示例#1
0
/*
  Process the upper socket ioctl command
*/
static int dmfe_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
	board_info_t *db = netdev_priv(dev);
	#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,7) /* for kernel 2.6.7 */
    struct mii_ioctl_data *data=(struct mii_ioctl_data *)&ifr->ifr_data; 
	#endif
  int rc=0;
    	
	DMFE_DBUG(0, "dmfe_do_ioctl()", 0);
	
    	if (!netif_running(dev))
    		return -EINVAL;

    	if (cmd == SIOCETHTOOL)
        rc = dmfe_ethtool_ioctl(dev, (void *) ifr->ifr_data);
	else {
		spin_lock_irq(&db->lock);
		#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,7) /* for kernel 2.6.7 */
			rc = generic_mii_ioctl(&db->mii, data, cmd, NULL);
		#else
			rc = generic_mii_ioctl(&db->mii, if_mii(ifr), cmd, NULL);
		#endif
		spin_unlock_irq(&db->lock);
	}

	return rc;
}
示例#2
0
/* Our watchdog timed out. Called by the networking layer */
static void dmfe_timeout(struct net_device *dev)
{
	board_info_t *db = netdev_priv(dev);
	int i;
	
	DMFE_DBUG(0, "dmfe_TX_timeout()", 0);
	printk("TX time-out -- dmfe_timeout().\n");
	db->reset_tx_timeout++;
	db->stats.tx_errors++;
	
#if FALSE
	printk("TX packet count = %d\n", db->tx_pkt_cnt);	
	printk("TX timeout = %d\n", db->reset_tx_timeout);	
	printk("22H=0x%02x  23H=0x%02x\n",ior(db,0x22),ior(db,0x23));
	printk("faH=0x%02x  fbH=0x%02x\n",ior(db,0xfa),ior(db,0xfb));
#endif

	i=0;

	while((i++<100)&&(ior(db,DM9KS_TCR) & 0x01))
	{
		udelay(30);
	}
		
	if(i<100)
	{
			db->tx_pkt_cnt = 0;
			netif_wake_queue(dev);
	}
	else
	{
			dmfe_reset(dev);
	}

}
示例#3
0
文件: DM9K.c 项目: tonyho/LDD
/*
  Open the interface.
  The interface is opened whenever "ifconfig" actives it.
*/
static int dmfe_open(struct net_device *dev)
{
	board_info_t *db = (board_info_t *)dev->priv;
	u8 reg_nsr;
	int i;
	DMFE_DBUG(0, "dmfe_open", 0);

	/* [email protected] */
	if (request_irq(dev->irq,&dmfe_interrupt, IRQF_TRIGGER_RISING,dev->name,dev)) 
		return -EAGAIN;

	/* Initilize DM910X board */
	dmfe_init_dm9000(dev);
#ifdef DM8606
	// control DM8606
	printk("[8606]reg0=0x%04x\n",dm8606_read(db,0));
	printk("[8606]reg1=0x%04x\n",dm8606_read(db,0x1));
#endif 
	/* Init driver variable */
	db->reset_counter 	= 0;
	db->reset_tx_timeout 	= 0;
	db->cont_rx_pkt_cnt	= 0;
	
	/* check link state and media speed */
	db->Speed =10;
	i=0;
	do {
		reg_nsr = ior(db,DM9KS_NSR);
		if(reg_nsr & 0x40) /* link OK!! */
		{
			/* wait for detected Speed */
			mdelay(200);
			reg_nsr = ior(db,DM9KS_NSR);
			if(reg_nsr & 0x80)
				db->Speed =10;
			else
				db->Speed =100;
			break;
		}
		i++;
		mdelay(1);
	}while(i<3000);	/* wait 3 second  */
	//printk("i=%d  Speed=%d\n",i,db->Speed);	
	/* set and active a timer process */
	init_timer(&db->timer);
	db->timer.expires 	= DMFE_TIMER_WUT;
	db->timer.data 		= (unsigned long)dev;
	db->timer.function 	= &dmfe_timer;
	add_timer(&db->timer);	//Move to DM9000 initiallization was finished.
 	
	netif_start_queue(dev);

	return 0;
}
示例#4
0
/* Initilize DM910X board
   Reset DM910X board
   Initilize TX/Rx descriptor chain structure
   Send the set-up frame
   Enable Tx/Rx machine
 */
static void dmfe_init_dm910x(struct device *dev)
{
	struct dmfe_board_info *db = dev->priv;
	u32 ioaddr = db->ioaddr;

	DMFE_DBUG(0, "dmfe_init_dm910x()", 0);

	/* Reset DM910x board : need 32 PCI clock to complete */
	outl(DM910X_RESET, ioaddr + DCR0);	/* RESET MAC */
	DELAY_5US;
	outl(db->cr0_data, ioaddr + DCR0);

	outl(0x180, ioaddr + DCR12);	/* Let bit 7 output port */
	outl(0x80, ioaddr + DCR12);	/* RESET DM9102 phyxcer */
	outl(0x0, ioaddr + DCR12);	/* Clear RESET signal */

	/* Phy addr : DM910(A)2/DM9132/9801, phy address = 1 */
	db->phy_addr = 1;

	/* Media Mode Check */
	db->media_mode = dmfe_media_mode;
	if (db->media_mode & DMFE_AUTO)
		dmfe_sense_speed(db);
	else
		db->op_mode = db->media_mode;
	dmfe_process_mode(db);

	/* Initiliaze Transmit/Receive decriptor and CR3/4 */
	dmfe_descriptor_init(db, ioaddr);

	/* Init CR6 to program DM910x operation */
	update_cr6(db->cr6_data, ioaddr);

	/* Send setup frame */
	if (db->chip_id == PCI_DM9132_ID)
		dm9132_id_table(dev, dev->mc_count);	/* DM9132 */
	else
		send_filter_frame(dev, dev->mc_count);	/* DM9102/DM9102A */

	/* Init CR5/CR7, interrupt active bit */
	outl(0xffffffff, ioaddr + DCR5);	/* clear all CR5 status */
	db->cr7_data = CR7_DEFAULT;
	outl(db->cr7_data, ioaddr + DCR7);

	/* Init CR15, Tx jabber and Rx watchdog timer */
	db->cr15_data = CR15_DEFAULT;
	outl(db->cr15_data, ioaddr + DCR15);

	/* Enable DM910X Tx/Rx function */
	db->cr6_data |= CR6_RXSC | CR6_TXSC;
	update_cr6(db->cr6_data, ioaddr);

