示例#1
0
dgUnsigned32 dgUpVectorConstraint::JacobianDerivative (dgContraintDescritor& params)
{
	dgMatrix matrix0;
	dgMatrix matrix1;
	CalculateGlobalMatrixAndAngle (matrix0, matrix1);

	dgVector lateralDir (matrix0.m_front * matrix1.m_front);

	dgInt32 ret = 0;
	dgFloat32 mag = lateralDir % lateralDir;
	if (mag > dgFloat32 (1.0e-6f)) {
		mag = dgSqrt (mag);
		lateralDir = lateralDir.Scale3 (dgFloat32 (1.0f) / mag);
		dgFloat32 angle = dgAsin (mag);
		CalculateAngularDerivative (0, params, lateralDir, m_stiffness, angle, &m_jointForce[0]);

		dgVector frontDir (lateralDir * matrix1.m_front);
		CalculateAngularDerivative (1, params, frontDir, m_stiffness, dgFloat32 (0.0f), &m_jointForce[1]);
		ret = 2;
	} else {
		CalculateAngularDerivative (0, params, matrix0.m_up, m_stiffness, 0.0, &m_jointForce[0]);
		CalculateAngularDerivative (1, params, matrix0.m_right, m_stiffness, dgFloat32 (0.0f), &m_jointForce[1]);
		ret = 2;
	}
	return dgUnsigned32 (ret);
}
dgVector dgBallConstraint::GetJointForce () const
{
	dgMatrix matrix0;
	dgMatrix matrix1;

	CalculateGlobalMatrixAndAngle (matrix0, matrix1);
	return dgVector (matrix0.m_front.Scale3 (m_jointForce[0].m_force) + matrix0.m_up.Scale3 (m_jointForce[1].m_force) + matrix0.m_right.Scale3 (m_jointForce[2].m_force));
}
dgUnsigned32 dgHingeConstraint::JacobianDerivative (dgContraintDescritor& params)
{
	dgMatrix matrix0;
	dgMatrix matrix1;
	dgVector angle (CalculateGlobalMatrixAndAngle (matrix0, matrix1));

	m_angle = -angle.m_x;

	dgAssert (dgAbsf (1.0f - (matrix0.m_front % matrix0.m_front)) < dgFloat32 (1.0e-5f)); 
	dgAssert (dgAbsf (1.0f - (matrix0.m_up % matrix0.m_up)) < dgFloat32 (1.0e-5f)); 
	dgAssert (dgAbsf (1.0f - (matrix0.m_right % matrix0.m_right)) < dgFloat32 (1.0e-5f)); 

	const dgVector& dir0 = matrix0.m_front;
	const dgVector& dir1 = matrix0.m_up;
	const dgVector& dir2 = matrix0.m_right;

	const dgVector& p0 = matrix0.m_posit;
	const dgVector& p1 = matrix1.m_posit;
	dgVector q0 (p0 + matrix0.m_front.Scale3(MIN_JOINT_PIN_LENGTH));
	dgVector q1 (p1 + matrix1.m_front.Scale3(MIN_JOINT_PIN_LENGTH));

//	dgAssert (((p1 - p0) % (p1 - p0)) < 1.0e-2f);

	dgPointParam pointDataP;
	dgPointParam pointDataQ;
	InitPointParam (pointDataP, m_stiffness, p0, p1);
	InitPointParam (pointDataQ, m_stiffness, q0, q1);

	CalculatePointDerivative (0, params, dir0, pointDataP, &m_jointForce[0]); 
	CalculatePointDerivative (1, params, dir1, pointDataP, &m_jointForce[1]); 
	CalculatePointDerivative (2, params, dir2, pointDataP, &m_jointForce[2]); 
	CalculatePointDerivative (3, params, dir1, pointDataQ, &m_jointForce[3]); 
	CalculatePointDerivative (4, params, dir2, pointDataQ, &m_jointForce[4]); 

	dgInt32 ret = 5;
	if (m_jointAccelFnt) {
		dgJointCallbackParam axisParam;
		axisParam.m_accel = dgFloat32 (0.0f);
		axisParam.m_timestep = params.m_timestep;
		axisParam.m_minFriction = DG_MIN_BOUND;
		axisParam.m_maxFriction = DG_MAX_BOUND;

		if (m_jointAccelFnt (*this, &axisParam)) {
			if ((axisParam.m_minFriction > DG_MIN_BOUND) || (axisParam.m_maxFriction < DG_MAX_BOUND)) {
				params.m_forceBounds[5].m_low = axisParam.m_minFriction;
				params.m_forceBounds[5].m_upper = axisParam.m_maxFriction;
				params.m_forceBounds[5].m_normalIndex = DG_BILATERAL_FRICTION_CONSTRAINT;
			}

