// This test verifies that the pending future returned by
// 'Authenticator::authenticate()' is properly failed when the Authenticator is
// destructed in the middle of authentication.
TYPED_TEST(CRAMMD5Authentication, AuthenticatorDestructionRace)
{
  // Launch a dummy process (somebody to send the AuthenticateMessage).
  UPID pid = spawn(new ProcessBase(), true);

  Credential credential1;
  credential1.set_principal("benh");
  credential1.set_secret("secret");

  Credentials credentials;
  Credential* credential2 = credentials.add_credentials();
  credential2->set_principal(credential1.principal());
  credential2->set_secret(credential1.secret());

  secrets::load(credentials);

  Future<Message> message =
    FUTURE_MESSAGE(Eq(AuthenticateMessage().GetTypeName()), _, _);

  Try<Authenticatee*> authenticatee = TypeParam::TypeAuthenticatee::create();
  CHECK_SOME(authenticatee);

  Future<bool> client =
    authenticatee.get()->authenticate(pid, UPID(), credential1);

  AWAIT_READY(message);

  Try<Authenticator*> authenticator = TypeParam::TypeAuthenticator::create();
  CHECK_SOME(authenticator);

  authenticator.get()->initialize(message.get().from);

  // Drop the AuthenticationStepMessage from authenticator to keep
  // the authentication from getting completed.
  Future<AuthenticationStepMessage> authenticationStepMessage =
    DROP_PROTOBUF(AuthenticationStepMessage(), _, _);

  Future<Option<string>> principal = authenticator.get()->authenticate();

  AWAIT_READY(authenticationStepMessage);

  // At this point 'AuthenticatorProcess::authenticate()' has been
  // executed and its promise associated with the promise returned
  // by 'Authenticator::authenticate()'.
  // Authentication should be pending.
  ASSERT_TRUE(principal.isPending());

  // Now delete the authenticator.
  delete authenticator.get();

  // The future should be failed at this point.
  AWAIT_FAILED(principal);

  terminate(pid);
  delete authenticatee.get();
}
示例#2
0
// The purpose of this test is to ensure that when slaves are removed
// from the master, and then attempt to send exited executor messages,
// we send a ShutdownMessage to the slave. Why? Because during a
// network partition, the master will remove a partitioned slave, thus
// sending its tasks to LOST. At this point, when the partition is
// removed, the slave may attempt to send exited executor messages if
// it was unaware that the master removed it. We've already
// notified frameworks that the tasks under the executors were LOST,
// so we have to have the slave shut down.
TEST_F(PartitionTest, PartitionedSlaveExitedExecutor)
{
  master::Flags masterFlags = CreateMasterFlags();
  Try<Owned<cluster::Master>> master = StartMaster(masterFlags);
  ASSERT_SOME(master);

  // Allow the master to PING the slave, but drop all PONG messages
  // from the slave. Note that we don't match on the master / slave
  // PIDs because it's actually the SlaveObserver Process that sends
  // the pings.
  Future<Message> ping = FUTURE_MESSAGE(
      Eq(PingSlaveMessage().GetTypeName()), _, _);

  DROP_PROTOBUFS(PongSlaveMessage(), _, _);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);
  TestContainerizer containerizer(&exec);

  Owned<MasterDetector> detector = master.get()->createDetector();
  Try<Owned<cluster::Slave>> slave = StartSlave(detector.get(), &containerizer);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  Future<FrameworkID> frameworkId;
  EXPECT_CALL(sched, registered(&driver, _, _))
    .WillOnce(FutureArg<1>(&frameworkId));\

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return());

  driver.start();

  AWAIT_READY(frameworkId);
  AWAIT_READY(offers);
  ASSERT_NE(0u, offers.get().size());

  // Launch a task. This allows us to have the slave send an
  // ExitedExecutorMessage.
  TaskID taskId;
  taskId.set_value("1");

  TaskInfo task;
  task.set_name("");
  task.mutable_task_id()->MergeFrom(taskId);
  task.mutable_slave_id()->MergeFrom(offers.get()[0].slave_id());
  task.mutable_resources()->MergeFrom(offers.get()[0].resources());
  task.mutable_executor()->MergeFrom(DEFAULT_EXECUTOR_INFO);
  task.mutable_executor()->mutable_command()->set_value("sleep 60");

  // Set up the expectations for launching the task.
  EXPECT_CALL(exec, registered(_, _, _, _));

  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_RUNNING));

  // Drop all the status updates from the slave, so that we can
  // ensure the ExitedExecutorMessage is what triggers the slave
  // shutdown.
  DROP_PROTOBUFS(StatusUpdateMessage(), _, master.get()->pid);

  driver.launchTasks(offers.get()[0].id(), {task});

  // Drop the first shutdown message from the master (simulated
  // partition) and allow the second shutdown message to pass when
  // triggered by the ExitedExecutorMessage.
  Future<ShutdownMessage> shutdownMessage =
    DROP_PROTOBUF(ShutdownMessage(), _, slave.get()->pid);

  Future<TaskStatus> lostStatus;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&lostStatus));

  Future<Nothing> slaveLost;
  EXPECT_CALL(sched, slaveLost(&driver, _))
    .WillOnce(FutureSatisfy(&slaveLost));

