示例#1
0
/*FUNCTION**********************************************************************
 *
 * Function Name : DSPI_DRV_DmaMasterConfigureBus
 * Description   : Configures the DSPI port physical parameters to access a device on the bus with
 *                 DMA support.
 *
 * The term "device" is used to indicate the SPI device for which the DSPI master is communicating.
 * The user has two options to configure the device parameters: either pass in the
 * pointer to the device configuration structure to the desired transfer function (see
 * DSPI_DRV_DmaMasterTransferBlocking or DSPI_DRV_DmaMasterTransfer) or pass it in to the
 * DSPI_DRV_DmaMasterConfigureBus function.  The user can pass in a device structure to the
 * transfer function which contains the parameters for the bus (the transfer function then calls
 * this function). However, the user has the option to call this function directly especially
 * to get the calculated baud rate, at which point they may pass in NULL for the device
 * structure in the transfer function (assuming they have called this configure bus function
 * first). This is an example to set up the dspi_device_t structure to call
 * the DSPI_DRV_DmaMasterConfigureBus function by passing in these parameters:
 *   dspi_dma_device_t spiDevice;
 *   spiDevice.dataBusConfig.bitsPerFrame = 16;
 *   spiDevice.dataBusConfig.clkPhase = kDspiClockPhase_FirstEdge;
 *   spiDevice.dataBusConfig.clkPolarity = kDspiClockPolarity_ActiveHigh;
 *   spiDevice.dataBusConfig.direction = kDspiMsbFirst;
 *   spiDevice.bitsPerSec = 50000;
 *   DSPI_DRV_DmaMasterConfigureBus(instance, &spiDevice, &calculatedBaudRate);
 *
 *END**************************************************************************/
dspi_status_t DSPI_DRV_DmaMasterConfigureBus(uint32_t instance,
        const dspi_dma_device_t * device,
        uint32_t * calculatedBaudRate)
{
    assert(device);
    /* instantiate local variable of type dspi_dma_master_state_t and point to global state */
    dspi_dma_master_state_t * dspiDmaState = (dspi_dma_master_state_t *)g_dspiStatePtr[instance];
    SPI_Type *base = g_dspiBase[instance];

    dspi_status_t errorCode = kStatus_DSPI_Success;

    /* Configure the bus to access the provided device.*/
    *calculatedBaudRate = DSPI_HAL_SetBaudRate(base, dspiDmaState->whichCtar,
                          device->bitsPerSec, dspiDmaState->dspiSourceClock);

    errorCode = DSPI_HAL_SetDataFormat(base, dspiDmaState->whichCtar, &device->dataBusConfig);

    /* Check bits/frame number */
    if (device->dataBusConfig.bitsPerFrame > 16)
    {
        errorCode = kStatus_DSPI_OutOfRange;
    }
    else
    {
        dspiDmaState->bitsPerFrame = device->dataBusConfig.bitsPerFrame; /* update bits/frame */
    }

    return errorCode;
}
示例#2
0
void SpiFormat(Spi_t *obj, int8_t bits, int8_t cpol, int8_t cpha, int8_t slave)
{
    dspi_data_format_config_t dataConfig;

    dataConfig.clkPhase = ((cpha != 1) ? kDspiClockPhase_FirstEdge : kDspiClockPhase_SecondEdge);
    dataConfig.clkPolarity = (
            (cpol != 1) ? kDspiClockPolarity_ActiveHigh : kDspiClockPolarity_ActiveLow);
    dataConfig.direction = kDspiMsbFirst;
    dataConfig.bitsPerFrame = bits;