}
示例#5
0
/*
  Set DM9000/DM9010 multicast address
*/
static void dm9000_hash_table(struct net_device *dev)
{
	board_info_t *db = (board_info_t *)dev->priv;
	struct dev_mc_list *mcptr = dev->mc_list;
	int mc_cnt = dev->mc_count;
	u32 hash_val;
	u16 i, oft, hash_table[4];

	DMFE_DBUG(0, "dm9000_hash_table()", 0);

	/* enable promiscuous mode */
	if (dev->flags & IFF_PROMISC){
		//printk(KERN_INFO "DM9KS:enable promiscuous mode\n");
		iow(db, DM9KS_RXCR, ior(db,DM9KS_RXCR)|(1<<1));
		return;
	}else{
		//printk(KERN_INFO "DM9KS:disable promiscuous mode\n");
		iow(db, DM9KS_RXCR, ior(db,DM9KS_RXCR)&(~(1<<1)));
	}
		
	/* Receive all multicast packets */
	if (dev->flags & IFF_ALLMULTI){
		//printk(KERN_INFO "DM9KS:Pass all multicast\n");
		iow(db, DM9KS_RXCR, ior(db,DM9KS_RXCR)|(1<<3));
	}else{
		//printk(KERN_INFO "DM9KS:Disable pass all multicast\n");
		iow(db, DM9KS_RXCR, ior(db,DM9KS_RXCR)&(~(1<<3)));
	}
	
	/* Set Node address */
	for (i = 0, oft = 0x10; i < 6; i++, oft++)
		iow(db, oft, dev->dev_addr[i]);

	/* Clear Hash Table */
	for (i = 0; i < 4; i++)
		hash_table[i] = 0x0;

	/* broadcast address */
	hash_table[3] = 0x8000;

	/* the multicast address in Hash Table : 64 bits */
	for (i = 0; i < mc_cnt; i++, mcptr = mcptr->next) {
		hash_val = cal_CRC((char *)mcptr->dmi_addr, 6, 0) & 0x3f; 
		hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
	}

	/* Write the hash table to MAC MD table */
	for (i = 0, oft = 0x16; i < 4; i++) {
		iow(db, oft++, hash_table[i] & 0xff);
		iow(db, oft++, (hash_table[i] >> 8) & 0xff);
	}
}
示例#6
0
/*
   Hardware start transmission.
   Send a packet to media from the upper layer.
 */
static int dmfe_start_xmit(struct sk_buff *skb, struct device *dev)
{
	struct dmfe_board_info *db = dev->priv;
	struct tx_desc *txptr;

	DMFE_DBUG(0, "dmfe_start_xmit", 0);

	/* Resource flag check */
	if (dev->tbusy == 1)	/* Resource Busy */
		return 1;

	/* Too large packet check */
	if (skb->len > MAX_PACKET_SIZE) {
		printk(KERN_WARNING "%s: big packet, size=%d\n", dev->name, (u16) skb->len);
		dev_kfree_skb(skb);
		return 0;
	}
	/* No Tx resource check, it never happen normally */
	if (db->tx_queue_cnt >= TX_FREE_DESC_CNT) {
		dev->tbusy = 1;
		return 1;
	}
	/* transmit this packet */
	txptr = db->tx_insert_ptr;
	memcpy((char *) txptr->tx_buf_ptr, (char *) skb->data, skb->len);
	txptr->tdes1 = 0xe1000000 | skb->len;

	/* Point to next transmit free descriptor */
	db->tx_insert_ptr = (struct tx_desc *) txptr->next_tx_desc;

	/* Transmit Packet Process */
	if (db->tx_packet_cnt < TX_MAX_SEND_CNT) {
		txptr->tdes0 = 0x80000000;	/* set owner bit to DM910X */
		db->tx_packet_cnt++;	/* Ready to send count */
		outl(0x1, dev->base_addr + DCR1);	/* Issue Tx polling comand */
		dev->trans_start = jiffies;	/* saved the time stamp */
	} else {
		db->tx_queue_cnt++;	/* queue the tx packet */
		outl(0x1, dev->base_addr + DCR1);	/* Issue Tx polling comand */
	}

	/* Tx resource check */
	if (db->tx_queue_cnt >= TX_FREE_DESC_CNT) {
		dev->tbusy = 1;
	}
	/* free this SKB */
	dev_kfree_skb(skb);
	return 0;
}
示例#7
0
/* Hardware start transmission.
 * Send a packet to media from the upper layer.
 */
static int dmfe_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
    board_info_t *db = (board_info_t *) dev->priv;
    char *data_ptr;
    int i, tmplen;
    DMFE_DBUG(0, "dmfe_start_xmit", 0);

    if (db->tx_pkt_cnt > 1) return 1;

    netif_stop_queue(dev);


    /* Disable all interrupt */
    iow(db, 0xff, 0x80);

    /* Move data to DM9000 TX RAM */
    data_ptr = (char *) skb->data;
    outb(0xf8, db->ioaddr);

    db->sent_pkt_len = skb->len;

    if (db->io_mode == DM9000_BYTE_MODE) {	    /* Byte mode */
        for (i = 0; i < skb->len; i++)
            outb((data_ptr[i] & 0xff), db->io_data);
    } else if (db->io_mode == DM9000_WORD_MODE) {   /* Word mode */
        tmplen = (skb->len + 1) / 2;
        for (i = 0; i < tmplen; i++)
            outw(((u16 *) data_ptr)[i], db->io_data);
    } else {					    /* DWord mode */
        tmplen = (skb->len + 3) / 4;
        for (i = 0; i < tmplen; i++)
            outl(((u32 *) data_ptr)[i], db->io_data);
    }

    /* TX control: First packet immediately send, second packet queue */
    if (db->tx_pkt_cnt == 0) {			/* First Packet */
        db->tx_pkt_cnt++;

        /* Set TX length to DM9000 */
        iow(db, 0xfc, skb->len & 0xff);
        iow(db, 0xfd, (skb->len >> 8) & 0xff);

        /* Issue TX polling command */
        iow(db, 0x2, 0x1);			/* Cleared after TX complete */

