//*****************************************************************************
//
// This function implements the auto channel change policy.
//
//*****************************************************************************
static void
CheckChangeChannel(void)
{
#ifdef FREQUENCY_AGILITY
    int8_t ucdBm, ucInARow = 0;
    unsigned long ulLoop;

    //
    // Clear out our signal quality array.
    //
    memset(g_cSample, 0x0, SSIZE);

    //
    // Poll the signal quality several times.
    //
    for (ulLoop = 0; ulLoop < SSIZE; ulLoop++)
    {
        //
        // Exit early if we need to service an app frame.
        //
        if (g_ucPeerFrameSem || g_ucJoinSem)
        {
            return;
        }

        //
        // Get the signal quality from the radio.
        //
        NWK_DELAY(1);
        SMPL_Ioctl(IOCTL_OBJ_RADIO, IOCTL_ACT_RADIO_RSSI, (void *)&ucdBm);
        g_cSample[ulLoop] = ucdBm;

        //
        // Is the noise level above our threshold?
        //
        if (ucdBm > INTERFERENCE_THRESHOLD_DBM)
        {
            //
            // Yes - increment the counter we use to determine how long the
            // signal quality has been unacceptable and check to see if we've
            // reached the point where we perform an automatic channel change.
            //
            if (++ucInARow == IN_A_ROW)
            {
                //
                // Signal quality has been too bad for too long so try the next
                // channel.
                //
                ChangeChannel();
                break;
            }
        }
        else
        {
            //
            // Signal quality is fine so clear the counter we use to determine
            // how long the quality has been bad.
            //
            ucInARow = 0;
        }
    }
#endif
    return;
}
//*****************************************************************************
//
// Main application entry function.
//
//*****************************************************************************
int
main(void)
{
    tBoolean bRetcode;
    bspIState_t intState;
    uint8_t ucLastChannel;

    //
    // Set the system clock to run at 50MHz from the PLL
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_16MHZ);

    //
    // NB: We don't call PinoutSet() in this testcase since the EM header
    // expansion board doesn't currently have an I2C ID EEPROM.  If we did
    // call PinoutSet() this would configure all the EPI pins for SDRAM and
    // we don't want to do this.
    //
    g_eDaughterType = DAUGHTER_NONE;

    //
    // Enable peripherals required to drive the LCD.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOH);

    //
    // Configure SysTick for a 10Hz interrupt.
    //
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / TICKS_PER_SECOND);
    ROM_SysTickEnable();
    ROM_SysTickIntEnable();

    //
    // Initialize the display driver.
    //
    Kitronix320x240x16_SSD2119Init();

    //
    // Initialize the touch screen driver.
    //
    TouchScreenInit();

    //
    // Set the touch screen event handler.
    //
    TouchScreenCallbackSet(WidgetPointerMessage);

    //
    // Add the compile-time defined widgets to the widget tree.
    //
    WidgetAdd(WIDGET_ROOT, (tWidget *)&g_sHeading);

    //
    // Initialize the status string.
    //
    UpdateStatus(true, "Initializing...");

    //
    // Paint the widget tree to make sure they all appear on the display.
    //
    WidgetPaint(WIDGET_ROOT);

    //
    // Initialize the SimpliciTI BSP.
    //
    BSP_Init();

    //
    // Set the SimpliciTI device address using the current Ethernet MAC address
    // to ensure something like uniqueness.
    //
    bRetcode = SetSimpliciTIAddress();

    //
    // Did we have a problem with the address?
    //
    if(!bRetcode)
    {
        //
        // Yes - make sure the display is updated then hang the app.
        //
        WidgetMessageQueueProcess();
        while(1)
        {
            //
            // MAC address is not set so hang the app.
            //
        }
    }

    //
    // Turn on both our LEDs
    //
    SetLED(1, true);
    SetLED(2, true);

    UpdateStatus(true, "Waiting for a device...");

    //
    // Initialize the SimpliciTI stack and register our receive callback.
    //
    SMPL_Init(ReceiveCallback);