  Clock::pause();

  // Now, induce a partition of the slave by having the master
  // timeout the slave.
  size_t pings = 0;
  while (true) {
    AWAIT_READY(ping);
    pings++;
    if (pings == masterFlags.max_slave_ping_timeouts) {
     break;
    }
    ping = FUTURE_MESSAGE(Eq(PingSlaveMessage().GetTypeName()), _, _);
    Clock::advance(masterFlags.slave_ping_timeout);
    Clock::settle();
  }

  Clock::advance(masterFlags.slave_ping_timeout);
  Clock::settle();

  // The master will have notified the framework of the lost task.
  AWAIT_READY(lostStatus);
  EXPECT_EQ(TASK_LOST, lostStatus.get().state());

  // Wait for the master to attempt to shut down the slave.
  AWAIT_READY(shutdownMessage);

  // The master will notify the framework that the slave was lost.
  AWAIT_READY(slaveLost);

  shutdownMessage = FUTURE_PROTOBUF(ShutdownMessage(), _, slave.get()->pid);

  // Induce an ExitedExecutorMessage from the slave.
  containerizer.destroy(
      frameworkId.get(), DEFAULT_EXECUTOR_INFO.executor_id());

  // Upon receiving the message, the master will shutdown the slave.
  AWAIT_READY(shutdownMessage);

  Clock::resume();

  driver.stop();
  driver.join();
}
示例#3
0
// The purpose of this test is to ensure that when slaves are removed
// from the master, and then attempt to send status updates, we send
// a ShutdownMessage to the slave. Why? Because during a network
// partition, the master will remove a partitioned slave, thus sending
// its tasks to LOST. At this point, when the partition is removed,
// the slave may attempt to send updates if it was unaware that the
// master removed it. We've already notified frameworks that these
// tasks were LOST, so we have to have the slave shut down.
TEST_F(PartitionTest, PartitionedSlaveStatusUpdates)
{
  master::Flags masterFlags = CreateMasterFlags();
  Try<Owned<cluster::Master>> master = StartMaster(masterFlags);
  ASSERT_SOME(master);

  // Allow the master to PING the slave, but drop all PONG messages
  // from the slave. Note that we don't match on the master / slave
  // PIDs because it's actually the SlaveObserver Process that sends
  // the pings.
  Future<Message> ping = FUTURE_MESSAGE(
      Eq(PingSlaveMessage().GetTypeName()), _, _);

  DROP_PROTOBUFS(PongSlaveMessage(), _, _);

  Future<SlaveRegisteredMessage> slaveRegisteredMessage =
    FUTURE_PROTOBUF(SlaveRegisteredMessage(), _, _);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);
  TestContainerizer containerizer(&exec);

  Owned<MasterDetector> detector = master.get()->createDetector();
  Try<Owned<cluster::Slave>> slave = StartSlave(detector.get(), &containerizer);
  ASSERT_SOME(slave);

  AWAIT_READY(slaveRegisteredMessage);
  SlaveID slaveId = slaveRegisteredMessage.get().slave_id();

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  Future<FrameworkID> frameworkId;
  EXPECT_CALL(sched, registered(&driver, _, _))
    .WillOnce(FutureArg<1>(&frameworkId));

  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillRepeatedly(Return());

  driver.start();

  AWAIT_READY(frameworkId);

  // Drop the first shutdown message from the master (simulated
  // partition), allow the second shutdown message to pass when
  // the slave sends an update.
  Future<ShutdownMessage> shutdownMessage =
    DROP_PROTOBUF(ShutdownMessage(), _, slave.get()->pid);

  EXPECT_CALL(sched, offerRescinded(&driver, _))
    .WillRepeatedly(Return());

  Future<Nothing> slaveLost;
  EXPECT_CALL(sched, slaveLost(&driver, _))
    .WillOnce(FutureSatisfy(&slaveLost));

  Clock::pause();

  // Now, induce a partition of the slave by having the master
  // timeout the slave.
  size_t pings = 0;
  while (true) {
    AWAIT_READY(ping);
    pings++;
    if (pings == masterFlags.max_slave_ping_timeouts) {
     break;
    }
    ping = FUTURE_MESSAGE(Eq(PingSlaveMessage().GetTypeName()), _, _);
    Clock::advance(masterFlags.slave_ping_timeout);
    Clock::settle();
  }

  Clock::advance(masterFlags.slave_ping_timeout);
  Clock::settle();

  // Wait for the master to attempt to shut down the slave.
  AWAIT_READY(shutdownMessage);

  // The master will notify the framework that the slave was lost.
  AWAIT_READY(slaveLost);

  shutdownMessage = FUTURE_PROTOBUF(ShutdownMessage(), _, slave.get()->pid);

  // At this point, the slave still thinks it's registered, so we
  // simulate a status update coming from the slave.
  TaskID taskId;
  taskId.set_value("task_id");
  const StatusUpdate& update = protobuf::createStatusUpdate(
      frameworkId.get(),
      slaveId,
      taskId,
      TASK_RUNNING,
      TaskStatus::SOURCE_SLAVE,
      UUID::random());