			CalculateAngularDerivative (5, params, dir0, m_stiffness, dgFloat32 (0.0f), &m_jointForce[5]);
//			params.m_jointAccel[5] = axisParam.m_accel;
			SetMotorAcceleration (5, axisParam.m_accel, params);
			ret = 6;
		}
	}

	return dgUnsigned32 (ret);
}
示例#4
0
void dgBallConstraint::SetLimits(const dgVector& coneDir,
    dgFloat32 minConeAngle, dgFloat32 maxConeAngle, dgFloat32 maxTwistAngle,
    const dgVector& bilateralDir, dgFloat32 negativeBilateralConeAngle__,
    dgFloat32 positiveBilateralConeAngle__)
{
  dgMatrix matrix0;
  dgMatrix matrix1;
  CalculateGlobalMatrixAndAngle(matrix0, matrix1);

  _ASSERTE(m_body0);
  _ASSERTE(m_body1);
  const dgMatrix& body0_Matrix = m_body0->GetMatrix();

  dgVector lateralDir(bilateralDir * coneDir);
  if ((lateralDir % lateralDir) < dgFloat32(1.0e-3f))
  {
    dgMatrix tmp(coneDir);
    lateralDir = tmp.m_up;
  }

  m_localMatrix0.m_front = body0_Matrix.UnrotateVector(coneDir);
  m_localMatrix0.m_up = body0_Matrix.UnrotateVector(lateralDir);
  m_localMatrix0.m_posit = body0_Matrix.UntransformVector(matrix1.m_posit);

  m_localMatrix0.m_front =
      m_localMatrix0.m_front.Scale(
          dgFloat32(
              1.0f) / dgSqrt (m_localMatrix0.m_front % m_localMatrix0.m_front));
  m_localMatrix0.m_up = m_localMatrix0.m_up.Scale(
      dgFloat32(1.0f) / dgSqrt (m_localMatrix0.m_up % m_localMatrix0.m_up));
  m_localMatrix0.m_right = m_localMatrix0.m_front * m_localMatrix0.m_up;

  m_localMatrix0.m_front.m_w = dgFloat32(0.0f);
  m_localMatrix0.m_up.m_w = dgFloat32(0.0f);
  m_localMatrix0.m_right.m_w = dgFloat32(0.0f);
  m_localMatrix0.m_posit.m_w = dgFloat32(1.0f);

//	dgMatrix body1_Matrix (dgGetIdentityMatrix());
//	if (m_body1) {
//		body1_Matrix = m_body1->GetMatrix();
//	}
  const dgMatrix& body1_Matrix = m_body1->GetMatrix();

  m_twistAngle = ClampValue(maxTwistAngle, dgFloat32(5.0f) * dgDEG2RAD,
      dgFloat32(90.0f) * dgDEG2RAD);
  m_coneAngle = ClampValue((maxConeAngle - minConeAngle) * dgFloat32(0.5f),
      dgFloat32(5.0f) * dgDEG2RAD, 175.0f * dgDEG2RAD);
  m_coneAngleCos = dgCos (m_coneAngle);

  dgMatrix coneMatrix(
      dgPitchMatrix((maxConeAngle + minConeAngle) * dgFloat32(0.5f)));

  m_localMatrix0 = coneMatrix * m_localMatrix0;

  m_localMatrix1 = m_localMatrix0 * body0_Matrix * body1_Matrix.Inverse();

}
dgVector dgSlidingConstraint::GetJointForce () const
{
	dgMatrix matrix0;
	dgMatrix matrix1;

	CalculateGlobalMatrixAndAngle (matrix0, matrix1);
	return dgVector (matrix0.m_up.Scale (m_jointForce[0]) + 
		             matrix0.m_right.Scale (m_jointForce[1]) + 
					 matrix0.m_up.Scale (m_jointForce[2]) +
					 matrix0.m_right.Scale (m_jointForce[3]) +
					 matrix0.m_right.Scale (m_jointForce[4]));
}
void dgBallConstraint::SetPivotPoint(const dgVector &pivot)
{
	dgAssert (m_body0);
	dgAssert (m_body1);
	const dgMatrix& matrix = m_body0->GetMatrix();

	dgVector pin (pivot - matrix.m_posit); 
	if ((pin % pin) < dgFloat32 (1.0e-3f)) {
		pin = matrix.m_front;
	}