        /* saved the time stamp */
        dev->trans_start = jiffies;
    } else {					/* Second packet */
示例#8
0
/*
  A periodic timer routine
*/
static void dmfe_timer(unsigned long data)
{
	struct net_device * dev = (struct net_device *)data;
	board_info_t *db = (board_info_t *)dev->priv;
	DMFE_DBUG(0, "dmfe_timer()", 0);
	
	if (db->cont_rx_pkt_cnt>=CONT_RX_PKT_CNT)
	{
		db->cont_rx_pkt_cnt=0;
		iow(db, DM9KS_IMR, DM9KS_REGFF);
	}
	/* Set timer again */
	db->timer.expires = DMFE_TIMER_WUT;
	add_timer(&db->timer);
	
	return;
}
示例#9
0
/* Open the interface.
 * The interface is opened whenever "ifconfig" actives it.
 */
static int dmfe_open(struct net_device *dev)
{
    board_info_t *db = (board_info_t *) dev->priv;

    DMFE_DBUG(0, "dmfe_open", 0);

    if (request_irq(dev->irq, &dmfe_interrupt, /*SA_INTERRUPT*/SA_SHIRQ, dev->name/*"DM9000 device"*/, dev))
    {
        return -EAGAIN;
    }

    /* Initilize DM910X board */
    dmfe_init_dm9000(dev);

    /* Init driver variable */
    db->dbug_cnt	    = 0;
    db->runt_length_counter = 0;
    db->long_length_counter = 0;
    db->reset_counter	    = 0;

    /* set and active a timer process */
    init_timer(&db->timer);
    db->timer.expires	    = DMFE_TIMER_WUT * 2;
    db->timer.data	    = (unsigned long) dev;
    db->timer.function	    = &dmfe_timer;
    add_timer(&db->timer);	// Move to DM9000 initiallization was finished.

#if defined(AUTOMDIX)
    /* set and active a timer process for Auto-MDIX */
    init_timer(&db->mdix_timer);
    db->mdix_timer.expires  = DMFE_TIMER_MDIX;
    db->mdix_timer.data	    = (unsigned long) dev;
    db->mdix_timer.function = &dmfe_mdix_timer;
    add_timer(&db->mdix_timer);
#endif

    netif_start_queue(dev);

    enable_irq(dev->irq);

    return 0;
}
示例#10
0
struct net_device * __init dmfe_probe(void)
{
	struct net_device *dev;
	int err;
	
	DMFE_DBUG(0, "dmfe_probe()",0);

#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
	dev = init_etherdev(NULL, sizeof(struct board_info));
	//ether_setup(dev);		
#else
	dev= alloc_etherdev(sizeof(struct board_info));
#endif

	if(!dev)
		return ERR_PTR(-ENOMEM);

     	SET_MODULE_OWNER(dev);
	err = dmfe_probe1(dev);
	if (err)
		goto out;
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,5,0)
	err = register_netdev(dev);
	if (err)
		goto out1;
#endif
	return dev;
out1:
	release_region(dev->base_addr,2);
out:
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
	kfree(dev);
#else
	free_netdev(dev);
#endif
	return ERR_PTR(err);
}
示例#11
0
/*
   Open the interface.
   The interface is opened whenever "ifconfig" actives it.
 */
static int dmfe_open(struct device *dev)
{
	struct dmfe_board_info *db = dev->priv;

	DMFE_DBUG(0, "dmfe_open", 0);

	if (request_irq(dev->irq, &dmfe_interrupt, SA_SHIRQ, dev->name, dev))
		return -EAGAIN;

	/* Allocated Tx/Rx descriptor memory */
	db->desc_pool_ptr = kmalloc(sizeof(struct tx_desc) * DESC_ALL_CNT + 0x20, GFP_KERNEL | GFP_DMA);
	if (db->desc_pool_ptr == NULL)
		return -ENOMEM;
	if ((u32) db->desc_pool_ptr & 0x1f)
		db->first_tx_desc = (struct tx_desc *) (((u32) db->desc_pool_ptr & ~0x1f) + 0x20);
	else
		db->first_tx_desc = (struct tx_desc *) db->desc_pool_ptr;

	/* Allocated Tx buffer memory */
	db->buf_pool_ptr = kmalloc(TX_BUF_ALLOC * TX_DESC_CNT + 4, GFP_KERNEL | GFP_DMA);
	if (db->buf_pool_ptr == NULL) {
		kfree(db->desc_pool_ptr);
		return -ENOMEM;
	}
	if ((u32) db->buf_pool_ptr & 0x3)
		db->buf_pool_start = (char *) (((u32) db->buf_pool_ptr & ~0x3) + 0x4);
	else
		db->buf_pool_start = db->buf_pool_ptr;

	/* system variable init */
	db->cr6_data = CR6_DEFAULT | dmfe_cr6_user_set;
	db->tx_packet_cnt = 0;
	db->tx_queue_cnt = 0;
	db->rx_avail_cnt = 0;
	db->link_failed = 0;
	db->wait_reset = 0;
	db->in_reset_state = 0;
	db->rx_error_cnt = 0;

	if (!chkmode || (db->chip_id == PCI_DM9132_ID) || (db->chip_revesion >= 0x02000030)) {
		//db->cr6_data &= ~CR6_SFT;         /* Used Tx threshold */
		//db->cr6_data |= CR6_NO_PURGE;     /* No purge if rx unavailable */
		db->cr0_data = 0xc00000;	/* TX/RX desc burst mode */
		db->dm910x_chk_mode = 4;	/* Enter the normal mode */
	} else {
		db->cr0_data = 0;
		db->dm910x_chk_mode = 1;	/* Enter the check mode */
	}

	/* Initilize DM910X board */
	dmfe_init_dm910x(dev);

	/* Active System Interface */
	dev->tbusy = 0;		/* Can transmit packet */
	dev->start = 1;		/* interface ready */
	MOD_INC_USE_COUNT;

	/* set and active a timer process */
	init_timer(&db->timer);
	db->timer.expires = DMFE_TIMER_WUT;
	db->timer.data = (unsigned long) dev;
	db->timer.function = &dmfe_timer;
	add_timer(&db->timer);

	return 0;
}
示例#12
0
/*
   Search DM910X board ,allocate space and register it
 */
int dmfe_probe(struct device *dev)
{
	unsigned long pci_iobase;
	u16 dm9102_count = 0;
	u8 pci_irqline;
	static int index = 0;	/* For multiple call */
	struct dmfe_board_info *db;	/* Point a board information structure */
	int i;
	struct pci_dev *net_dev = NULL;

	DMFE_DBUG(0, "dmfe_probe()", 0);

	if (!pci_present())
		return -ENODEV;

	index = 0;
	while ((net_dev = pci_find_class(PCI_CLASS_NETWORK_ETHERNET << 8, net_dev)))
	{
		u32 pci_id;
		u32 dev_rev;
		u8 pci_cmd;

		index++;
		if (pci_read_config_dword(net_dev, PCI_VENDOR_ID, &pci_id) != DMFE_SUCC)
			continue;

		if ((pci_id != PCI_DM9102_ID) && (pci_id != PCI_DM9132_ID))
			continue;

