/* * This function is called as a result of the "eth_drv_recv()" call above. * It's job is to actually fetch data for a packet from the hardware once * memory buffers have been allocated for the packet. Note that the buffers * may come in pieces, using a scatter-gather list. This allows for more * efficient processing in the upper layers of the stack. */ static void dp83902a_recv(u8 *data, int len) { struct dp83902a_priv_data *dp = (struct dp83902a_priv_data *) &nic; u8 *base = dp->base; int i, mlen; u8 saved_char = 0; bool saved; #if DEBUG & 4 int dx; #endif DEBUG_FUNCTION(); #if DEBUG & 5 printf("Rx packet %d length %d\n", dp->rx_next, len); #endif /* Read incoming packet data */ DP_OUT(base, DP_CR, DP_CR_PAGE0 | DP_CR_NODMA | DP_CR_START); DP_OUT(base, DP_RBCL, len & 0xFF); DP_OUT(base, DP_RBCH, len >> 8); DP_OUT(base, DP_RSAL, 4); /* Past header */ DP_OUT(base, DP_RSAH, dp->rx_next); DP_OUT(base, DP_ISR, DP_ISR_RDC); /* Clear end of DMA */ DP_OUT(base, DP_CR, DP_CR_RDMA | DP_CR_START); #ifdef CYGHWR_NS_DP83902A_PLF_BROKEN_RX_DMA CYGACC_CALL_IF_DELAY_US(10); #endif saved = false; for (i = 0; i < 1; i++) { if (data) { mlen = len; #if DEBUG & 4 printf(" sg buf %08lx len %08x \n", (u32) data, mlen); dx = 0; #endif while (0 < mlen) { /* Saved byte from previous loop? */ if (saved) { *data++ = saved_char; mlen--; saved = false; continue; } { u8 tmp; DP_IN_DATA(dp->data, tmp); #if DEBUG & 4 printf(" %02x", tmp); if (0 == (++dx % 16)) printf("\n "); #endif *data++ = tmp;; mlen--; } } #if DEBUG & 4 printf("\n"); #endif } } }
/* * This function is called when a packet has been received. It's job is * to prepare to unload the packet from the hardware. Once the length of * the packet is known, the upper layer of the driver can be told. When * the upper layer is ready to unload the packet, the internal function * 'dp83902a_recv' will be called to actually fetch it from the hardware. */ static void dp83902a_RxEvent(void) { struct dp83902a_priv_data *dp = (struct dp83902a_priv_data *) &nic; u8 *base = dp->base; __maybe_unused u8 rsr; u8 rcv_hdr[4]; int i, len, pkt, cur; DEBUG_FUNCTION(); DP_IN(base, DP_RSR, rsr); while (true) { /* Read incoming packet header */ DP_OUT(base, DP_CR, DP_CR_PAGE1 | DP_CR_NODMA | DP_CR_START); DP_IN(base, DP_P1_CURP, cur); DP_OUT(base, DP_P1_CR, DP_CR_PAGE0 | DP_CR_NODMA | DP_CR_START); DP_IN(base, DP_BNDRY, pkt); pkt += 1; if (pkt == dp->rx_buf_end) pkt = dp->rx_buf_start; if (pkt == cur) { break; } DP_OUT(base, DP_RBCL, sizeof(rcv_hdr)); DP_OUT(base, DP_RBCH, 0); DP_OUT(base, DP_RSAL, 0); DP_OUT(base, DP_RSAH, pkt); if (dp->rx_next == pkt) { if (cur == dp->rx_buf_start) DP_OUT(base, DP_BNDRY, dp->rx_buf_end - 1); else DP_OUT(base, DP_BNDRY, cur - 1); /* Update pointer */ return; } dp->rx_next = pkt; DP_OUT(base, DP_ISR, DP_ISR_RDC); /* Clear end of DMA */ DP_OUT(base, DP_CR, DP_CR_RDMA | DP_CR_START); #ifdef CYGHWR_NS_DP83902A_PLF_BROKEN_RX_DMA CYGACC_CALL_IF_DELAY_US(10); #endif /* read header (get data size)*/ for (i = 0; i < sizeof(rcv_hdr);) { DP_IN_DATA(dp->data, rcv_hdr[i++]); } #if DEBUG & 5 printf("rx hdr %02x %02x %02x %02x\n", rcv_hdr[0], rcv_hdr[1], rcv_hdr[2], rcv_hdr[3]); #endif len = ((rcv_hdr[3] << 8) | rcv_hdr[2]) - sizeof(rcv_hdr); /* data read */ uboot_push_packet_len(len); if (rcv_hdr[1] == dp->rx_buf_start) DP_OUT(base, DP_BNDRY, dp->rx_buf_end - 1); else DP_OUT(base, DP_BNDRY, rcv_hdr[1] - 1); /* Update pointer */ } }