	SetPivotAndPinDir (pivot, pin);

	dgMatrix matrix0;
	dgMatrix matrix1;
	CalculateGlobalMatrixAndAngle (matrix0, matrix1);
	SetLimits (matrix0.m_front, -dgPI * dgFloat32 (0.5f), dgPI * dgFloat32 (0.5f), dgPI * dgFloat32 (0.5f), matrix0.m_right, dgFloat32 (0.0f), dgFloat32 (0.0f));
}
示例#7
0
dgUnsigned32 dgBallConstraint::JacobianDerivative(dgContraintDescritor& params)
{
  dgInt32 ret;
  dgFloat32 relVelocErr;
  dgFloat32 penetrationErr;
  dgMatrix matrix0;
  dgMatrix matrix1;

  if (m_jointUserCallback)
  {
    m_jointUserCallback(*this, params.m_timestep);
  }

  dgVector angle(CalculateGlobalMatrixAndAngle(matrix0, matrix1));
  m_angles = angle.Scale(-dgFloat32(1.0f));

  const dgVector& dir0 = matrix0.m_front;
  const dgVector& dir1 = matrix0.m_up;
  const dgVector& dir2 = matrix0.m_right;
  const dgVector& p0 = matrix0.m_posit;
  const dgVector& p1 = matrix1.m_posit;

  dgPointParam pointData;
  InitPointParam(pointData, m_stiffness, p0, p1);
  CalculatePointDerivative(0, params, dir0, pointData, &m_jointForce[0]);
  CalculatePointDerivative(1, params, dir1, pointData, &m_jointForce[1]);
  CalculatePointDerivative(2, params, dir2, pointData, &m_jointForce[2]);
  ret = 3;

  if (m_twistLimit)
  {
    if (angle.m_x > m_twistAngle)
    {
      dgVector p0(matrix0.m_posit + matrix0.m_up.Scale(MIN_JOINT_PIN_LENGTH));
      InitPointParam(pointData, m_stiffness, p0, p0);

      const dgVector& dir = matrix0.m_right;
      CalculatePointDerivative(ret, params, dir, pointData, &m_jointForce[ret]);

      dgVector velocError(pointData.m_veloc1 - pointData.m_veloc0);
      relVelocErr = velocError % dir;
      if (relVelocErr > dgFloat32(1.0e-3f))
      {
        relVelocErr *= dgFloat32(1.1f);
      }

      penetrationErr = MIN_JOINT_PIN_LENGTH * (angle.m_x - m_twistAngle);
      _ASSERTE(penetrationErr >= dgFloat32 (0.0f));

      params.m_forceBounds[ret].m_low = dgFloat32(0.0f);
      params.m_forceBounds[ret].m_normalIndex = DG_NORMAL_CONSTRAINT;
      params.m_forceBounds[ret].m_jointForce = &m_jointForce[ret];
//			params.m_jointAccel[ret] = (relVelocErr + penetrationErr) * params.m_invTimestep;
      SetMotorAcceleration(ret,
          (relVelocErr + penetrationErr) * params.m_invTimestep, params);
      ret++;
    }
    else if (angle.m_x < -m_twistAngle)
    {
      dgVector p0(matrix0.m_posit + matrix0.m_up.Scale(MIN_JOINT_PIN_LENGTH));
      InitPointParam(pointData, m_stiffness, p0, p0);
      dgVector dir(matrix0.m_right.Scale(-dgFloat32(1.0f)));
      CalculatePointDerivative(ret, params, dir, pointData, &m_jointForce[ret]);

      dgVector velocError(pointData.m_veloc1 - pointData.m_veloc0);
      relVelocErr = velocError % dir;
      if (relVelocErr > dgFloat32(1.0e-3f))
      {
        relVelocErr *= dgFloat32(1.1f);
      }

      penetrationErr = MIN_JOINT_PIN_LENGTH * (-m_twistAngle - angle.m_x);
      _ASSERTE(penetrationErr >= dgFloat32 (0.0f));