  StatusUpdateMessage message;
  message.mutable_update()->CopyFrom(update);
  message.set_pid(stringify(slave.get()->pid));

  process::post(master.get()->pid, message);

  // The master should shutdown the slave upon receiving the update.
  AWAIT_READY(shutdownMessage);

  Clock::resume();

  driver.stop();
  driver.join();
}
示例#4
0
// The purpose of this test is to ensure that when slaves are removed
// from the master, and then attempt to re-register, we deny the
// re-registration by sending a ShutdownMessage to the slave.
// Why? Because during a network partition, the master will remove a
// partitioned slave, thus sending its tasks to LOST. At this point,
// when the partition is removed, the slave will attempt to
// re-register with its running tasks. We've already notified
// frameworks that these tasks were LOST, so we have to have the slave
// slave shut down.
TEST_F(PartitionTest, PartitionedSlaveReregistration)
{
  master::Flags masterFlags = CreateMasterFlags();
  Try<Owned<cluster::Master>> master = StartMaster(masterFlags);
  ASSERT_SOME(master);

  // Allow the master to PING the slave, but drop all PONG messages
  // from the slave. Note that we don't match on the master / slave
  // PIDs because it's actually the SlaveObserver Process that sends
  // the pings.
  Future<Message> ping = FUTURE_MESSAGE(
      Eq(PingSlaveMessage().GetTypeName()), _, _);

  DROP_PROTOBUFS(PongSlaveMessage(), _, _);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);
  TestContainerizer containerizer(&exec);

  StandaloneMasterDetector detector(master.get()->pid);

  Try<Owned<cluster::Slave>> slave = StartSlave(&detector, &containerizer);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return());

  driver.start();

  AWAIT_READY(offers);
  ASSERT_NE(0u, offers.get().size());

  // Launch a task. This is to ensure the task is killed by the slave,
  // during shutdown.
  TaskID taskId;
  taskId.set_value("1");

  TaskInfo task;
  task.set_name("");
  task.mutable_task_id()->MergeFrom(taskId);
  task.mutable_slave_id()->MergeFrom(offers.get()[0].slave_id());
  task.mutable_resources()->MergeFrom(offers.get()[0].resources());
  task.mutable_executor()->MergeFrom(DEFAULT_EXECUTOR_INFO);
  task.mutable_executor()->mutable_command()->set_value("sleep 60");

  // Set up the expectations for launching the task.
  EXPECT_CALL(exec, registered(_, _, _, _));
  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_RUNNING));

  Future<TaskStatus> runningStatus;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&runningStatus));

  Future<Nothing> statusUpdateAck = FUTURE_DISPATCH(
      slave.get()->pid, &Slave::_statusUpdateAcknowledgement);

  driver.launchTasks(offers.get()[0].id(), {task});

  AWAIT_READY(runningStatus);
  EXPECT_EQ(TASK_RUNNING, runningStatus.get().state());

  // Wait for the slave to have handled the acknowledgment prior
  // to pausing the clock.
  AWAIT_READY(statusUpdateAck);

  // Drop the first shutdown message from the master (simulated
  // partition), allow the second shutdown message to pass when
  // the slave re-registers.
  Future<ShutdownMessage> shutdownMessage =
    DROP_PROTOBUF(ShutdownMessage(), _, slave.get()->pid);

  Future<TaskStatus> lostStatus;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&lostStatus));

  Future<Nothing> slaveLost;
  EXPECT_CALL(sched, slaveLost(&driver, _))
    .WillOnce(FutureSatisfy(&slaveLost));

  Clock::pause();

  // Now, induce a partition of the slave by having the master
  // timeout the slave.
  size_t pings = 0;
  while (true) {
    AWAIT_READY(ping);
    pings++;
    if (pings == masterFlags.max_slave_ping_timeouts) {
     break;
    }
    ping = FUTURE_MESSAGE(Eq(PingSlaveMessage().GetTypeName()), _, _);
    Clock::advance(masterFlags.slave_ping_timeout);
    Clock::settle();
  }

  Clock::advance(masterFlags.slave_ping_timeout);
  Clock::settle();

  // The master will have notified the framework of the lost task.
  AWAIT_READY(lostStatus);
  EXPECT_EQ(TASK_LOST, lostStatus.get().state());

  // Wait for the master to attempt to shut down the slave.
  AWAIT_READY(shutdownMessage);

  // The master will notify the framework that the slave was lost.
  AWAIT_READY(slaveLost);

  Clock::resume();

  // We now complete the partition on the slave side as well. This
  // is done by simulating a master loss event which would normally
  // occur during a network partition.
  detector.appoint(None());

  Future<Nothing> shutdown;
  EXPECT_CALL(exec, shutdown(_))
    .WillOnce(FutureSatisfy(&shutdown));

  shutdownMessage = FUTURE_PROTOBUF(ShutdownMessage(), _, slave.get()->pid);

  // Have the slave re-register with the master.
  detector.appoint(master.get()->pid);