    if (obj->isSlave) {

    } else {
        DSPI_HAL_SetDataFormat(obj->Spi, kDspiCtar0, &dataConfig);
    }
}
示例#3
0
void spi_format(spi_t *obj, int bits, int mode, spi_bitorder_t order) {
    dspi_data_format_config_t config = {0};
    config.bitsPerFrame = (uint32_t)bits;
    obj->spi.bits = bits;
    config.clkPolarity = (mode & 0x2) ? kDspiClockPolarity_ActiveLow : kDspiClockPolarity_ActiveHigh;
    config.clkPhase = (mode & 0x1) ? kDspiClockPhase_SecondEdge : kDspiClockPhase_FirstEdge;
    if (order == SPI_MSB) {
        config.direction = kDspiMsbFirst;
    } else {
        config.direction = kDspiLsbFirst;
    }
    dspi_status_t result = DSPI_HAL_SetDataFormat(obj->spi.address, kDspiCtar0, &config);
    if (result != kStatus_DSPI_Success) {
        error("Failed to configure SPI data format");
    }

    DSPI_HAL_SetMasterSlaveMode(obj->spi.address, kDspiMaster);
}
示例#4
0
void dspi_slave_setup(uint32_t instance, uint32_t baudrate)
{
    dspi_data_format_config_t config;
    uint32_t baseAddr = SPI0_BASE;
    
    // Enable clock
    CLOCK_SYS_EnableSpiClock(instance);
    
    // Clear flags
    DSPI_HAL_ClearStatusFlag(g_dspiBaseAddr[instance], kDspiTxComplete);
    DSPI_HAL_ClearStatusFlag(g_dspiBaseAddr[instance], kDspiTxAndRxStatus);
    DSPI_HAL_ClearStatusFlag(g_dspiBaseAddr[instance], kDspiEndOfQueue);
    DSPI_HAL_ClearStatusFlag(g_dspiBaseAddr[instance], kDspiTxFifoUnderflow);
    DSPI_HAL_ClearStatusFlag(g_dspiBaseAddr[instance], kDspiTxFifoFillRequest);
    DSPI_HAL_ClearStatusFlag(g_dspiBaseAddr[instance], kDspiRxFifoOverflow);
    DSPI_HAL_ClearStatusFlag(g_dspiBaseAddr[instance], kDspiRxFifoDrainRequest);
    
    // Enable HAL
    DSPI_HAL_Init(baseAddr);
    DSPI_HAL_SetMasterSlaveMode(baseAddr, kDspiSlave);
    DSPI_HAL_Enable(baseAddr);

    // Disable transfer
    DSPI_HAL_StopTransfer(baseAddr);
    
    // PCS popularity
    DSPI_HAL_SetPcsPolarityMode(baseAddr, kDspiPcs0, kDspiPcs_ActiveLow);

    // CTAR
    DSPI_HAL_SetBaudRate(baseAddr, kDspiCtar0, baudrate, 72000000);
    config.bitsPerFrame = 16;
    config.clkPhase = kDspiClockPhase_FirstEdge;
    config.clkPolarity = kDspiClockPolarity_ActiveHigh;
    config.direction = kDspiMsbFirst;
    DSPI_HAL_SetDataFormat(baseAddr, kDspiCtar0, &config);

    // Interrupt
    INT_SYS_EnableIRQ(g_dspiIrqId[instance]);
    DSPI_HAL_SetIntMode(g_dspiBaseAddr[instance], kDspiTxFifoUnderflow, false);
    DSPI_HAL_SetIntMode(g_dspiBaseAddr[instance], kDspiTxFifoFillRequest, false);
    // DMA
    DSPI_HAL_SetTxFifoFillDmaIntMode(g_dspiBaseAddr[instance], kDspiGenerateIntReq, true);
    DSPI_HAL_SetRxFifoDrainDmaIntMode(g_dspiBaseAddr[instance], kDspiGenerateDmaReq, true);
}
示例#5
0
/*!
 * @brief DSPI master Polling.
 *
 * Thid function uses DSPI master to send an array to slave
 * and receive the array back from slave,
 * thencompare whether the two buffers are the same.
 */
int main(void)
{
    uint32_t i;
    uint32_t loopCount = 1;
    SPI_Type * dspiBaseAddr = (SPI_Type*)SPI0_BASE;
    uint32_t dspiSourceClock;
    uint32_t calculatedBaudRate;
    dspi_device_t masterDevice;
    dspi_command_config_t commandConfig = 
    {
        .isChipSelectContinuous = false,
        .whichCtar              = kDspiCtar0,
        .whichPcs               = kDspiPcs0,
        .clearTransferCount     = true,
        .isEndOfQueue           = false
    };