		/* read PCI IO base address and IRQ to check */
		pci_iobase = net_dev->base_address[0];
		pci_irqline = net_dev->irq;
		pci_iobase &= ~0x7f;	/* mask off bit0~6 */

		/* Enable Master/IO access, Disable memory access */
		pci_read_config_byte(net_dev, PCI_COMMAND, &pci_cmd);
		pci_cmd |= PCI_COMMAND_IO + PCI_COMMAND_MASTER;
		pci_cmd &= ~PCI_COMMAND_MEMORY;
		pci_write_config_byte(net_dev, PCI_COMMAND, pci_cmd);

		/* Set Latency Timer 80h */
		pci_write_config_byte(net_dev, PCI_LATENCY_TIMER, 0x80);

		/* Read Chip revesion */
		pci_read_config_dword(net_dev, PCI_REVISION_ID, &dev_rev);

		/* IO range check */
		if (check_region(pci_iobase, CHK_IO_SIZE(pci_id, dev_rev))) 
			continue;

		/* Interrupt check */
		if (pci_irqline == 0) {
			printk(KERN_ERR "dmfe: Interrupt wrong : IRQ=%d\n", pci_irqline);
			continue;
		}
		/* Found DM9102 card and PCI resource allocated OK */
		dm9102_count++;	/* Found a DM9102 card */

		/* Init network device */
		dev = init_etherdev(dev, 0);

		/* Allocated board information structure */
		db = (void *) (kmalloc(sizeof(*db), GFP_KERNEL | GFP_DMA));
		memset(db, 0, sizeof(*db));
		dev->priv = db;	/* link device and board info */
		db->next_dev = dmfe_root_dev;
		dmfe_root_dev = dev;

		db->chip_id = pci_id;	/* keep Chip vandor/Device ID */
		db->ioaddr = pci_iobase;
		db->chip_revesion = dev_rev;

		db->net_dev = net_dev;

		dev->base_addr = pci_iobase;
		dev->irq = pci_irqline;
		dev->open = &dmfe_open;
		dev->hard_start_xmit = &dmfe_start_xmit;
		dev->stop = &dmfe_stop;
		dev->get_stats = &dmfe_get_stats;
		dev->set_multicast_list = &dmfe_set_filter_mode;
		dev->do_ioctl = &dmfe_do_ioctl;

		request_region(pci_iobase, CHK_IO_SIZE(pci_id, dev_rev), dev->name);

		/* read 64 word srom data */
		for (i = 0; i < 64; i++)
			((u16 *) db->srom)[i] = read_srom_word(pci_iobase, i);

		/* Set Node address */
		for (i = 0; i < 6; i++)
			dev->dev_addr[i] = db->srom[20 + i];

		dev = 0;	/* NULL device */
	}
	return dm9102_count ? 0 : -ENODEV;
}
示例#13
0
/*
  Get statistics from driver.
*/
static struct net_device_stats * dmfe_get_stats(struct net_device *dev)
{
	board_info_t *db = (board_info_t *)dev->priv;
	DMFE_DBUG(0, "dmfe_get_stats", 0);
	return &db->stats;
}
示例#14
0
	static irqreturn_t dmfe_interrupt(int irq, void *dev_id) /* for kernel 2.6.20*/
	#endif
#endif
{
	struct net_device *dev = dev_id;
	board_info_t *db;
	int int_status,i;
	u8 reg_save;

	DMFE_DBUG(0, "dmfe_interrupt()", 0);

	/* A real interrupt coming */
	db = (board_info_t *)dev->priv;
	spin_lock(&db->lock);

	/* Save previous register address */
	reg_save = inb(db->io_addr);

	/* Disable all interrupt */
	iow(db, DM9KS_IMR, DM9KS_DISINTR); 

	/* Got DM9000/DM9010 interrupt status */
	int_status = ior(db, DM9KS_ISR);		/* Got ISR */
	iow(db, DM9KS_ISR, int_status);		/* Clear ISR status */ 

	/* Link status change */
	if (int_status & DM9KS_LINK_INTR) 
	{
		netif_stop_queue(dev);
		for(i=0; i<500; i++) /*wait link OK, waiting time =0.5s */
		{
			phy_read(db,0x1);
			if(phy_read(db,0x1) & 0x4) /*Link OK*/
			{
				/* wait for detected Speed */
				for(i=0; i<200;i++)
					udelay(1000);
				/* set media speed */
				if(phy_read(db,0)&0x2000) db->Speed =100;
				else db->Speed =10;
				break;
			}
			udelay(1000);
		}
		netif_wake_queue(dev);
		//printk("[INTR]i=%d speed=%d\n",i, (int)(db->Speed));	
	}
	/* Received the coming packet */
	if (int_status & DM9KS_RX_INTR) 
		dmfe_packet_receive(dev);

	/* Trnasmit Interrupt check */
	if (int_status & DM9KS_TX_INTR)
		dmfe_tx_done(0);
	
	if (db->cont_rx_pkt_cnt>=CONT_RX_PKT_CNT)
	{
		iow(db, DM9KS_IMR, 0xa2);
	}
	else
	{
		/* Re-enable interrupt mask */ 
		iow(db, DM9KS_IMR, DM9KS_REGFF);
	}
	
	/* Restore previous register address */
	outb(reg_save, db->io_addr); 

	spin_unlock(&db->lock); 
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,5,0)
	return IRQ_HANDLED;
#endif
}
示例#15
0
/*
  Hardware start transmission.
  Send a packet to media from the upper layer.
*/
static int dmfe_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
	board_info_t *db = (board_info_t *)dev->priv;
	char * data_ptr;
	int i, tmplen;
	u16 MDWAH, MDWAL;
	
	#ifdef TDBUG /* check TX FIFO pointer */
			u16 MDWAH1, MDWAL1;
			u16 tx_ptr;
	#endif
	
	DMFE_DBUG(0, "dmfe_start_xmit", 0);
	if (db->chip_revision != 0x1A)
	{	
		if(db->Speed == 10)
			{if (db->tx_pkt_cnt >= 1) return 1;}
		else
			{if (db->tx_pkt_cnt >= 2) return 1;}
	}else
		if (db->tx_pkt_cnt >= 2) return 1;
	