  // Upon re-registration, the master will shutdown the slave.
  // The slave will then shut down the executor.
  AWAIT_READY(shutdownMessage);
  AWAIT_READY(shutdown);

  driver.stop();
  driver.join();
}
// Ensures that the driver can handle an OFFERS event.
// Note that this includes the ability to bypass the
// master when sending framework messages.
TEST_F(SchedulerDriverEventTest, Offers)
{
  Try<PID<Master>> master = StartMaster();
  ASSERT_SOME(master);

  MockScheduler sched;
  MesosSchedulerDriver schedDriver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get(), DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&schedDriver, _, _));

  Future<Message> frameworkRegisteredMessage =
    FUTURE_MESSAGE(Eq(FrameworkRegisteredMessage().GetTypeName()), _, _);

  schedDriver.start();

  AWAIT_READY(frameworkRegisteredMessage);
  UPID frameworkPid = frameworkRegisteredMessage.get().to;

  // Start a slave and capture the offers.
  Future<ResourceOffersMessage> resourceOffersMessage =
    DROP_PROTOBUF(ResourceOffersMessage(), _, _);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);
  Try<PID<Slave>> slave = StartSlave(&exec);
  ASSERT_SOME(slave);

  AWAIT_READY(resourceOffersMessage);

  google::protobuf::RepeatedPtrField<Offer> offers =
    resourceOffersMessage.get().offers();

  ASSERT_EQ(1, offers.size());

  // Ignore future offer messages.
  DROP_PROTOBUFS(ResourceOffersMessage(), _, _);

  // Send the offers event and expect a 'resourceOffers' call.
  Event event;
  event.set_type(Event::OFFERS);
  event.mutable_offers()->mutable_offers()->CopyFrom(offers);

  Future<Nothing> resourceOffers;
  EXPECT_CALL(sched, resourceOffers(&schedDriver, _))
    .WillOnce(FutureSatisfy(&resourceOffers));

  process::post(master.get(), frameworkPid, event);

  AWAIT_READY(resourceOffers);

  // To test that the framework -> executor messages are
  // sent directly to the slave, launch a task and send
  // the executor a message.
  EXPECT_CALL(exec, registered(_, _, _, _));

  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_RUNNING));

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(&schedDriver, _))
    .WillOnce(FutureArg<1>(&status));

  TaskInfo task = createTask(offers.Get(0), "", DEFAULT_EXECUTOR_ID);

  schedDriver.launchTasks(offers.Get(0).id(), {task});

  AWAIT_READY(status);
  EXPECT_EQ(TASK_RUNNING, status.get().state());

  // This message should skip the master!
  Future<FrameworkToExecutorMessage> frameworkToExecutorMessage =
    FUTURE_PROTOBUF(FrameworkToExecutorMessage(), frameworkPid, slave.get());

  Future<string> data;
  EXPECT_CALL(exec, frameworkMessage(_, _))
    .WillOnce(FutureArg<1>(&data));

  schedDriver.sendFrameworkMessage(
      DEFAULT_EXECUTOR_ID, offers.Get(0).slave_id(), "hello");

  AWAIT_READY(frameworkToExecutorMessage);
  AWAIT_EXPECT_EQ("hello", data);

  EXPECT_CALL(exec, shutdown(_))
    .Times(AtMost(1));

  schedDriver.stop();
  schedDriver.join();

  Shutdown();
}
// This test verifies that a re-registering slave sends the terminal
// unacknowledged tasks for a terminal executor. This is required
// for the master to correctly reconcile its view with the slave's
// view of tasks. This test drops a terminal update to the master
// and then forces the slave to re-register.
TEST_F(MasterSlaveReconciliationTest, SlaveReregisterTerminatedExecutor)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);
  TestContainerizer containerizer(&exec);

  StandaloneMasterDetector detector(master.get()->pid);

  Try<Owned<cluster::Slave>> slave = StartSlave(&detector, &containerizer);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  Future<FrameworkID> frameworkId;
  EXPECT_CALL(sched, registered(&driver, _, _))
    .WillOnce(FutureArg<1>(&frameworkId));

  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(LaunchTasks(DEFAULT_EXECUTOR_INFO, 1, 1, 512, "*"))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  ExecutorDriver* execDriver;
  EXPECT_CALL(exec, registered(_, _, _, _))
    .WillOnce(SaveArg<0>(&execDriver));

  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_RUNNING));

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status));

  Future<StatusUpdateAcknowledgementMessage> statusUpdateAcknowledgementMessage
    = FUTURE_PROTOBUF(
        StatusUpdateAcknowledgementMessage(),
        master.get()->pid,
        slave.get()->pid);

  driver.start();

  AWAIT_READY(status);
  EXPECT_EQ(TASK_RUNNING, status.get().state());

  // Make sure the acknowledgement reaches the slave.
  AWAIT_READY(statusUpdateAcknowledgementMessage);

  // Drop the TASK_FINISHED status update sent to the master.
  Future<StatusUpdateMessage> statusUpdateMessage =
    DROP_PROTOBUF(StatusUpdateMessage(), _, master.get()->pid);

  Future<ExitedExecutorMessage> executorExitedMessage =
    FUTURE_PROTOBUF(ExitedExecutorMessage(), _, _);