      params.m_forceBounds[ret].m_low = dgFloat32(0.0f);
      params.m_forceBounds[ret].m_normalIndex = DG_NORMAL_CONSTRAINT;
      params.m_forceBounds[ret].m_jointForce = &m_jointForce[ret];
//			params.m_jointAccel[ret] = (relVelocErr + penetrationErr) * params.m_invTimestep;
      SetMotorAcceleration(ret,
          (relVelocErr + penetrationErr) * params.m_invTimestep, params);
      ret++;
    }
  }

  if (m_coneLimit)
  {

    dgFloat32 coneCos;
    coneCos = matrix0.m_front % matrix1.m_front;
    if (coneCos < m_coneAngleCos)
    {
      dgVector p0(
          matrix0.m_posit + matrix0.m_front.Scale(MIN_JOINT_PIN_LENGTH));
      InitPointParam(pointData, m_stiffness, p0, p0);

      dgVector tangentDir(matrix0.m_front * matrix1.m_front);
      tangentDir = tangentDir.Scale(
          dgRsqrt ((tangentDir % tangentDir) + 1.0e-8f));
      CalculatePointDerivative(ret, params, tangentDir, pointData,
          &m_jointForce[ret]);
      ret++;

      dgVector normalDir(tangentDir * matrix0.m_front);

      dgVector velocError(pointData.m_veloc1 - pointData.m_veloc0);
      //restitution = contact.m_restitution;
      relVelocErr = velocError % normalDir;
      if (relVelocErr > dgFloat32(1.0e-3f))
      {
        relVelocErr *= dgFloat32(1.1f);
      }

      penetrationErr = MIN_JOINT_PIN_LENGTH
          * (dgAcos (GetMax (coneCos, dgFloat32(-0.9999f))) - m_coneAngle);
      _ASSERTE(penetrationErr >= dgFloat32 (0.0f));

      CalculatePointDerivative(ret, params, normalDir, pointData,
          &m_jointForce[ret]);
      params.m_forceBounds[ret].m_low = dgFloat32(0.0f);
      params.m_forceBounds[ret].m_normalIndex = DG_NORMAL_CONSTRAINT;
      params.m_forceBounds[ret].m_jointForce = &m_jointForce[ret];
//			params.m_jointAccel[ret] = (relVelocErr + penetrationErr) * params.m_invTimestep;
      SetMotorAcceleration(ret,
          (relVelocErr + penetrationErr) * params.m_invTimestep, params);
      ret++;
    }
  }

  return dgUnsigned32(ret);
}
dgUnsigned32 dgUniversalConstraint::JacobianDerivative (dgContraintDescritor& params)
{
	dgInt32 ret;
	dgFloat32 sinAngle;
	dgFloat32 cosAngle;
	dgMatrix matrix0;
	dgMatrix matrix1;

	CalculateGlobalMatrixAndAngle (matrix0, matrix1);

	const dgVector& dir0 = matrix0.m_front;
	const dgVector& dir1 = matrix1.m_up;
	dgVector dir2 (dir0 * dir1);

	dgVector dir3 (dir2 * dir0);
	dir3 = dir3.Scale3 (dgRsqrt (dir3 % dir3));

	const dgVector& p0 = matrix0.m_posit;
	const dgVector& p1 = matrix1.m_posit;

	dgVector q0 (p0 + dir3.Scale3(MIN_JOINT_PIN_LENGTH));
	dgVector q1 (p1 + dir1.Scale3(MIN_JOINT_PIN_LENGTH));

	dgPointParam pointDataP;
	dgPointParam pointDataQ;
	InitPointParam (pointDataP, m_stiffness, p0, p1);
	InitPointParam (pointDataQ, m_stiffness, q0, q1);

	CalculatePointDerivative (0, params, dir0, pointDataP, &m_jointForce[0]); 
	CalculatePointDerivative (1, params, dir1, pointDataP, &m_jointForce[1]); 
	CalculatePointDerivative (2, params, dir2, pointDataP, &m_jointForce[2]); 
	CalculatePointDerivative (3, params, dir0, pointDataQ, &m_jointForce[3]); 
	ret = 4;