/* * This function is called to "start up" the interface. It may be called * multiple times, even when the hardware is already running. It will be * called whenever something "hardware oriented" changes and should leave * the hardware ready to send/receive packets. */ static void dp83902a_start(u8 * enaddr) { dp83902a_priv_data_t *dp = &nic; u8 *base = dp->base; int i; debug("The MAC is %pM\n", enaddr); DEBUG_FUNCTION(); DP_OUT(base, DP_CR, DP_CR_PAGE0 | DP_CR_NODMA | DP_CR_STOP); /* Brutal */ DP_OUT(base, DP_DCR, DP_DCR_INIT); DP_OUT(base, DP_RBCH, 0); /* Remote byte count */ DP_OUT(base, DP_RBCL, 0); DP_OUT(base, DP_RCR, DP_RCR_MON); /* Accept no packets */ DP_OUT(base, DP_TCR, DP_TCR_LOCAL); /* Transmitter [virtually] off */ DP_OUT(base, DP_TPSR, dp->tx_buf1); /* Transmitter start page */ dp->tx1 = dp->tx2 = 0; dp->tx_next = dp->tx_buf1; dp->tx_started = false; dp->running = true; DP_OUT(base, DP_PSTART, dp->rx_buf_start); /* Receive ring start page */ DP_OUT(base, DP_BNDRY, dp->rx_buf_end - 1); /* Receive ring boundary */ DP_OUT(base, DP_PSTOP, dp->rx_buf_end); /* Receive ring end page */ dp->rx_next = dp->rx_buf_start - 1; dp->running = true; DP_OUT(base, DP_ISR, 0xFF); /* Clear any pending interrupts */ DP_OUT(base, DP_IMR, DP_IMR_All); /* Enable all interrupts */ DP_OUT(base, DP_CR, DP_CR_NODMA | DP_CR_PAGE1 | DP_CR_STOP); /* Select page 1 */ DP_OUT(base, DP_P1_CURP, dp->rx_buf_start); /* Current page - next free page for Rx */ dp->running = true; for (i = 0; i < ETHER_ADDR_LEN; i++) { /* FIXME */ /*((vu_short*)( base + ((DP_P1_PAR0 + i) * 2) + * 0x1400)) = enaddr[i];*/ DP_OUT(base, DP_P1_PAR0+i, enaddr[i]); } /* Enable and start device */ DP_OUT(base, DP_CR, DP_CR_PAGE0 | DP_CR_NODMA | DP_CR_START); DP_OUT(base, DP_TCR, DP_TCR_NORMAL); /* Normal transmit operations */ DP_OUT(base, DP_RCR, DP_RCR_AB); /* Accept broadcast, no errors, no multicast */ dp->running = true; }
/* * This routine is called to send data to the hardware. It is known a-priori * that there is free buffer space (dp->tx_next). */ static void dp83902a_send(u8 *data, int total_len, u32 key) { struct dp83902a_priv_data *dp = (struct dp83902a_priv_data *) &nic; u8 *base = dp->base; int len, start_page, pkt_len, i, isr; #if DEBUG & 4 int dx; #endif DEBUG_FUNCTION(); len = pkt_len = total_len; if (pkt_len < IEEE_8023_MIN_FRAME) pkt_len = IEEE_8023_MIN_FRAME; start_page = dp->tx_next; if (dp->tx_next == dp->tx_buf1) { dp->tx1 = start_page; dp->tx1_len = pkt_len; dp->tx1_key = key; dp->tx_next = dp->tx_buf2; } else { dp->tx2 = start_page; dp->tx2_len = pkt_len; dp->tx2_key = key; dp->tx_next = dp->tx_buf1; } #if DEBUG & 5 printf("TX prep page %d len %d\n", start_page, pkt_len); #endif DP_OUT(base, DP_ISR, DP_ISR_RDC); /* Clear end of DMA */ { /* * Dummy read. The manual sez something slightly different, * but the code is extended a bit to do what Hitachi's monitor * does (i.e., also read data). */ __maybe_unused u16 tmp; int len = 1; DP_OUT(base, DP_RSAL, 0x100 - len); DP_OUT(base, DP_RSAH, (start_page - 1) & 0xff); DP_OUT(base, DP_RBCL, len); DP_OUT(base, DP_RBCH, 0); DP_OUT(base, DP_CR, DP_CR_PAGE0 | DP_CR_RDMA | DP_CR_START); DP_IN_DATA(dp->data, tmp); } #ifdef CYGHWR_NS_DP83902A_PLF_BROKEN_TX_DMA /* * Stall for a bit before continuing to work around random data * corruption problems on some platforms. */ CYGACC_CALL_IF_DELAY_US(1); #endif /* Send data to device buffer(s) */ DP_OUT(base, DP_RSAL, 0); DP_OUT(base, DP_RSAH, start_page); DP_OUT(base, DP_RBCL, pkt_len & 0xFF); DP_OUT(base, DP_RBCH, pkt_len >> 8); DP_OUT(base, DP_CR, DP_CR_WDMA | DP_CR_START); /* Put data into buffer */ #if DEBUG & 4 printf(" sg buf %08lx len %08x\n ", (u32)data, len); dx = 0; #endif while (len > 0) { #if DEBUG & 4 printf(" %02x", *data); if (0 == (++dx % 16)) printf("\n "); #endif DP_OUT_DATA(dp->data, *data++); len--; } #if DEBUG & 4 printf("\n"); #endif if (total_len < pkt_len) { #if DEBUG & 4 printf(" + %d bytes of padding\n", pkt_len - total_len); #endif /* Padding to 802.3 length was required */ for (i = total_len; i < pkt_len;) { i++; DP_OUT_DATA(dp->data, 0); } } #ifdef CYGHWR_NS_DP83902A_PLF_BROKEN_TX_DMA /* * After last data write, delay for a bit before accessing the * device again, or we may get random data corruption in the last * datum (on some platforms). */ CYGACC_CALL_IF_DELAY_US(1); #endif /* Wait for DMA to complete */ do { DP_IN(base, DP_ISR, isr); } while ((isr & DP_ISR_RDC) == 0); /* Then disable DMA */ DP_OUT(base, DP_CR, DP_CR_PAGE0 | DP_CR_NODMA | DP_CR_START); /* Start transmit if not already going */ if (!dp->tx_started) { if (start_page == dp->tx1) { dp->tx_int = 1; /* Expecting interrupt from BUF1 */ } else { dp->tx_int = 2; /* Expecting interrupt from BUF2 */ } dp83902a_start_xmit(start_page, pkt_len); } }
static void #else static int #endif sc_lpe_card_handler(cyg_addrword_t param) { struct eth_drv_sc *sc = (struct eth_drv_sc *)param; dp83902a_priv_data_t *dp = (dp83902a_priv_data_t*)sc->driver_private; struct cf_slot *slot; struct cf_cftable cftable; struct cf_config config; int i, len, ptr, cor = 0; unsigned char buf[256], *cp; cyg_uint8* base; unsigned char *vers_product, *vers_manuf, *vers_revision, *vers_date; #ifndef CYGPKG_KERNEL int tries = 0; #endif bool first = true; slot = (struct cf_slot*)dp->plf_priv; cyg_drv_dsr_lock(); while (true) { cyg_drv_dsr_unlock(); // Give DSRs a chance to run (card insertion) cyg_drv_dsr_lock(); if ((slot->state == CF_SLOT_STATE_Inserted) || ((slot->state == CF_SLOT_STATE_Ready) && first)) { first = false; if (slot->state != CF_SLOT_STATE_Ready) { cf_change_state(slot, CF_SLOT_STATE_Ready); } if (slot->state != CF_SLOT_STATE_Ready) { diag_printf("CF card won't go ready!\n"); #ifndef CYGPKG_KERNEL return false; #else continue; #endif } len = sizeof(buf); ptr = 0; if (cf_get_CIS(slot, CF_CISTPL_MANFID, buf, &len, &ptr)) { if (*(short *)&buf[2] != SC_LPE_MANUF) { diag_printf("Not a SC LPE, sorry\n"); continue; } } ptr = 0; if (cf_get_CIS(slot, CF_CISTPL_VERS_1, buf, &len, &ptr)) { // Find individual strings cp = &buf[4]; vers_product = cp; while (*cp++) ; // Skip to nul vers_manuf = cp; while (*cp++) ; // Skip to nul vers_revision = cp; while (*cp++) ; // Skip to nul vers_date = cp; #ifndef CYGPKG_KERNEL if (tries != 0) diag_printf("\n"); diag_printf("%s: %s %s %s\n", vers_manuf, vers_product, vers_revision, vers_date); #endif } ptr = 0; if (cf_get_CIS(slot, CF_CISTPL_CONFIG, buf, &len, &ptr)) { if (cf_parse_config(buf, len, &config)) { cor = config.base; } } if (!cor) { // diag_printf("Couldn't find COR pointer!