    // Init hardware
    hardware_init();
    // Init OSA layer, used in DSPI_DRV_MasterTransferBlocking.
    OSA_Init();
    // Call this function to initialize the console UART.  This function
    // enables the use of STDIO functions (printf, scanf, etc.)
    dbg_uart_init();
    // Print a note.
    printf("\r\n DSPI board to board polling example");
    printf("\r\n This example run on instance 0 ");
    printf("\r\n Be sure DSPI0-DSPI0 are connected ");

    // Configure SPI pins.
    configure_spi_pins(DSPI_MASTER_INSTANCE);

    // Enable DSPI clock.
    CLOCK_SYS_EnableSpiClock(DSPI_MASTER_INSTANCE);
    // Initialize the DSPI module registers to default value, which disables the module
    DSPI_HAL_Init(dspiBaseAddr);
    // Set to master mode.
    DSPI_HAL_SetMasterSlaveMode(dspiBaseAddr, kDspiMaster);
    // Configure for continuous SCK operation
    DSPI_HAL_SetContinuousSckCmd(dspiBaseAddr, false);
    // Configure for peripheral chip select polarity
    DSPI_HAL_SetPcsPolarityMode(dspiBaseAddr, kDspiPcs0, kDspiPcs_ActiveLow);
    // Disable FIFO operation.
    DSPI_HAL_SetFifoCmd(dspiBaseAddr, false, false);
    // Initialize the configurable delays: PCS-to-SCK, prescaler = 0, scaler = 1
    DSPI_HAL_SetDelay(dspiBaseAddr, kDspiCtar0, 0, 1, kDspiPcsToSck);
    // DSPI system enable
    DSPI_HAL_Enable(dspiBaseAddr);

    // Configure baudrate.
    masterDevice.dataBusConfig.bitsPerFrame = 8;
    masterDevice.dataBusConfig.clkPhase     = kDspiClockPhase_FirstEdge;
    masterDevice.dataBusConfig.clkPolarity  = kDspiClockPolarity_ActiveHigh;
    masterDevice.dataBusConfig.direction    = kDspiMsbFirst;

    DSPI_HAL_SetDataFormat(dspiBaseAddr, kDspiCtar0, &masterDevice.dataBusConfig);
    // Get DSPI source clock.
    dspiSourceClock = CLOCK_SYS_GetSpiFreq(DSPI_MASTER_INSTANCE);
    calculatedBaudRate = DSPI_HAL_SetBaudRate(dspiBaseAddr, kDspiCtar0, TRANSFER_BAUDRATE, dspiSourceClock);
    printf("\r\n Transfer at baudrate %lu \r\n", calculatedBaudRate);

    while(1)
    {
        // Initialize the transmit buffer.
        for (i = 0; i < TRANSFER_SIZE; i++)
        {
            sendBuffer[i] = i + loopCount;
        }

        // Print out transmit buffer.
        printf("\r\n Master transmit:");
        for (i = 0; i < TRANSFER_SIZE; i++)
        {
            // Print 16 numbers in a line.
            if ((i & 0x0F) == 0)
            {
                printf("\r\n    ");
            }
            printf(" %02X", sendBuffer[i]);
        }

        // Reset the receive buffer.
        for (i = 0; i < TRANSFER_SIZE; i++)
        {
            receiveBuffer[i] = 0;
        }