  TaskStatus finishedStatus;
  finishedStatus = status.get();
  finishedStatus.set_state(TASK_FINISHED);
  execDriver->sendStatusUpdate(finishedStatus);

  // Ensure the update was sent.
  AWAIT_READY(statusUpdateMessage);

  EXPECT_CALL(sched, executorLost(&driver, DEFAULT_EXECUTOR_ID, _, _));

  // Now kill the executor.
  containerizer.destroy(frameworkId.get(), DEFAULT_EXECUTOR_ID);

  Future<TaskStatus> status2;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status2));

  // We drop the 'UpdateFrameworkMessage' from the master to slave to
  // stop the status update manager from retrying the update that was
  // already sent due to the new master detection.
  DROP_PROTOBUFS(UpdateFrameworkMessage(), _, _);

  detector.appoint(master.get()->pid);

  AWAIT_READY(status2);
  EXPECT_EQ(TASK_FINISHED, status2.get().state());

  driver.stop();
  driver.join();
}
// This test verifies that when the slave re-registers, the master
// does not send TASK_LOST update for a task that has reached terminal
// state but is waiting for an acknowledgement.
TEST_F(MasterSlaveReconciliationTest, SlaveReregisterTerminalTask)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);
  TestContainerizer containerizer(&exec);

  StandaloneMasterDetector detector(master.get()->pid);

  Try<Owned<cluster::Slave>> slave = StartSlave(&detector, &containerizer);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer> > offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  EXPECT_NE(0u, offers.get().size());

  TaskInfo task;
  task.set_name("test task");
  task.mutable_task_id()->set_value("1");
  task.mutable_slave_id()->MergeFrom(offers.get()[0].slave_id());
  task.mutable_resources()->MergeFrom(offers.get()[0].resources());
  task.mutable_executor()->MergeFrom(DEFAULT_EXECUTOR_INFO);

  EXPECT_CALL(exec, registered(_, _, _, _));

  // Send a terminal update right away.
  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_FINISHED));

  // Drop the status update from slave to the master, so that
  // the slave has a pending terminal update when it re-registers.
  DROP_PROTOBUF(StatusUpdateMessage(), _, master.get()->pid);

  Future<Nothing> _statusUpdate = FUTURE_DISPATCH(_, &Slave::_statusUpdate);

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status))
    .WillRepeatedly(Return()); // Ignore retried update due to update framework.

  driver.launchTasks(offers.get()[0].id(), {task});

  AWAIT_READY(_statusUpdate);

  Future<SlaveReregisteredMessage> slaveReregisteredMessage =
    FUTURE_PROTOBUF(SlaveReregisteredMessage(), _, _);

  // Simulate a spurious master change event (e.g., due to ZooKeeper
  // expiration) at the slave to force re-registration.
  detector.appoint(master.get()->pid);

  AWAIT_READY(slaveReregisteredMessage);

  // The master should not send a TASK_LOST after the slave
  // re-registers. We check this by calling Clock::settle() so that
  // the only update the scheduler receives is the retried
  // TASK_FINISHED update.
  // NOTE: The status update manager resends the status update when
  // it detects a new master.
  Clock::pause();
  Clock::settle();

  AWAIT_READY(status);
  ASSERT_EQ(TASK_FINISHED, status.get().state());

  EXPECT_CALL(exec, shutdown(_))
    .Times(AtMost(1));

  driver.stop();
  driver.join();
}
// This test verifies that the master reconciles tasks that are
// missing from a re-registering slave. In this case, we trigger
// a race between the slave re-registration message and the launch
// message. There should be no TASK_LOST.
// This was motivated by MESOS-1696.
TEST_F(MasterSlaveReconciliationTest, ReconcileRace)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);
  TestContainerizer containerizer(&exec);

  StandaloneMasterDetector detector(master.get()->pid);

  Future<SlaveRegisteredMessage> slaveRegisteredMessage =
    FUTURE_PROTOBUF(SlaveRegisteredMessage(), master.get()->pid, _);

  Try<Owned<cluster::Slave>> slave = StartSlave(&detector, &containerizer);
  ASSERT_SOME(slave);

  AWAIT_READY(slaveRegisteredMessage);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer> > offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  // Since the agent may have retried registration, we want to
  // ensure that any duplicate registrations are flushed before
  // we appoint the master again. Otherwise, the agent may
  // receive a stale registration message.
  Clock::pause();
  Clock::settle();
  Clock::resume();

  // Trigger a re-registration of the slave and capture the message
  // so that we can spoof a race with a launch task message.
  DROP_PROTOBUFS(ReregisterSlaveMessage(), slave.get()->pid, master.get()->pid);

  Future<ReregisterSlaveMessage> reregisterSlaveMessage =
    DROP_PROTOBUF(
        ReregisterSlaveMessage(),
        slave.get()->pid,
        master.get()->pid);

  detector.appoint(master.get()->pid);

  AWAIT_READY(reregisterSlaveMessage);

  AWAIT_READY(offers);
  EXPECT_NE(0u, offers.get().size());

  TaskInfo task;
  task.set_name("test task");
  task.mutable_task_id()->set_value("1");
  task.mutable_slave_id()->MergeFrom(offers.get()[0].slave_id());
  task.mutable_resources()->MergeFrom(offers.get()[0].resources());
  task.mutable_executor()->MergeFrom(DEFAULT_EXECUTOR_INFO);