//	dgVector sinAngle0 (matrix1.m_up * matrix0.m_up);
//	m_angle0 = dgAsin (ClampValue (sinAngle0 % dir0, -0.9999999f, 0.9999999f));
//	if ((matrix0.m_up % matrix1.m_up) < dgFloat32 (0.0f)) {
//		m_angle0 = (m_angle0 >= dgFloat32 (0.0f)) ? dgPI - m_angle0 : dgPI + m_angle0;
//	}

	sinAngle = (matrix1.m_up * matrix0.m_up) % matrix0.m_front;
	cosAngle = matrix0.m_up % matrix1.m_up;
//	dgAssert (dgAbsf (m_angle0 - dgAtan2 (sinAngle, cosAngle)) < 1.0e-1f);
	m_angle0 = dgAtan2 (sinAngle, cosAngle);

//	dgVector sinAngle1 (matrix0.m_front * matrix1.m_front);
//	m_angle1 = dgAsin (ClampValue (sinAngle1 % dir1, -0.9999999f, 0.9999999f));
//	if ((matrix0.m_front % matrix1.m_front) < dgFloat32 (0.0f)) {
//		m_angle1 = (m_angle1 >= dgFloat32 (0.0f)) ? dgPI - m_angle1 : dgPI + m_angle1;
//	}

	sinAngle = (matrix0.m_front * matrix1.m_front) % matrix1.m_up;
	cosAngle = matrix0.m_front % matrix1.m_front;
//	dgAssert (dgAbsf (m_angle1 - dgAtan2 (sinAngle, cosAngle)) < 1.0e-1f);
	m_angle1 = dgAtan2 (sinAngle, cosAngle);

	if (m_jointAccelFnt) {
		dgUnsigned32 code;
		dgJointCallbackParam axisParam[2];

		// linear acceleration
		axisParam[0].m_accel = dgFloat32 (0.0f);
		axisParam[0].m_timestep = params.m_timestep;
		axisParam[0].m_minFriction = DG_MIN_BOUND;
		axisParam[0].m_maxFriction = DG_MAX_BOUND;

		// angular acceleration
		axisParam[1].m_accel = dgFloat32 (0.0f);
		axisParam[1].m_timestep = params.m_timestep;
		axisParam[1].m_minFriction = DG_MIN_BOUND;
		axisParam[1].m_maxFriction = DG_MAX_BOUND;

		code = m_jointAccelFnt (*this, axisParam);
		if (code & 1) {
			if ((axisParam[0].m_minFriction > DG_MIN_BOUND) || (axisParam[0].m_maxFriction < DG_MAX_BOUND)) {
				params.m_forceBounds[ret].m_low = axisParam[0].m_minFriction;
				params.m_forceBounds[ret].m_upper = axisParam[0].m_maxFriction;
				params.m_forceBounds[ret].m_normalIndex = DG_BILATERAL_FRICTION_CONSTRAINT;
			}

//			CalculatePointDerivative (ret, params, dir0, pointDataP, &m_jointForce[ret]); 
			CalculateAngularDerivative (ret, params, dir0, m_stiffness, dgFloat32 (0.0f), &m_jointForce[ret]);
			//params.m_jointAccel[ret] = axisParam[0].m_accel;
			SetMotorAcceleration (ret, axisParam[0].m_accel, params);
			ret ++;
		}

		if (code & 2) {
			if ((axisParam[1].m_minFriction > DG_MIN_BOUND) || (axisParam[1].m_maxFriction < DG_MAX_BOUND)) {
				params.m_forceBounds[ret].m_low = axisParam[1].m_minFriction;
				params.m_forceBounds[ret].m_upper = axisParam[1].m_maxFriction;
				params.m_forceBounds[ret].m_normalIndex = DG_BILATERAL_FRICTION_CONSTRAINT;
			}
			CalculateAngularDerivative (ret, params, dir1, m_stiffness, dgFloat32 (0.0f), &m_jointForce[ret]);
			//params.m_jointAccel[ret] = axisParam[1].m_accel;
			SetMotorAcceleration (ret, axisParam[1].m_accel, params);
			ret ++;

		}
	}
	return dgUnsigned32 (ret);
}
dgUnsigned32 dgCorkscrewConstraint::JacobianDerivative (dgContraintDescritor& params)
{
	dgMatrix matrix0;
	dgMatrix matrix1;

	dgVector angle (CalculateGlobalMatrixAndAngle (matrix0, matrix1));

	m_angle = -angle.m_x;
	m_posit = (matrix0.m_posit - matrix1.m_posit) % matrix0.m_front;
	matrix1.m_posit += matrix1.m_front.Scale3 (m_posit);

	dgAssert (dgAbsf (dgFloat32 (1.0f) - (matrix0.m_front % matrix0.m_front)) < dgFloat32 (1.0e-5f)); 
	dgAssert (dgAbsf (dgFloat32 (1.0f) - (matrix0.m_up % matrix0.m_up)) < dgFloat32 (1.0e-5f)); 
	dgAssert (dgAbsf (dgFloat32 (1.0f) - (matrix0.m_right % matrix0.m_right)) < dgFloat32 (1.0e-5f)); 

	const dgVector& dir1 = matrix0.m_up;
	const dgVector& dir2 = matrix0.m_right;

