperAndLowerHalfBandwidths = true;
                    } else {
                        // We are dealing with a GMRES/Bi-CGStab/TFQMR linear
                        // solver, so retrieve and check its preconditioner

                        if (mProperties.contains(PreconditionerId)) {
                            preconditioner = mProperties.value(PreconditionerId).toString();
                        } else {
                            emit error(QObject::tr("the 'preconditioner' property value could not be retrieved"));

                            return;
                        }

                        if (!preconditioner.compare(BandedPreconditioner)) {
                            // We are dealing with a banded preconditioner, so
                            // we need both an upper and a lower half bandwidth

                            needUpperAndLowerHalfBandwidths = true;
                        }
                    }

                    if (needUpperAndLowerHalfBandwidths) {
                        if (mProperties.contains(UpperHalfBandwidthId)) {
                            upperHalfBandwidth = mProperties.value(UpperHalfBandwidthId).toInt();

                            if (   (upperHalfBandwidth < 0)
                                || (upperHalfBandwidth >= pRatesStatesCount)) {
                                emit error(QObject::tr("the 'upper half-bandwidth' property must have a value between 0 and %1").arg(pRatesStatesCount-1));

                                return;
                            }
                        } else {
                            emit error(QObject::tr("the 'upper half-bandwidth' property value could not be retrieved"));

                            return;
                        }

                        if (mProperties.contains(LowerHalfBandwidthId)) {
                            lowerHalfBandwidth = mProperties.value(LowerHalfBandwidthId).toInt();

                            if (   (lowerHalfBandwidth < 0)
                                || (lowerHalfBandwidth >= pRatesStatesCount)) {
                                emit error(QObject::tr("the 'lower half-bandwidth' property must have a value between 0 and %1").arg(pRatesStatesCount-1));

                                return;
                            }
                        } else {
                            emit error(QObject::tr("the 'lower half-bandwidth' property value could not be retrieved"));

                            return;
                        }
                    }
                } else {
                    emit error(QObject::tr("the 'linear solver' property value could not be retrieved"));

                    return;
                }
            }
        } else {
            emit error(QObject::tr("the 'iteration type' property value could not be retrieved"));

            return;
        }

        if (mProperties.contains(RelativeToleranceId)) {
            relativeTolerance = mProperties.value(RelativeToleranceId).toDouble();

            if (relativeTolerance < 0) {
                emit error(QObject::tr("the 'relative tolerance' property must have a value greater than or equal to 0"));

                return;
            }
        } else {
            emit error(QObject::tr("the 'relative tolerance' property value could not be retrieved"));

            return;
        }

        if (mProperties.contains(AbsoluteToleranceId)) {
            absoluteTolerance = mProperties.value(AbsoluteToleranceId).toDouble();

            if (absoluteTolerance < 0) {
                emit error(QObject::tr("the 'absolute tolerance' property must have a value greater than or equal to 0"));

                return;
            }
        } else {
            emit error(QObject::tr("the 'absolute tolerance' property value could not be retrieved"));

            return;
        }

        if (mProperties.contains(InterpolateSolutionId)) {
            mInterpolateSolution = mProperties.value(InterpolateSolutionId).toBool();
        } else {
            emit error(QObject::tr("the 'interpolate solution' property value could not be retrieved"));

            return;
        }

        // Initialise the ODE solver itself

        OpenCOR::Solver::OdeSolver::initialize(pVoiStart, pRatesStatesCount,
                                               pConstants, pRates, pStates,
                                               pAlgebraic, pComputeRates);

        // Create the states vector

        mStatesVector = N_VMake_Serial(pRatesStatesCount, pStates);

        // Create the CVODE solver

        bool newtonIteration = !iterationType.compare(NewtonIteration);

        mSolver = CVodeCreate(!integrationMethod.compare(BdfMethod)?CV_BDF:CV_ADAMS,
                              newtonIteration?CV_NEWTON:CV_FUNCTIONAL);

        // Use our own error handler

        CVodeSetErrHandlerFn(mSolver, errorHandler, this);

        // Initialise the CVODE solver

        CVodeInit(mSolver, rhsFunction, pVoiStart, mStatesVector);

        // Set some user data

        mUserData = new CvodeSolverUserData(pConstants, pAlgebraic,
                                            pComputeRates);

        CVodeSetUserData(mSolver, mUserData);

        // Set the maximum step

        CVodeSetMaxStep(mSolver, maximumStep);

        // Set the maximum number of steps

        CVodeSetMaxNumSteps(mSolver, maximumNumberOfSteps);

        // Set the linear solver, if needed

        if (newtonIteration) {
            if (!linearSolver.compare(DenseLinearSolver)) {
                CVDense(mSolver, pRatesStatesCount);
            } else if (!linearSolver.compare(BandedLinearSolver)) {
                CVBand(mSolver, pRatesStatesCount, upperHalfBandwidth, lowerHalfBandwidth);
            } else if (!linearSolver.compare(DiagonalLinearSolver)) {
                CVDiag(mSolver);
            } else {
                // We are dealing with a GMRES/Bi-CGStab/TFQMR linear solver

                if (!preconditioner.compare(BandedPreconditioner)) {
                    if (!linearSolver.compare(GmresLinearSolver))
                        CVSpgmr(mSolver, PREC_LEFT, 0);
                    else if (!linearSolver.compare(BiCgStabLinearSolver))
                        CVSpbcg(mSolver, PREC_LEFT, 0);
                    else
                        CVSptfqmr(mSolver, PREC_LEFT, 0);

                    CVBandPrecInit(mSolver, pRatesStatesCount, upperHalfBandwidth, lowerHalfBandwidth);
                } else {
                    if (!linearSolver.compare(GmresLinearSolver))
                        CVSpgmr(mSolver, PREC_NONE, 0);
                    else if (!linearSolver.compare(BiCgStabLinearSolver))
                        CVSpbcg(mSolver, PREC_NONE, 0);
                    else
                        CVSptfqmr(mSolver, PREC_NONE, 0);
                }
            }
        }

        // Set the relative and absolute tolerances

        CVodeSStolerances(mSolver, relativeTolerance, absoluteTolerance);
    } else {
        // Reinitialise the CVODE object

        CVodeReInit(mSolver, pVoiStart, mStatesVector);
    }
}