  ExecutorDriver* executorDriver;
  EXPECT_CALL(exec, registered(_, _, _, _))
    .WillOnce(SaveArg<0>(&executorDriver));

  // Leave the task in TASK_STAGING.
  Future<Nothing> launchTask;
  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(FutureSatisfy(&launchTask));

  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .Times(0);

  driver.launchTasks(offers.get()[0].id(), {task});

  AWAIT_READY(launchTask);

  // Send the stale re-registration message, which does not contain
  // the task we just launched. This will trigger a reconciliation
  // by the master.
  Future<SlaveReregisteredMessage> slaveReregisteredMessage =
    FUTURE_PROTOBUF(SlaveReregisteredMessage(), _, _);

  // Prevent this from being dropped per the DROP_PROTOBUFS above.
  FUTURE_PROTOBUF(
      ReregisterSlaveMessage(),
      slave.get()->pid,
      master.get()->pid);

  process::post(
      slave.get()->pid,
      master.get()->pid,
      reregisterSlaveMessage.get());

  AWAIT_READY(slaveReregisteredMessage);

  // Neither the master nor the slave should send a TASK_LOST
  // as part of the reconciliation. We check this by calling
  // Clock::settle() to flush all pending events.
  Clock::pause();
  Clock::settle();
  Clock::resume();

  // Now send TASK_FINISHED and make sure it's the only message
  // received by the scheduler.
  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status));

  TaskStatus taskStatus;
  taskStatus.mutable_task_id()->CopyFrom(task.task_id());
  taskStatus.set_state(TASK_FINISHED);
  executorDriver->sendStatusUpdate(taskStatus);

  AWAIT_READY(status);
  ASSERT_EQ(TASK_FINISHED, status.get().state());

  EXPECT_CALL(exec, shutdown(_))
    .Times(AtMost(1));

  driver.stop();
  driver.join();
}
// This test verifies that the master reconciles tasks that are
// missing from a re-registering slave. In this case, we drop the
// RunTaskMessage so the slave should send TASK_LOST.
TEST_F(MasterSlaveReconciliationTest, ReconcileLostTask)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  StandaloneMasterDetector detector(master.get()->pid);

  Try<Owned<cluster::Slave>> slave = StartSlave(&detector);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer> > offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);

  EXPECT_NE(0u, offers.get().size());

  TaskInfo task;
  task.set_name("test task");
  task.mutable_task_id()->set_value("1");
  task.mutable_slave_id()->MergeFrom(offers.get()[0].slave_id());
  task.mutable_resources()->MergeFrom(offers.get()[0].resources());
  task.mutable_executor()->MergeFrom(DEFAULT_EXECUTOR_INFO);

  // We now launch a task and drop the corresponding RunTaskMessage on
  // the slave, to ensure that only the master knows about this task.
  Future<RunTaskMessage> runTaskMessage =
    DROP_PROTOBUF(RunTaskMessage(), _, _);

  driver.launchTasks(offers.get()[0].id(), {task});

  AWAIT_READY(runTaskMessage);

  Future<SlaveReregisteredMessage> slaveReregisteredMessage =
    FUTURE_PROTOBUF(SlaveReregisteredMessage(), _, _);

  Future<StatusUpdateMessage> statusUpdateMessage =
    FUTURE_PROTOBUF(StatusUpdateMessage(), _, master.get()->pid);

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status));

  // Simulate a spurious master change event (e.g., due to ZooKeeper
  // expiration) at the slave to force re-registration.
  detector.appoint(master.get()->pid);

  AWAIT_READY(slaveReregisteredMessage);

  // Make sure the slave generated the TASK_LOST.
  AWAIT_READY(statusUpdateMessage);

  AWAIT_READY(status);

  ASSERT_EQ(task.task_id(), status.get().task_id());
  ASSERT_EQ(TASK_LOST, status.get().state());

  // Before we obtain the metrics, ensure that the master has finished
  // processing the status update so metrics have been updated.
  Clock::pause();
  Clock::settle();
  Clock::resume();

  // Check metrics.
  JSON::Object stats = Metrics();
  EXPECT_EQ(1u, stats.values.count("master/tasks_lost"));
  EXPECT_EQ(1u, stats.values["master/tasks_lost"]);
  EXPECT_EQ(
      1u,
      stats.values.count(
          "master/task_lost/source_slave/reason_reconciliation"));
  EXPECT_EQ(
      1u,
      stats.values["master/task_lost/source_slave/reason_reconciliation"]);

  driver.stop();
  driver.join();
}
// This test verifies that the status update manager correctly includes
// the latest state of the task in status update.
TEST_F(StatusUpdateManagerTest, LatestTaskState)
{
  Try<PID<Master> > master = StartMaster();
  ASSERT_SOME(master);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);

  Try<PID<Slave> > slave = StartSlave(&exec);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get(), DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(_, _, _));