//	const dgVector& p0 = matrix0.m_posit;
//	const dgVector& p1 = matrix1.m_posit;
	dgVector p0 (matrix0.m_posit);
	dgVector p1 (matrix1.m_posit + matrix1.m_front.Scale3 ((p0 - matrix1.m_posit) % matrix1.m_front));

	dgVector q0 (p0 + matrix0.m_front.Scale3(MIN_JOINT_PIN_LENGTH));
	dgVector q1 (p1 + matrix1.m_front.Scale3(MIN_JOINT_PIN_LENGTH));

	dgPointParam pointDataP;
	dgPointParam pointDataQ;
	InitPointParam (pointDataP, m_stiffness, p0, p1);
	InitPointParam (pointDataQ, m_stiffness, q0, q1);

	CalculatePointDerivative (0, params, dir1, pointDataP, &m_jointForce[0]); 
	CalculatePointDerivative (1, params, dir2, pointDataP, &m_jointForce[1]); 
	CalculatePointDerivative (2, params, dir1, pointDataQ, &m_jointForce[2]); 
	CalculatePointDerivative (3, params, dir2, pointDataQ, &m_jointForce[3]); 

	dgInt32 ret = 4;
	if (m_jointAccelFnt) {
		dgUnsigned32 code;
		dgJointCallbackParam axisParam[2];

		// linear acceleration
		axisParam[0].m_accel = dgFloat32 (0.0f);
		axisParam[0].m_timestep = params.m_timestep;
		axisParam[0].m_minFriction = DG_MIN_BOUND;
		axisParam[0].m_maxFriction = DG_MAX_BOUND;

		// angular acceleration
		axisParam[1].m_accel = dgFloat32 (0.0f);
		axisParam[1].m_timestep = params.m_timestep;
		axisParam[1].m_minFriction = DG_MIN_BOUND;
		axisParam[1].m_maxFriction = DG_MAX_BOUND;

		code = m_jointAccelFnt (*this, axisParam);
		if (code & 1) {
			if ((axisParam[0].m_minFriction > DG_MIN_BOUND) || (axisParam[0].m_maxFriction < DG_MAX_BOUND)) {
				params.m_forceBounds[ret].m_low = axisParam[0].m_minFriction;
				params.m_forceBounds[ret].m_upper = axisParam[0].m_maxFriction;
				params.m_forceBounds[ret].m_normalIndex = DG_BILATERAL_FRICTION_CONSTRAINT;
			}

			CalculatePointDerivative (ret, params, matrix0.m_front, pointDataP, &m_jointForce[ret]); 
			//params.m_jointAccel[ret] = axisParam[0].m_accel;
			SetMotorAcceleration (ret, axisParam[0].m_accel, params);
			ret ++;
		}


		if (code & 2) {
			if ((axisParam[1].m_minFriction > DG_MIN_BOUND) || (axisParam[1].m_maxFriction < DG_MAX_BOUND)) {
				params.m_forceBounds[ret].m_low = axisParam[1].m_minFriction;
				params.m_forceBounds[ret].m_upper = axisParam[1].m_maxFriction;
				params.m_forceBounds[ret].m_normalIndex = DG_BILATERAL_FRICTION_CONSTRAINT;
			}

//			dgVector p (p0 +  dir1);
//			dgPointParam pointData;
//			InitPointParam (pointData, m_stiffness, p, p);
//			CalculatePointDerivative (ret, params, dir2, pointData, &m_jointForce[ret]); 
			CalculateAngularDerivative (ret, params, matrix0.m_front, m_stiffness, dgFloat32 (0.0f), &m_jointForce[ret]);
			//params.m_jointAccel[ret] = axisParam[1].m_accel;
			SetMotorAcceleration (ret, axisParam[1].m_accel, params);
			ret ++;
		}
	}

	return dgUnsigned32 (ret);
}