bool ConvertOverlapResults(int32 NumOverlaps, PxOverlapHit* POverlapResults, const PxFilterData& QueryFilter, TArray<FOverlapResult>& OutOverlaps)
{
    OutOverlaps.Reserve(NumOverlaps);
    bool bBlockingFound = false;

    for(int32 i=0; i<NumOverlaps; i++)
    {
        FOverlapResult NewOverlap;

        ConvertQueryOverlap( POverlapResults[i].shape, POverlapResults[i].actor, NewOverlap, QueryFilter);


        if(NewOverlap.bBlockingHit)
        {
            bBlockingFound = true;
        }

        AddUniqueOverlap(OutOverlaps, NewOverlap);
    }

    return bBlockingFound;
}
bool ConvertOverlapResults(int32 NumOverlaps, PxOverlapHit* POverlapResults, const PxFilterData& QueryFilter, TArray<FOverlapResult>& OutOverlaps)
{
	SCOPE_CYCLE_COUNTER(STAT_CollisionConvertOverlap);

	const int32 ExpectedSize = OutOverlaps.Num() + NumOverlaps;
	OutOverlaps.Reserve(ExpectedSize);
	bool bBlockingFound = false;

	if (ExpectedSize >= GNumOverlapsRequiredForTMap)
	{
		// Map from an overlap to the position in the result array (the index has one added to it so 0 can be a sentinel)
		TMap<FOverlapKey, int32, TInlineSetAllocator<64>> OverlapMap;
		OverlapMap.Reserve(ExpectedSize);

		// Fill in the map with existing hits
		for (int32 ExistingIndex = 0; ExistingIndex < OutOverlaps.Num(); ++ExistingIndex)
		{
			const FOverlapResult& ExistingOverlap = OutOverlaps[ExistingIndex];
			OverlapMap.Add(FOverlapKey(ExistingOverlap.Component.Get(), ExistingOverlap.ItemIndex), ExistingIndex + 1);
		}

		for (int32 PResultIndex = 0; PResultIndex < NumOverlaps; ++PResultIndex)
		{
			FOverlapResult NewOverlap;
			ConvertQueryOverlap(POverlapResults[PResultIndex].shape, POverlapResults[PResultIndex].actor, NewOverlap, QueryFilter);

			if (NewOverlap.bBlockingHit)
			{
				bBlockingFound = true;
			}

			// Look for it in the map, newly added elements will start with 0, so we know we need to add it to the results array then (the index is stored as +1)
			int32& DestinationIndex = OverlapMap.FindOrAdd(FOverlapKey(NewOverlap.Component.Get(), NewOverlap.ItemIndex));
			if (DestinationIndex == 0)
			{
				DestinationIndex = OutOverlaps.Add(NewOverlap) + 1;
			}
			else
			{
				FOverlapResult& ExistingOverlap = OutOverlaps[DestinationIndex - 1];

				// If we had a non-blocking overlap with this component, but now we have a blocking one, use that one instead!
				if (!ExistingOverlap.bBlockingHit && NewOverlap.bBlockingHit)
				{
					ExistingOverlap = NewOverlap;
				}
			}
		}
	}
	else
	{
		// N^2 approach, no maps
		for (int32 i = 0; i < NumOverlaps; i++)
		{
			FOverlapResult NewOverlap;
			ConvertQueryOverlap(POverlapResults[i].shape, POverlapResults[i].actor, NewOverlap, QueryFilter);

			if (NewOverlap.bBlockingHit)
			{
				bBlockingFound = true;
			}

			AddUniqueOverlap(OutOverlaps, NewOverlap);
		}
	}

	return bBlockingFound;
}
bool ConvertOverlapResults(int32 NumOverlaps, PxOverlapHit* POverlapResults, const PxFilterData& QueryFilter, TArray<FOverlapResult>& OutOverlaps)
{
	SCOPE_CYCLE_COUNTER(STAT_CollisionConvertOverlap);

	OutOverlaps.Reserve(OutOverlaps.Num() + NumOverlaps);
	bool bBlockingFound = false;

	// This number was not empirically determined, just a rough rule of thumb
	if (OutOverlaps.Num() + NumOverlaps < 6)
	{
		// N^2 approach, no maps
		for (int32 i = 0; i < NumOverlaps; i++)
		{
			FOverlapResult NewOverlap;
			ConvertQueryOverlap(POverlapResults[i].shape, POverlapResults[i].actor, NewOverlap, QueryFilter);

			if (NewOverlap.bBlockingHit)
			{
				bBlockingFound = true;
			}

			AddUniqueOverlap(OutOverlaps, NewOverlap);
		}
	}
	else
	{
		// Map from an overlap to the position in the result array
		TMap<FOverlapKey, int32> OverlapMap;
		OverlapMap.Reserve(OutOverlaps.Num());

		// Fill in the map with existing hits
		for (int32 ExistingIndex = 0; ExistingIndex < OutOverlaps.Num(); ++ExistingIndex)
		{
			const FOverlapResult& ExistingOverlap = OutOverlaps[ExistingIndex];
			OverlapMap.Add(FOverlapKey(ExistingOverlap.Component.Get(), ExistingOverlap.ItemIndex), ExistingIndex);
		}

		for (int32 PResultIndex = 0; PResultIndex < NumOverlaps; ++PResultIndex)
		{
			FOverlapResult NewOverlap;
			ConvertQueryOverlap(POverlapResults[PResultIndex].shape, POverlapResults[PResultIndex].actor, NewOverlap, QueryFilter);

			if (NewOverlap.bBlockingHit)
			{
				bBlockingFound = true;
			}

			int32& DestinationIndex = OverlapMap.FindOrAdd(FOverlapKey(NewOverlap.Component.Get(), NewOverlap.ItemIndex));
			if (DestinationIndex < OutOverlaps.Num())
			{
				FOverlapResult& ExistingOverlap = OutOverlaps[DestinationIndex];

				// If we had a non-blocking overlap with this component, but now we have a blocking one, use that one instead!
				if (!ExistingOverlap.bBlockingHit && NewOverlap.bBlockingHit)
				{
					ExistingOverlap = NewOverlap;
				}
			}
			else
			{
				DestinationIndex = OutOverlaps.Add(NewOverlap);
			}
		}
	}

	return bBlockingFound;
}