  EXPECT_CALL(sched, resourceOffers(_, _))
    .WillOnce(LaunchTasks(DEFAULT_EXECUTOR_INFO, 1, 1, 512, "*"))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  ExecutorDriver* execDriver;
  EXPECT_CALL(exec, registered(_, _, _, _))
    .WillOnce(SaveArg<0>(&execDriver));

  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_RUNNING));

  // Signal when the first update is dropped.
  Future<StatusUpdateMessage> statusUpdateMessage =
    DROP_PROTOBUF(StatusUpdateMessage(), _, master.get());

  Future<Nothing> __statusUpdate = FUTURE_DISPATCH(_, &Slave::__statusUpdate);

  driver.start();

  // Wait until TASK_RUNNING is sent to the master.
  AWAIT_READY(statusUpdateMessage);

  // Ensure the status update manager handles the TASK_RUNNING update.
  AWAIT_READY(__statusUpdate);

  // Pause the clock to avoid status update manager from retrying.
  Clock::pause();

  Future<Nothing> __statusUpdate2 = FUTURE_DISPATCH(_, &Slave::__statusUpdate);

  // Now send TASK_FINISHED update.
  TaskStatus finishedStatus;
  finishedStatus = statusUpdateMessage.get().update().status();
  finishedStatus.set_state(TASK_FINISHED);
  execDriver->sendStatusUpdate(finishedStatus);

  // Ensure the status update manager handles the TASK_FINISHED update.
  AWAIT_READY(__statusUpdate2);

  // Signal when the second update is dropped.
  Future<StatusUpdateMessage> statusUpdateMessage2 =
    DROP_PROTOBUF(StatusUpdateMessage(), _, master.get());

  // Advance the clock for the status update manager to send a retry.
  Clock::advance(slave::STATUS_UPDATE_RETRY_INTERVAL_MIN);

  AWAIT_READY(statusUpdateMessage2);

  // The update should correspond to TASK_RUNNING.
  ASSERT_EQ(TASK_RUNNING, statusUpdateMessage2.get().update().status().state());

  // The update should include TASK_FINISHED as the latest state.
  ASSERT_EQ(TASK_FINISHED,
            statusUpdateMessage2.get().update().latest_state());

  EXPECT_CALL(exec, shutdown(_))
    .Times(AtMost(1));

  driver.stop();
  driver.join();

  Shutdown();
}
// This test verifies that the slave and status update manager
// properly handle duplicate status updates, when the second
// update with the same UUID is received before the ACK for the
// first update. The proper behavior here is for the status update
// manager to drop the duplicate update.
TEST_F(StatusUpdateManagerTest, DuplicateUpdateBeforeAck)
{
  Try<PID<Master> > master = StartMaster();
  ASSERT_SOME(master);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);

  Try<PID<Slave> > slave = StartSlave(&exec);
  ASSERT_SOME(slave);

  FrameworkInfo frameworkInfo = DEFAULT_FRAMEWORK_INFO;
  frameworkInfo.set_checkpoint(true); // Enable checkpointing.

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, frameworkInfo, master.get(), DEFAULT_CREDENTIAL);

  FrameworkID frameworkId;
  EXPECT_CALL(sched, registered(_, _, _))
    .WillOnce(SaveArg<1>(&frameworkId));

  Future<vector<Offer> > offers;
  EXPECT_CALL(sched, resourceOffers(_, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  EXPECT_NE(0u, offers.get().size());

  ExecutorDriver* execDriver;
  EXPECT_CALL(exec, registered(_, _, _, _))
    .WillOnce(SaveArg<0>(&execDriver));

  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_RUNNING));

  // Capture the first status update message.
  Future<StatusUpdateMessage> statusUpdateMessage =
    FUTURE_PROTOBUF(StatusUpdateMessage(), _, _);

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(_, _))
    .WillOnce(FutureArg<1>(&status));

  // Drop the first ACK from the scheduler to the slave.
  Future<StatusUpdateAcknowledgementMessage> statusUpdateAckMessage =
    DROP_PROTOBUF(StatusUpdateAcknowledgementMessage(), _, slave.get());

  Clock::pause();

  driver.launchTasks(offers.get()[0].id(), createTasks(offers.get()[0]));

  AWAIT_READY(statusUpdateMessage);

  AWAIT_READY(status);

  EXPECT_EQ(TASK_RUNNING, status.get().state());

  AWAIT_READY(statusUpdateAckMessage);

  Future<Nothing> __statusUpdate =
    FUTURE_DISPATCH(slave.get(), &Slave::__statusUpdate);

  // Now resend the TASK_RUNNING update.
  process::post(slave.get(), statusUpdateMessage.get());

  // At this point the status update manager has handled
  // the duplicate status update.
  AWAIT_READY(__statusUpdate);

  // After we advance the clock, the status update manager should
  // retry the TASK_RUNNING update and the scheduler should receive
  // and acknowledge it.
  Future<TaskStatus> update;
  EXPECT_CALL(sched, statusUpdate(_, _))
    .WillOnce(FutureArg<1>(&update));

  Clock::advance(slave::STATUS_UPDATE_RETRY_INTERVAL_MIN);
  Clock::settle();

  // Ensure the scheduler receives TASK_FINISHED.
  AWAIT_READY(update);
  EXPECT_EQ(TASK_RUNNING, update.get().state());