        // Restart the transfer by stop then start again, this will clear out the shift register
        DSPI_HAL_StopTransfer(dspiBaseAddr);
        // Flush the FIFOs
        DSPI_HAL_SetFlushFifoCmd(dspiBaseAddr, true, true);
        // Clear status flags that may have been set from previous transfers.
        DSPI_HAL_ClearStatusFlag(dspiBaseAddr, kDspiTxComplete);
        DSPI_HAL_ClearStatusFlag(dspiBaseAddr, kDspiEndOfQueue);
        DSPI_HAL_ClearStatusFlag(dspiBaseAddr, kDspiTxFifoUnderflow);
        DSPI_HAL_ClearStatusFlag(dspiBaseAddr, kDspiTxFifoFillRequest);
        DSPI_HAL_ClearStatusFlag(dspiBaseAddr, kDspiRxFifoOverflow);
        DSPI_HAL_ClearStatusFlag(dspiBaseAddr, kDspiRxFifoDrainRequest);
        // Clear the transfer count.
        DSPI_HAL_PresetTransferCount(dspiBaseAddr, 0);
        // Start the transfer process in the hardware
        DSPI_HAL_StartTransfer(dspiBaseAddr);
        // Send the data to slave.
        for (i = 0; i < TRANSFER_SIZE; i++)
        {
            // Write data to PUSHR
            DSPI_HAL_WriteDataMastermodeBlocking(dspiBaseAddr, &commandConfig, sendBuffer[i]);
            // Delay to wait slave is ready.
            OSA_TimeDelay(1);
        }

        // Delay to wait slave is ready.
        OSA_TimeDelay(10);

        // Restart the transfer by stop then start again, this will clear out the shift register
        DSPI_HAL_StopTransfer(dspiBaseAddr);
        // Flush the FIFOs
        DSPI_HAL_SetFlushFifoCmd(dspiBaseAddr, true, true);
        //Clear status flags that may have been set from previous transfers.
        DSPI_HAL_ClearStatusFlag(dspiBaseAddr, kDspiTxComplete);
        DSPI_HAL_ClearStatusFlag(dspiBaseAddr, kDspiEndOfQueue);
        DSPI_HAL_ClearStatusFlag(dspiBaseAddr, kDspiTxFifoUnderflow);
        DSPI_HAL_ClearStatusFlag(dspiBaseAddr, kDspiTxFifoFillRequest);
        DSPI_HAL_ClearStatusFlag(dspiBaseAddr, kDspiRxFifoOverflow);
        DSPI_HAL_ClearStatusFlag(dspiBaseAddr, kDspiRxFifoDrainRequest);
        // Clear the transfer count.
        DSPI_HAL_PresetTransferCount(dspiBaseAddr, 0);
        // Start the transfer process in the hardware
        DSPI_HAL_StartTransfer(dspiBaseAddr);
        // Receive the data from slave.
        for (i = 0; i < TRANSFER_SIZE; i++)
        {
            // Write command to PUSHR.
            DSPI_HAL_WriteDataMastermodeBlocking(dspiBaseAddr, &commandConfig, 0);
            // Check RFDR flag
            while (DSPI_HAL_GetStatusFlag(dspiBaseAddr, kDspiRxFifoDrainRequest)== false)
            {}
            // Read data from POPR
            receiveBuffer[i] = DSPI_HAL_ReadData(dspiBaseAddr);
            // Clear RFDR flag
            DSPI_HAL_ClearStatusFlag(dspiBaseAddr,kDspiRxFifoDrainRequest);
            // Delay to wait slave is ready.
            OSA_TimeDelay(1);
        }

        // Print out receive buffer.
        printf("\r\n Master receive:");
        for (i = 0; i < TRANSFER_SIZE; i++)
        {
            // Print 16 numbers in a line.
            if ((i & 0x0F) == 0)
            {
                printf("\r\n    ");
            }
            printf(" %02X", receiveBuffer[i]);
        }