	/* packet counting */
	db->tx_pkt_cnt++;

	db->stats.tx_packets++;
	db->stats.tx_bytes+=skb->len;
	if (db->chip_revision != 0x1A)
	{
		if (db->Speed == 10)
			{if (db->tx_pkt_cnt >= 1) netif_stop_queue(dev);}
		else
			{if (db->tx_pkt_cnt >= 2) netif_stop_queue(dev);}
	}else
		if (db->tx_pkt_cnt >= 2) netif_stop_queue(dev);		

	/* Disable all interrupt */
	iow(db, DM9KS_IMR, DM9KS_DISINTR);

	MDWAH = ior(db,DM9KS_MDWAH);
	MDWAL = ior(db,DM9KS_MDWAL);

	/* Set TX length to reg. 0xfc & 0xfd */
	iow(db, DM9KS_TXPLL, (skb->len & 0xff));
	iow(db, DM9KS_TXPLH, (skb->len >> 8) & 0xff);

	/* Move data to TX SRAM */
	data_ptr = (char *)skb->data;
	
	outb(DM9KS_MWCMD, db->io_addr); // Write data into SRAM trigger
	switch(db->io_mode)
	{
		case DM9KS_BYTE_MODE:
			for (i = 0; i < skb->len; i++)
				outb((data_ptr[i] & 0xff), db->io_data);
			break;
		case DM9KS_WORD_MODE:
			tmplen = (skb->len + 1) / 2;
			for (i = 0; i < tmplen; i++)
        outw(((u16 *)data_ptr)[i], db->io_data);
      break;
    case DM9KS_DWORD_MODE:
      tmplen = (skb->len + 3) / 4;			
			for (i = 0; i< tmplen; i++)
				outl(((u32 *)data_ptr)[i], db->io_data);
			break;
	}
	
#ifndef ETRANS
	/* Issue TX polling command */
	iow(db, DM9KS_TCR, 0x1); /* Cleared after TX complete*/
#endif

	#ifdef TDBUG /* check TX FIFO pointer */
			MDWAH1 = ior(db,DM9KS_MDWAH);
			MDWAL1 = ior(db,DM9KS_MDWAL);
			tx_ptr = (MDWAH<<8)|MDWAL;
			switch (db->io_mode)
			{
				case DM9KS_BYTE_MODE:
					tx_ptr += skb->len;
					break;
				case DM9KS_WORD_MODE:
					tx_ptr += ((skb->len + 1) / 2)*2;
					break;
				case DM9KS_DWORD_MODE:
					tx_ptr += ((skb->len+3)/4)*4;
					break;
			}
			if (tx_ptr > 0x0bff)
					tx_ptr -= 0x0c00;
			if (tx_ptr != ((MDWAH1<<8)|MDWAL1))
					printk("[dm9ks:TX FIFO ERROR\n");
	#endif
	/* Saved the time stamp */
	dev->trans_start = jiffies;
	db->cont_rx_pkt_cnt =0;

	/* Free this SKB */
	dev_kfree_skb(skb);

	/* Re-enable interrupt */
	iow(db, DM9KS_IMR, DM9KS_REGFF);

	return 0;
}
示例#16
0
/* 
	Initilize dm9000 board
*/
static void dmfe_init_dm9000(struct net_device *dev)
{
	board_info_t *db = (board_info_t *)dev->priv;
	DMFE_DBUG(0, "dmfe_init_dm9000()", 0);

	spin_lock_init(&db->lock);
	
	iow(db, DM9KS_GPR, 0);	/* GPR (reg_1Fh)bit GPIO0=0 pre-activate PHY */
	mdelay(20);		/* wait for PHY power-on ready */

	/* do a software reset and wait 20us */
	iow(db, DM9KS_NCR, 3);
	udelay(20);		/* wait 20us at least for software reset ok */
	iow(db, DM9KS_NCR, 3);	/* NCR (reg_00h) bit[0] RST=1 & Loopback=1, reset on */
	udelay(20);		/* wait 20us at least for software reset ok */

	/* I/O mode */
	db->io_mode = ior(db, DM9KS_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */

	/* Set PHY */
	db->op_mode = media_mode;
	set_PHY_mode(db);

	/* Program operating register */
	iow(db, DM9KS_NCR, 0);
	iow(db, DM9KS_TCR, 0);		/* TX Polling clear */
	iow(db, DM9KS_BPTR, 0x3f);	/* Less 3kb, 600us */
	iow(db, DM9KS_SMCR, 0);		/* Special Mode */
	iow(db, DM9KS_NSR, 0x2c);	/* clear TX status */
	iow(db, DM9KS_ISR, 0x0f); 	/* Clear interrupt status */
	iow(db, DM9KS_TCR2, 0x80);	/* Set LED mode 1 */
	if (db->chip_revision == 0x1A){ 
		/* Data bus current driving/sinking capability  */
		iow(db, DM9KS_BUSCR, 0x01);	/* default: 2mA */
	}
#ifdef FLOW_CONTROL
	iow(db, DM9KS_BPTR, 0x37);
	iow(db, DM9KS_FCTR, 0x38);
	iow(db, DM9KS_FCR, 0x29);
#endif

#ifdef DM8606
	iow(db,0x34,1);
#endif

	if (dev->features & NETIF_F_HW_CSUM){
		printk(KERN_INFO "DM9KS:enable TX checksum\n");
		iow(db, DM9KS_TCCR, 0x07);	/* TX UDP/TCP/IP checksum enable */
	}
	if (db->rx_csum){
		printk(KERN_INFO "DM9KS:enable RX checksum\n");
		iow(db, DM9KS_RCSR, 0x02);	/* RX checksum enable */
	}

#ifdef ETRANS
	/*If TX loading is heavy, the driver can try to anbel "early transmit".
	The programmer can tune the "Early Transmit Threshold" to get 
	the optimization. (DM9KS_ETXCSR.[1-0])
	
	Side Effect: It will happen "Transmit under-run". When TX under-run
	always happens, the programmer can increase the value of "Early 
	Transmit Threshold". */
	iow(db, DM9KS_ETXCSR, 0x83);
#endif
 
	/* Set address filter table */
	dm9000_hash_table(dev);

	/* Activate DM9000/DM9010 */
	iow(db, DM9KS_IMR, DM9KS_REGFF); /* Enable TX/RX interrupt mask */
	iow(db, DM9KS_RXCR, DM9KS_REG05 | 1);	/* RX enable */
	
	/* Init Driver variable */
	db->tx_pkt_cnt 		= 0;
		
	netif_carrier_on(dev);