\n"); continue; } ptr = 0; if (cf_get_CIS(slot, CF_CISTPL_CFTABLE_ENTRY, buf, &len, &ptr)) { if (cf_parse_cftable(buf, len, &cftable)) { cyg_uint8 tmp; // Initialize dp83902a IO details dp->base = base = (cyg_uint8*)&slot->io[cftable.io_space.base[0]]; dp->data = base + DP_DATA; dp->interrupt = slot->int_num; cf_set_COR(slot, cor, cftable.cor); // Reset card (read issues RESET, write clears it) HAL_READ_UINT8(base+DP_CARD_RESET, tmp); HAL_WRITE_UINT8(base+DP_CARD_RESET, tmp); // Wait for card do { DP_IN(base, DP_ISR, tmp); } while (0 == (tmp & DP_ISR_RESET)); // Fetch hardware address from card - terrible, but not well defined // Patterned after what Linux drivers do if (!dp->hardwired_esa) { static unsigned char sc_lpe_addr[] = { 0x00, 0xC0, 0x1B, 0x00, 0x99, 0x9E}; if ((slot->attr[0x1C0] == sc_lpe_addr[0]) && (slot->attr[0x1C2] == sc_lpe_addr[1]) && (slot->attr[0x1C4] == sc_lpe_addr[2])) { sc_lpe_addr[3] = slot->attr[0x1C6]; sc_lpe_addr[4] = slot->attr[0x1C8]; sc_lpe_addr[5] = slot->attr[0x1CA]; } else { // Coudn't find it in the CIS (attribute) data unsigned char prom[32]; // Tell device to give up ESA DP_OUT(base, DP_DCR, 0x48); // Bytewide access DP_OUT(base, DP_RBCH, 0); // Remote byte count DP_OUT(base, DP_RBCL, 0); DP_OUT(base, DP_ISR, 0xFF); // Clear any pending interrupts DP_OUT(base, DP_IMR, 0x00); // Mask all interrupts DP_OUT(base, DP_RCR, 0x20); // Monitor DP_OUT(base, DP_TCR, 0x02); // loopback DP_OUT(base, DP_RBCH, 32); // Remote byte count DP_OUT(base, DP_RBCL, 0); DP_OUT(base, DP_RSAL, 0); // Remote address DP_OUT(base, DP_RSAH, 0); DP_OUT(base, DP_CR, DP_CR_START|DP_CR_RDMA); // Read data for (i = 0; i < 32; i++) { HAL_READ_UINT8(base+DP_DATAPORT, prom[i]); } if ((prom[0] == sc_lpe_addr[0]) && (prom[2] == sc_lpe_addr[1]) && (prom[4] == sc_lpe_addr[2])) { diag_printf("Getting address from port\n"); sc_lpe_addr[3] = prom[6]; sc_lpe_addr[4] = prom[8]; sc_lpe_addr[5] = prom[10]; } else { diag_printf("No valid ESA found in CIS! Hardwiring to 00:C0:1B:00:99:9E\n"); } } for (i = 0; i < 6; i++) { dp->esa[i] = sc_lpe_addr[i]; } } // Initialize upper level driver (sc->funs->eth_drv->init)(sc, dp->esa); // Tell system card is ready to talk dp->tab->status = CYG_NETDEVTAB_STATUS_AVAIL; #ifndef CYGPKG_KERNEL cyg_drv_dsr_unlock(); return true; #endif } else { diag_printf("Can't parse CIS\n"); continue; } } else { diag_printf("Can't fetch config info\n"); continue; } } else if (slot->state == CF_SLOT_STATE_Removed) { diag_printf("Compact Flash card removed!\n"); } else { cyg_drv_dsr_unlock(); do_delay(50); // FIXME! #ifndef CYGPKG_KERNEL if (tries == 0) diag_printf("... Waiting for network card: "); diag_printf("."); if (++tries == 10) { // 5 seconds have elapsed - give up return false; } cf_hwr_poll(slot); // Check to see if card has been inserted #endif cyg_drv_dsr_lock(); } } }