        // Check receiveBuffer.
        for (i = 0; i < TRANSFER_SIZE; ++i)
        {
            if (receiveBuffer[i] != sendBuffer[i])
            {
                // Master received incorrect.
                printf("\r\n ERROR: master received incorrect ");
                return -1;
            }
        }

        printf("\r\n DSPI Master Sends/ Recevies Successfully");
        // Wait for press any key.
        printf("\r\n Press any key to run again");
        getchar();
        // Increase loop count to change transmit buffer.
        loopCount++;
    }
}
示例#6
0
/*!
 * @brief DSPI slave Polling.
 *
 * This function sends back received buffer from master through DSPI interface.
 */
int main(void)
{
    uint32_t i;
    SPI_Type * dspiBaseAddr = (SPI_Type*)SPI0_BASE;
    dspi_slave_user_config_t slaveConfig;

    // Init hardware
    hardware_init();
    // Init OSA layer, used in DSPI_DRV_MasterTransferBlocking.
    OSA_Init();
    // Call this function to initialize the console UART.  This function
    // enables the use of STDIO functions (printf, scanf, etc.)
    dbg_uart_init();
    // Configure SPI pins.
    configure_spi_pins(DSPI_SLAVE_INSTANCE);

    // Print a note.
    printf("\r\n DSPI board to board polling example");
    printf("\r\n This example run on instance 0 ");
    printf("\r\n Be sure DSPI0-DSPI0 are connected ");

    // Enable clock for DSPI
    CLOCK_SYS_EnableSpiClock(DSPI_SLAVE_INSTANCE);
    // Reset the DSPI module, which also disables the DSPI module
    DSPI_HAL_Init(dspiBaseAddr);
    // Set to slave mode.
    DSPI_HAL_SetMasterSlaveMode(dspiBaseAddr, kDspiSlave);
    // Set data format
    slaveConfig.dataConfig.clkPhase     = kDspiClockPhase_FirstEdge;
    slaveConfig.dataConfig.clkPolarity  = kDspiClockPolarity_ActiveHigh;
    slaveConfig.dataConfig.bitsPerFrame = 8;
    DSPI_HAL_SetDataFormat(dspiBaseAddr, kDspiCtar0, &(slaveConfig.dataConfig));
    // DSPI system enable
    DSPI_HAL_Enable(dspiBaseAddr);
    // Disable FIFO operation.
    DSPI_HAL_SetFifoCmd(dspiBaseAddr, false, false);

    while(1)
    {
         printf("\r\n Slave example is running...");
        // Reset the receive buffer.
        for (i = 0; i < TRANSFER_SIZE; i++)
        {
            receiveBuffer[i] = 0;
        }

        // Restart the transfer by stop then start again, this will clear out the shift register
        DSPI_HAL_StopTransfer(dspiBaseAddr);
        // Flush the FIFOs
        DSPI_HAL_SetFlushFifoCmd(dspiBaseAddr, true, true);
        // Clear status flags that may have been set from previous transfers
        DSPI_HAL_ClearStatusFlag(dspiBaseAddr, kDspiTxComplete);
        DSPI_HAL_ClearStatusFlag(dspiBaseAddr, kDspiEndOfQueue);
        DSPI_HAL_ClearStatusFlag(dspiBaseAddr, kDspiTxFifoUnderflow);
        DSPI_HAL_ClearStatusFlag(dspiBaseAddr, kDspiTxFifoFillRequest);
        DSPI_HAL_ClearStatusFlag(dspiBaseAddr, kDspiRxFifoOverflow);
        DSPI_HAL_ClearStatusFlag(dspiBaseAddr, kDspiRxFifoDrainRequest);
        // Clear the transfer count
        DSPI_HAL_PresetTransferCount(dspiBaseAddr, 0);
        // Start the transfer process in the hardware
        DSPI_HAL_StartTransfer(dspiBaseAddr);
        for (i = 0; i < TRANSFER_SIZE; i++)
        {
                // Check RFDR flag
                while (DSPI_HAL_GetStatusFlag(dspiBaseAddr, kDspiRxFifoDrainRequest)== false)
                {}
                // Read data from POPR
                receiveBuffer[i] = DSPI_HAL_ReadData(dspiBaseAddr);
                // Clear RFDR flag
                DSPI_HAL_ClearStatusFlag(dspiBaseAddr,kDspiRxFifoDrainRequest);
        }