  EXPECT_CALL(exec, shutdown(_))
    .Times(AtMost(1));

  Clock::resume();

  driver.stop();
  driver.join();

  Shutdown();
}
// This test verifies that status update manager ignores
// duplicate ACK for an earlier update when it is waiting
// for an ACK for a later update. This could happen when the
// duplicate ACK is for a retried update.
TEST_F(StatusUpdateManagerTest, IgnoreDuplicateStatusUpdateAck)
{
  Try<PID<Master> > master = StartMaster();
  ASSERT_SOME(master);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);

  Try<PID<Slave> > slave = StartSlave(&exec);
  ASSERT_SOME(slave);

  FrameworkInfo frameworkInfo = DEFAULT_FRAMEWORK_INFO;
  frameworkInfo.set_checkpoint(true); // Enable checkpointing.

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, frameworkInfo, master.get(), DEFAULT_CREDENTIAL);

  FrameworkID frameworkId;
  EXPECT_CALL(sched, registered(_, _, _))
    .WillOnce(SaveArg<1>(&frameworkId));

  Future<vector<Offer> > offers;
  EXPECT_CALL(sched, resourceOffers(_, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  EXPECT_NE(0u, offers.get().size());

  ExecutorDriver* execDriver;
  EXPECT_CALL(exec, registered(_, _, _, _))
      .WillOnce(SaveArg<0>(&execDriver));

  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_RUNNING));

  // Drop the first update, so that status update manager
  // resends the update.
  Future<StatusUpdateMessage> statusUpdateMessage =
    DROP_PROTOBUF(StatusUpdateMessage(), master.get(), _);

  Clock::pause();

  driver.launchTasks(offers.get()[0].id(), createTasks(offers.get()[0]));

  AWAIT_READY(statusUpdateMessage);
  StatusUpdate update = statusUpdateMessage.get().update();

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(_, _))
    .WillOnce(FutureArg<1>(&status));

  // This is the ACK for the retried update.
  Future<Nothing> ack =
    FUTURE_DISPATCH(_, &Slave::_statusUpdateAcknowledgement);

  Clock::advance(slave::STATUS_UPDATE_RETRY_INTERVAL_MIN);

  AWAIT_READY(status);

  EXPECT_EQ(TASK_RUNNING, status.get().state());

  AWAIT_READY(ack);

  // Now send TASK_FINISHED update so that the status update manager
  // is waiting for its ACK, which it never gets because we drop the
  // update.
  DROP_PROTOBUFS(StatusUpdateMessage(), master.get(), _);

  Future<Nothing> update2 = FUTURE_DISPATCH(_, &Slave::_statusUpdate);

  TaskStatus status2 = status.get();
  status2.set_state(TASK_FINISHED);

  execDriver->sendStatusUpdate(status2);

  AWAIT_READY(update2);

  // This is to catch the duplicate ack for TASK_RUNNING.
  Future<Nothing> duplicateAck =
      FUTURE_DISPATCH(_, &Slave::_statusUpdateAcknowledgement);

  // Now send a duplicate ACK for the TASK_RUNNING update.
  process::dispatch(
      slave.get(),
      &Slave::statusUpdateAcknowledgement,
      master.get(),
      update.slave_id(),
      frameworkId,
      update.status().task_id(),
      update.uuid());

  AWAIT_READY(duplicateAck);

  Clock::resume();

  EXPECT_CALL(exec, shutdown(_))
    .Times(AtMost(1));

  driver.stop();
  driver.join();

  Shutdown();
}
TEST_F(StatusUpdateManagerTest, RetryStatusUpdate)
{
  Try<PID<Master> > master = StartMaster();
  ASSERT_SOME(master);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);

  slave::Flags flags = CreateSlaveFlags();

  Try<PID<Slave> > slave = StartSlave(&exec, flags);
  ASSERT_SOME(slave);

  FrameworkInfo frameworkInfo = DEFAULT_FRAMEWORK_INFO;
  frameworkInfo.set_checkpoint(true); // Enable checkpointing.

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, frameworkInfo, master.get(), DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(_, _, _))
    .Times(1);

  Future<vector<Offer> > offers;
  EXPECT_CALL(sched, resourceOffers(_, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  EXPECT_NE(0u, offers.get().size());

  EXPECT_CALL(exec, registered(_, _, _, _))
    .Times(1);

  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_RUNNING));

  Future<StatusUpdateMessage> statusUpdateMessage =
    DROP_PROTOBUF(StatusUpdateMessage(), master.get(), _);

  Clock::pause();

  driver.launchTasks(offers.get()[0].id(), createTasks(offers.get()[0]));

  AWAIT_READY(statusUpdateMessage);

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(_, _))
    .WillOnce(FutureArg<1>(&status));

  Clock::advance(slave::STATUS_UPDATE_RETRY_INTERVAL_MIN);

  AWAIT_READY(status);

  EXPECT_EQ(TASK_RUNNING, status.get().state());

  Clock::resume();

  EXPECT_CALL(exec, shutdown(_))
    .Times(AtMost(1));

  driver.stop();
  driver.join();

  Shutdown();
}