}
示例#17
0
int __init dmfe_probe1(struct net_device *dev)
{
	struct board_info *db;    /* Point a board information structure */
	u32 id_val;
	u16 i, dm9000_found = FALSE;
	u8 MAC_addr[6]={0x00,0x60,0x6E,0x33,0x44,0x55};
	u8 HasEEPROM=0,chip_info;
	DMFE_DBUG(0, "dmfe_probe1()",0);

	/* Search All DM9000 serial NIC */
	do {
		outb(DM9KS_VID_L, iobase);
		id_val = inb(iobase + 4);
		outb(DM9KS_VID_H, iobase);
		id_val |= inb(iobase + 4) << 8;
		outb(DM9KS_PID_L, iobase);
		id_val |= inb(iobase + 4) << 16;
		outb(DM9KS_PID_H, iobase);
		id_val |= inb(iobase + 4) << 24;

		if (id_val == DM9KS_ID || id_val == DM9010_ID) {
			
			/* Request IO from system */
			if(!request_region(iobase, 2, dev->name))
				return -ENODEV;

			printk(KERN_ERR"<DM9KS> I/O: %x, VID: %x \n",iobase, id_val);
			dm9000_found = TRUE;

			/* Allocated board information structure */
			memset(dev->priv, 0, sizeof(struct board_info));
			db = (board_info_t *)dev->priv;
			dmfe_dev    = dev;
			db->io_addr  = iobase;
			db->io_data = iobase + 4;   
			db->chip_revision = ior(db, DM9KS_CHIPR);
			
			chip_info = ior(db,0x43);
			if((db->chip_revision!=0x1A) || ((chip_info&(1<<5))!=0) || ((chip_info&(1<<2))!=1)) return -ENODEV;
						
			/* driver system function */				
			dev->base_addr 		= iobase;
			dev->irq 		= irq;
			dev->open 		= &dmfe_open;
			dev->hard_start_xmit 	= &dmfe_start_xmit;
			dev->watchdog_timeo	= 5*HZ;	
			dev->tx_timeout		= dmfe_timeout;
			dev->stop 		= &dmfe_stop;
			dev->get_stats 		= &dmfe_get_stats;
			dev->set_multicast_list = &dm9000_hash_table;
			dev->do_ioctl 		= &dmfe_do_ioctl;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,28)
			dev->ethtool_ops = &dmfe_ethtool_ops;
#endif
#ifdef CHECKSUM
			//dev->features |=  NETIF_F_IP_CSUM;
			dev->features |=  NETIF_F_IP_CSUM|NETIF_F_SG;
#endif
			db->mii.dev = dev;
			db->mii.mdio_read = mdio_read;
			db->mii.mdio_write = mdio_write;
			db->mii.phy_id = 1;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,20)
			db->mii.phy_id_mask = 0x1F; 
			db->mii.reg_num_mask = 0x1F; 
#endif
			//db->msg_enable =(debug == 0 ? DMFE_DEF_MSG_ENABLE : ((1 << debug) - 1));
			
			/* Read SROM content */
			for (i=0; i<64; i++)
				((u16 *)db->srom)[i] = read_srom_word(db, i);

			/* Get the PID and VID from EEPROM to check */
			id_val = (((u16 *)db->srom)[4])|(((u16 *)db->srom)[5]<<16); 
			printk("id_val=%x\n", id_val);
			if (id_val == DM9KS_ID || id_val == DM9010_ID) 
				HasEEPROM =1;
			
			/* Set Node Address */
			for (i=0; i<6; i++)
			{
				if (HasEEPROM) /* use EEPROM */
					dev->dev_addr[i] = db->srom[i];
				else	/* No EEPROM */
					dev->dev_addr[i] = MAC_addr[i];
			}
		}//end of if()
		iobase += 0x10;
	}while(!dm9000_found && iobase <= DM9KS_MAX_IO);

	return dm9000_found ? 0:-ENODEV;
}
示例#18
0
/* Search DM9000 board, allocate space and register it */
int dmfe_probe(struct net_device *dev)
{
    struct board_info *db;	/* Point a board information structure */
    int i;
    u32 id_val;
    u32 iobase;
    u16 dm9000_found = FALSE;

    DMFE_DBUG(0, "dmfe_probe()", 0);

    bwscon=ioremap_nocache(BWSCON,0x0000004);
    gpfcon=ioremap_nocache(GPFCON,0x0000004);
    extint0=ioremap_nocache(EXTINT0,0x0000004);
    intmsk=ioremap_nocache(INTMSK,0x0000004);

    writel(readl(bwscon)|0xc0000,bwscon);
    writel( (readl(gpfcon) & ~(0x3 << 14)) | (0x2 << 14), gpfcon);
    writel( readl(gpfcon) | (0x1 << 7), gpfcon); // Disable pull-up
    writel( (readl(extint0) & ~(0xf << 28)) | (0x4 << 28), extint0); //rising edge
    writel( (readl(intmsk))  & ~0x80, intmsk);

    iobase = ioremap(DM9000_MIN_IO,0x400);//--

    /* Search All DM9000 NIC */
    do {
        outb(DM9000_VID_L, iobase);
        id_val = inb(iobase + 4);
        outb(DM9000_VID_H, iobase);
        id_val |= inb(iobase + 4) << 8;
        outb(DM9000_PID_L, iobase);
        id_val |= inb(iobase + 4) << 16;
        outb(DM9000_PID_H, iobase);
        id_val |= inb(iobase + 4) << 24;
        if (id_val == DM9000_ID) {
            printk("DM9000 ethernet driver V1.26 I/O: %x, VID: %x \n",
                   iobase, id_val);
            dm9000_found = TRUE;

            /* Allocated board information structure */
            db = (void *) (kmalloc(sizeof (*db), GFP_KERNEL));
            memset(db, 0, sizeof (*db));
            dev->priv		    = db;	/* link device and board info */
            dmfe_dev		    = dev;
            db->ioaddr		    = iobase;
            db->io_data		    = iobase + 4;

            /* driver system function */
            ether_setup(dev);

            dev->base_addr	    = iobase;
            dev->irq		    = IRQ_EINT7;
            dev->open		    = &dmfe_open;
            dev->hard_start_xmit    = &dmfe_start_xmit;
            dev->stop		    = &dmfe_stop;
            dev->get_stats	    = &dmfe_get_stats;
            dev->set_multicast_list = &dm9000_hash_table;
            dev->do_ioctl	    = &dmfe_do_ioctl;

            SET_MODULE_OWNER(dev);