    //
    // Tell the user what's up.
    //
    UpdateStatus(true, "Access point active.");

    //
    // Do nothing after this - the SimpliciTI stack code handles all the
    // access point function required.
    //
    while(1)
    {
        //
        // Wait for the Join semaphore to be set by the receipt of a Join
        // frame from a device that supports an end device.
        //
        // An external method could be used as well. A button press could be
        // connected to an ISR and the ISR could set a semaphore that is
        // checked by a function call here, or a command shell running in
        // support of a serial connection could set a semaphore that is
        // checked by a function call.
        //
        if (g_ucJoinSem && (g_ucNumCurrentPeers < NUM_CONNECTIONS))
        {
            //
            // Listen for a new incoming connection.
            //
            while (1)
            {
                if (SMPL_SUCCESS == SMPL_LinkListen(&g_sLID[g_ucNumCurrentPeers]))
                {
                    //
                    // The connection attempt succeeded so break out of the
                    // loop.
                    //
                    break;
                }

                //
                // Process our widget message queue.
                //
                WidgetMessageQueueProcess();

                //
                // A "real" application would implement its fail-to-link
                // policy here.  We go back and listen again.
                //
            }

            //
            // Increment our peer counter.
            //
            g_ucNumCurrentPeers++;

            //
            // Decrement the join semaphore.
            //
            BSP_ENTER_CRITICAL_SECTION(intState);
            g_ucJoinSem--;
            BSP_EXIT_CRITICAL_SECTION(intState);

            //
            // Tell the user how many devices we are now connected to.
            //
            UpdateStatus(false, "%d devices connected.", g_ucNumCurrentPeers);
        }

        //
        // Have we received a frame on one of the ED connections? We don't use
        // a critical section here since it doesn't really matter much if we
        // miss a poll.
        //
        if (g_ucPeerFrameSem)
        {
            uint8_t     pucMsg[MAX_APP_PAYLOAD], ucLen, ucLoop;

            /* process all frames waiting */
            for (ucLoop = 0; ucLoop < g_ucNumCurrentPeers; ucLoop++)
            {
                //
                // Receive the message.
                //
                if (SMPL_SUCCESS == SMPL_Receive(g_sLID[ucLoop], pucMsg,
                                                 &ucLen))
                {
                    //
                    // ...and pass it to the function that processes it.
                    //
                    ProcessMessage(g_sLID[ucLoop], pucMsg, ucLen);

                    //
                    // Decrement our frame semaphore.
                    //
                    BSP_ENTER_CRITICAL_SECTION(intState);
                    g_ucPeerFrameSem--;
                    BSP_EXIT_CRITICAL_SECTION(intState);
                }
            }
        }

        //
        // Have we been asked to change channel?
        //
        ucLastChannel = g_ucChannel;
        if (g_bChangeChannel)
        {
            //
            // Yes - go ahead and change to the next radio channel.
            //
            g_bChangeChannel = false;
            ChangeChannel();
        }
        else
        {
            //
            // No - check to see if we need to automatically change channel
            // due to interference on the current one.
            //
            CheckChangeChannel();
        }

        //
        // If the channel changed, update the display.
        //
        if(g_ucChannel != ucLastChannel)
        {
            UpdateStatus(false, "Changed to channel %d.", g_ucChannel);
        }

        //
        // If required, blink the "LEDs" to indicate we are waiting for a
        // message following a channel change.
        //
        BSP_ENTER_CRITICAL_SECTION(intState);
        if (g_ulBlinky)
        {
            if (++g_ulBlinky >= 0xF)
            {
                g_ulBlinky = 1;
                ToggleLED(1);
                ToggleLED(2);
            }
        }
        BSP_EXIT_CRITICAL_SECTION(intState);

        //
        // Process our widget message queue.
        //
        WidgetMessageQueueProcess();
    }
}
AM_UINT CAudioCodecPcm::decode(AM_U8 *input,  AM_UINT inDataSize,
                               AM_U8 *output, AM_UINT *outDataSize)
{
  return ChangeChannel(input, output, inDataSize, outDataSize);
}