        // Restart the transfer by stop then start again, this will clear out the shift register
        DSPI_HAL_StopTransfer(dspiBaseAddr);
        // Flush the FIFOs
        DSPI_HAL_SetFlushFifoCmd(dspiBaseAddr, true, true);
        // Clear status flags that may have been set from previous transfers
        DSPI_HAL_ClearStatusFlag(dspiBaseAddr, kDspiTxComplete);
        DSPI_HAL_ClearStatusFlag(dspiBaseAddr, kDspiEndOfQueue);
        DSPI_HAL_ClearStatusFlag(dspiBaseAddr, kDspiTxFifoUnderflow);
        DSPI_HAL_ClearStatusFlag(dspiBaseAddr, kDspiTxFifoFillRequest);
        DSPI_HAL_ClearStatusFlag(dspiBaseAddr, kDspiRxFifoOverflow);
        DSPI_HAL_ClearStatusFlag(dspiBaseAddr, kDspiRxFifoDrainRequest);
        // Clear the transfer count
        DSPI_HAL_PresetTransferCount(dspiBaseAddr, 0);
        // Start the transfer process in the hardware
        DSPI_HAL_StartTransfer(dspiBaseAddr);
        // Send the data to slave.
        for (i = 0; i < TRANSFER_SIZE; i++)
        {
            // Write data to PUSHR
            DSPI_HAL_WriteDataSlavemodeBlocking(dspiBaseAddr, receiveBuffer[i]);
        }

        // Print out receive buffer.
        printf("\r\n Slave receive:");
        for (i = 0; i < TRANSFER_SIZE; i++)
        {
            // Print 16 numbers in a line.
            if ((i & 0x0F) == 0)
            {
                printf("\r\n    ");
            }
            printf(" %02X", receiveBuffer[i]);
        }
    }
}
示例#7
0
/*************************************************************************
 * Function Name: SPI0_init
 * Parameters: none
 * Return: none
 * Description: SPI initialization
 *************************************************************************/
void SPI0_init(void)
{
  dspi_baud_rate_divisors_t divisors;
  divisors.doubleBaudRate = 0;
  divisors.baudRateDivisor = 3;
  divisors.prescaleDivisor = 3;

  dspi_data_format_config_t config;
  config.clkPhase = kDspiClockPhase_SecondEdge;
  config.bitsPerFrame = 8;
  config.clkPolarity = kDspiClockPolarity_ActiveHigh;
  config.direction = kDspiMsbFirst;

#if defined(KV10Z7_SERIES)
  PORT_HAL_SetMuxMode(PORTC_BASE_PTR,2,kPortMuxAsGpio);// MC33937 RESET
  GPIO_HAL_SetPinDir(GPIOC_BASE_PTR, 2, kGpioDigitalOutput);
  PORT_HAL_SetMuxMode(PORTD_BASE_PTR,7,kPortMuxAsGpio);// MC33937 DRV_EN
  GPIO_HAL_SetPinDir(GPIOD_BASE_PTR, 7, kGpioDigitalOutput);
#elif (defined(KV10Z1287_SERIES) || defined(KV11Z7_SERIES))
  PORT_HAL_SetMuxMode(PORTE_BASE_PTR,29,kPortMuxAsGpio);// MC33937 DRV_EN
  GPIO_HAL_SetPinDir(GPIOE_BASE_PTR, 29, kGpioDigitalOutput);
#endif

  GPIO_HAL_SetPinOutput(GPIOC_BASE_PTR, 2);//MC33937_RESET_HIGH;
#if defined(KV10Z7_SERIES)
  GPIO_HAL_SetPinOutput(GPIOD_BASE_PTR, 7);//MC33937_ENABLE_HIGH;
#elif (defined(KV10Z1287_SERIES) || defined(KV11Z7_SERIES))
  GPIO_HAL_SetPinOutput(GPIOE_BASE_PTR, 29);
#endif