            {
                unsigned char  enet_addr[6] = {0x00, 0x13, 0xf6, 0x6c, 0x87, 0x89}; //from 2.4
                for (i=0; i < 6; i++) dev->dev_addr[i] = enet_addr[i];
            }

            /* Request IO from system */
            request_region(iobase, 2, dev->name);
        }
    } while (!dm9000_found && (iobase+=0x10) <= DM9000_MAX_IO);

    return (dm9000_found ? 0 : -ENODEV);
}
示例#19
0
/*
  Received a packet and pass to upper layer
*/
static void dmfe_packet_receive(struct net_device *dev)
{
	board_info_t *db = (board_info_t *)dev->priv;
	struct sk_buff *skb;
	u8 rxbyte;
	u16 i, GoodPacket, tmplen = 0, MDRAH, MDRAL;
	u32 tmpdata;

	rx_t rx;

	u16 * ptr = (u16*)&rx;
	u8* rdptr;

	DMFE_DBUG(0, "dmfe_packet_receive()", 0);

	db->cont_rx_pkt_cnt=0;
	
	do {
		/*store the value of Memory Data Read address register*/
		MDRAH=ior(db, DM9KS_MDRAH);
		MDRAL=ior(db, DM9KS_MDRAL);
		
		ior(db, DM9KS_MRCMDX);		/* Dummy read */
		rxbyte = inb(db->io_data);	/* Got most updated data */

#ifdef CHECKSUM	
		if (rxbyte&0x2)			/* check RX byte */
		{	
      printk("dm9ks: abnormal!\n");
			dmfe_reset(dev); 
			break;	
    }else { 
      if (!(rxbyte&0x1))
				break;	
    }		
#else
		if (rxbyte==0)
			break;
		
		if (rxbyte>1)
		{	
      printk("dm9ks: Rxbyte error!\n");
		  dmfe_reset(dev);
      break;	
    }
#endif

		/* A packet ready now  & Get status/length */
		GoodPacket = TRUE;
		outb(DM9KS_MRCMD, db->io_addr);

		/* Read packet status & length */
		switch (db->io_mode) 
			{
			  case DM9KS_BYTE_MODE: 
 				    *ptr = inb(db->io_data) + 
				               (inb(db->io_data) << 8);
				    *(ptr+1) = inb(db->io_data) + 
					    (inb(db->io_data) << 8);
				    break;
			  case DM9KS_WORD_MODE:
				    *ptr = inw(db->io_data);
				    *(ptr+1)    = inw(db->io_data);
				    break;
			  case DM9KS_DWORD_MODE:
				    tmpdata  = inl(db->io_data);
				    *ptr = tmpdata;
				    *(ptr+1)    = tmpdata >> 16;
				    break;
			  default:
				    break;
			}

		/* Packet status check */
		if (rx.desc.status & 0xbf)
		{
			GoodPacket = FALSE;
			if (rx.desc.status & 0x01) 
			{
				db->stats.rx_fifo_errors++;
				printk(KERN_INFO"<RX FIFO error>\n");
			}
			if (rx.desc.status & 0x02) 
			{
				db->stats.rx_crc_errors++;
				printk(KERN_INFO"<RX CRC error>\n");
			}
			if (rx.desc.status & 0x80) 
			{
				db->stats.rx_length_errors++;
				printk(KERN_INFO"<RX Length error>\n");
			}
			if (rx.desc.status & 0x08)
				printk(KERN_INFO"<Physical Layer error>\n");
		}

		if (!GoodPacket)
		{
			// drop this packet!!!
			switch (db->io_mode)
			{
				case DM9KS_BYTE_MODE:
			 		for (i=0; i<rx.desc.length; i++)
						inb(db->io_data);
					break;
				case DM9KS_WORD_MODE:
					tmplen = (rx.desc.length + 1) / 2;
					for (i = 0; i < tmplen; i++)
						inw(db->io_data);
					break;
				case DM9KS_DWORD_MODE:
					tmplen = (rx.desc.length + 3) / 4;
					for (i = 0; i < tmplen; i++)
						inl(db->io_data);
					break;
			}
			continue;/*next the packet*/
		}
		
		skb = dev_alloc_skb(rx.desc.length+4);
		if (skb == NULL )
		{	
			printk(KERN_INFO "%s: Memory squeeze.\n", dev->name);
			/*re-load the value into Memory data read address register*/
			iow(db,DM9KS_MDRAH,MDRAH);
			iow(db,DM9KS_MDRAL,MDRAL);
			return;
		}
		else
		{
			/* Move data from DM9000 */
			skb->dev = dev;
			skb_reserve(skb, 2);
			rdptr = (u8*)skb_put(skb, rx.desc.length - 4);
			
			/* Read received packet from RX SARM */
			switch (db->io_mode)
			{
				case DM9KS_BYTE_MODE:
			 		for (i=0; i<rx.desc.length; i++)
						rdptr[i]=inb(db->io_data);
					break;
				case DM9KS_WORD_MODE:
					tmplen = (rx.desc.length + 1) / 2;
					for (i = 0; i < tmplen; i++)
						((u16 *)rdptr)[i] = inw(db->io_data);
					break;
				case DM9KS_DWORD_MODE:
					tmplen = (rx.desc.length + 3) / 4;
					for (i = 0; i < tmplen; i++)
						((u32 *)rdptr)[i] = inl(db->io_data);
					break;
			}
		
			/* Pass to upper layer */
			skb->protocol = eth_type_trans(skb,dev);

#ifdef CHECKSUM
		if((rxbyte&0xe0)==0)	/* receive packet no checksum fail */
				skb->ip_summed = CHECKSUM_UNNECESSARY;
#endif
		
			netif_rx(skb);
			dev->last_rx=jiffies;
			db->stats.rx_packets++;
			db->stats.rx_bytes += rx.desc.length;
			db->cont_rx_pkt_cnt++;
#ifdef RDBG /* check RX FIFO pointer */
			u16 MDRAH1, MDRAL1;
			u16 tmp_ptr;
			MDRAH1 = ior(db,DM9KS_MDRAH);
			MDRAL1 = ior(db,DM9KS_MDRAL);
			tmp_ptr = (MDRAH<<8)|MDRAL;
			switch (db->io_mode)
			{
				case DM9KS_BYTE_MODE:
					tmp_ptr += rx.desc.length+4;
					break;
				case DM9KS_WORD_MODE:
					tmp_ptr += ((rx.desc.length+1)/2)*2+4;
					break;
				case DM9KS_DWORD_MODE:
					tmp_ptr += ((rx.desc.length+3)/4)*4+4;
					break;
			}
			if (tmp_ptr >=0x4000)
				tmp_ptr = (tmp_ptr - 0x4000) + 0xc00;
			if (tmp_ptr != ((MDRAH1<<8)|MDRAL1))
				printk("[dm9ks:RX FIFO ERROR\n");
#endif
				
			if (db->cont_rx_pkt_cnt>=CONT_RX_PKT_CNT)
			{
				dmfe_tx_done(0);
				break;
			}
		}
			
	}while((rxbyte & 0x01) == DM9KS_PKT_RDY);
	DMFE_DBUG(0, "[END]dmfe_packet_receive()", 0);
	
}
示例#20
0
/* Initilize dm9000 board */
static void dmfe_init_dm9000(struct net_device *dev)
{
    board_info_t *db = (board_info_t *) dev->priv;
    DMFE_DBUG(0, "dmfe_init_dm9000()", 0);

    /* set the internal PHY power-on, GPIOs normal, and wait 2ms */
    iow(db, 0x1F, 0);		/* GPR (reg_1Fh)bit GPIO0=0 pre-activate PHY */
    udelay(20);			/* wait 2ms for PHY power-on ready */

    /* do a software reset and wait 20us */
    iow(db, DM9000_NCR, 3);
    udelay(20);			/* wait 20us at least for software reset ok */
    iow(db, 0, 3);		/* NCR (reg_00h) bit[0] RST=1 & Loopback=1,
				 * reset on. Added by SPenser */
    udelay(20);			/* wait 20us at least for software reset ok */

// Marked by Spenser
    /* set GPIO0=1 then GPIO0=0 to turn off and on the internal PHY */
    iow(db, 0x1F, 1);		/* GPR (reg_1Fh) bit[0] GPIO0=1 turn-off PHY  */
    iow(db, 0x1F, 0);		/* GPR (reg_1Fh) bit[0] GPIO0=0 activate PHY  */
    udelay(1000);		/* wait 4ms linking PHY (AUTO sense) if RX/TX */
    udelay(1000);
    udelay(1000);
    udelay(1000);

    /* I/O mode */
    db->io_mode = ior(db, 0xfe) >> 6;	/* ISR bit7:6 keeps I/O mode */

    /* NIC Type: FASTETHER, HOMERUN, LONGRUN */
    identify_nic(db);

    /* Set PHY */
    db->op_mode = media_mode;
    set_PHY_mode(db);

    /* Init needed register value */
    db->reg0 = DM9000_NCR;
    if ((db->nic_type != FASTETHER_NIC) && (db->op_mode & DM9000_1M_HPNA))
        db->reg0 |= DM9000_EXT_MII;

    /* User passed argument */
    db->reg5 = reg5;
    db->reg8 = reg8;
    db->reg9 = reg9;
    db->rega = rega;

    /* Program operating register */
    iow(db, 0x00, 0x08);
    iow(db, 0x02, 0);		/* TX Polling clear */
    iow(db, 0x2f, 0);		/* Special Mode */
    iow(db, 0x01, 0x2c);	/* clear TX status */
    iow(db, 0xfe, 0x0f);	/* Clear interrupt status */
    iow(db, 0x08, 0x37);
    iow(db, 0x09, 0x38);	/* Flow control: High/Low water */
    iow(db, 0x0a, 0x29);	/* flow control */

    /* Set address filter table */
    dm9000_hash_table(dev);

    /* Activate DM9000 */
    iow(db, 0x05, db->reg5 | 1);	/* RX enable */
    iow(db, 0xff, DM9000_REGFF);	/* Enable TX/RX interrupt mask */

    /* Init Driver variable */
    db->link_failed	= 1;
    db->tx_pkt_cnt	= 0;
    db->queue_pkt_len	= 0;
    dev->trans_start	= 0;

    netif_carrier_on(dev);
    spin_lock_init(&db->lock);
}
示例#21
0
static void dmfe_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
	struct device *dev = dev_id;
	struct tx_desc *txptr;
	struct dmfe_board_info *db;
	u32 ioaddr;

	if (!dev) {
		DMFE_DBUG(1, "dmfe_interrupt() without device arg", 0);
		return;
	}
	if (dev->interrupt) {
		DMFE_DBUG(1, "dmfe_interrupt() re-entry ", 0);
		return;
	}
	/* A real interrupt coming */
	dev->interrupt = 1;	/* Lock interrupt */
	db = (struct dmfe_board_info *) dev->priv;
	ioaddr = dev->base_addr;

	DMFE_DBUG(0, "dmfe_interrupt()", 0);

/* Disable all interrupt in CR7 to solve the interrupt edge problem */
	outl(0, ioaddr + DCR7);

/* Got DM910X status */
	db->cr5_data = inl(ioaddr + DCR5);
	outl(db->cr5_data, ioaddr + DCR5);
	/* printk("CR5=%x\n", db->cr5_data); */

	/* Check system status */
	if (db->cr5_data & 0x2000) {
		/* system bus error happen */
		DMFE_DBUG(1, "System bus error happen. CR5=", db->cr5_data);
		dev->tbusy = 1;
		db->wait_reset = 1;	/* Need to RESET */
		outl(0, ioaddr + DCR7);		/* disable all interrupt */
		dev->interrupt = 0;	/* unlock interrupt */
		return;
	}
	/* Free the transmitted descriptor */
	txptr = db->tx_remove_ptr;
	while (db->tx_packet_cnt) {
		/* printk("tdes0=%x\n", txptr->tdes0); */
		if (txptr->tdes0 & 0x80000000)
			break;

		/* A packet sent completed */
		db->stats.tx_packets++;

		/* Transmit statistic counter */
		if (txptr->tdes0 != 0x7fffffff) {
			/* printk("tdes0=%x\n", txptr->tdes0); */
			db->stats.collisions += (txptr->tdes0 >> 3) & 0xf;
			db->stats.tx_bytes += txptr->tdes1 & 0x7ff;
			if (txptr->tdes0 & TDES0_ERR_MASK)
				db->stats.tx_errors++;
		}
		txptr = (struct tx_desc *) txptr->next_tx_desc;
		db->tx_packet_cnt--;
	}			/* End of while */
示例#22
0
/*
  Get statistics from driver.
*/
static struct net_device_stats * dmfe_get_stats(struct net_device *dev)
{
	board_info_t *db = netdev_priv(dev);
	DMFE_DBUG(0, "dmfe_get_stats", 0);
	return &db->stats;
}