  DSPI_HAL_StopTransfer(SPI0_BASE_PTR);// halt SPI before SPI setting
  DSPI_HAL_Enable(SPI0_BASE_PTR);//Enables the DSPI peripheral and sets the MCR MDIS to 0.
  DSPI_HAL_SetMasterSlaveMode(SPI0_BASE_PTR, kDspiMaster);//Enable Master Mode
  DSPI_HAL_SetPcsPolarityMode(SPI0_BASE_PTR, kDspiPcs0,kDspiPcs_ActiveLow);//The setting for either "active high, inactive low (0)"  or "active low, inactive high(1)" of type dspi_pcs_polarity_config_t.
  DSPI_HAL_SetFifoCmd(SPI0_BASE_PTR, false, false);//Disable the DSPI FIFOs.
  DSPI_HAL_PresetTransferCount(SPI0_BASE_PTR, 0x0000);//Pre-sets the transfer count.

  DSPI_HAL_SetDelay(SPI0_BASE_PTR, kDspiCtar0,3,0, kDspiPcsToSck); // CTAR0 selection option for master or slave mode
  DSPI_HAL_SetDelay(SPI0_BASE_PTR, kDspiCtar0,2,0, kDspiLastSckToPcs);
  DSPI_HAL_SetDelay(SPI0_BASE_PTR, kDspiCtar0,0,2, kDspiAfterTransfer);

  DSPI_HAL_SetBaudDivisors(SPI0_BASE_PTR, kDspiCtar0, &divisors);
  DSPI_HAL_SetDataFormat(SPI0_BASE_PTR, kDspiCtar0, &config);

  DSPI_HAL_ClearStatusFlag(SPI0_BASE_PTR ,kDspiTxComplete);///*!< TCF status/interrupt enable */
  DSPI_HAL_ClearStatusFlag(SPI0_BASE_PTR ,kDspiEndOfQueue);///*!< EOQF status/interrupt enable*/
  DSPI_HAL_ClearStatusFlag(SPI0_BASE_PTR ,kDspiTxFifoUnderflow);///*!< TFUF status/interrupt enable*/
  DSPI_HAL_ClearStatusFlag(SPI0_BASE_PTR ,kDspiTxFifoFillRequest);///*!< TFFF status/interrupt enable*/
  DSPI_HAL_ClearStatusFlag(SPI0_BASE_PTR ,kDspiRxFifoOverflow);///*!< RFOF status/interrupt enable*/

  DSPI_HAL_SetIntMode(SPI0_BASE_PTR,kDspiTxComplete, false);/*!< TCF status/interrupt disable */
  DSPI_HAL_SetIntMode(SPI0_BASE_PTR,kDspiEndOfQueue, false);/*!< EOQF status/interrupt disable */
  DSPI_HAL_SetIntMode(SPI0_BASE_PTR,kDspiTxFifoUnderflow, false);/*!< TFUF status/interrupt disable*/
  DSPI_HAL_SetIntMode(SPI0_BASE_PTR,kDspiTxFifoFillRequest, false);/*!< TFFF status/interrupt disable*/
  DSPI_HAL_SetIntMode(SPI0_BASE_PTR,kDspiRxFifoOverflow, false);/*!< RFOF status/interrupt disable*/
  DSPI_HAL_SetIntMode(SPI0_BASE_PTR,kDspiRxFifoDrainRequest, false);/*!< RFDF status/interrupt disable*/
  DSPI_HAL_StartTransfer(SPI0_BASE_PTR);// Starts the DSPI transfers, clears HALT bit in MCR.

  PORT_HAL_SetMuxMode(PORTD_BASE_PTR, 3, kPortMuxAlt2);
  PORT_HAL_SetMuxMode(PORTD_BASE_PTR, 2, kPortMuxAlt2);
  PORT_HAL_SetMuxMode(PORTC_BASE_PTR, 0, kPortMuxAlt7);
  PORT_HAL_SetMuxMode(PORTC_BASE_PTR, 5, kPortMuxAlt2);
}