示例#1
0
DUK_INTERNAL duk_double_t duk_double_trunc_towards_zero(duk_double_t x) {
	/* XXX: optimize */
	duk_small_int_t s = duk_double_signbit(x);
	x = DUK_FLOOR(DUK_FABS(x));  /* truncate towards zero */
	if (s) {
		x = -x;
	}
	return x;
}
示例#2
0
文件: duk_js_ops.c 项目: bihai/duk4vb
/* exposed, used by e.g. duk_bi_date.c */
DUK_INTERNAL duk_double_t duk_js_tointeger_number(duk_double_t x) {
	duk_small_int_t c = (duk_small_int_t) DUK_FPCLASSIFY(x);

	if (c == DUK_FP_NAN) {
		return 0.0;
	} else if (c == DUK_FP_ZERO || c == DUK_FP_INFINITE) {
		/* XXX: FP_ZERO check can be removed, the else clause handles it
		 * correctly (preserving sign).
		 */
		return x;
	} else {
		duk_small_int_t s = (duk_small_int_t) DUK_SIGNBIT(x);
		x = DUK_FLOOR(DUK_FABS(x));  /* truncate towards zero */
		if (s) {
			x = -x;
		}
		return x;
	}
}
示例#3
0
文件: duk_js_ops.c 项目: bihai/duk4vb
/* combined algorithm matching E5 Sections 9.5 and 9.6 */
DUK_LOCAL duk_double_t duk__toint32_touint32_helper(duk_double_t x, duk_bool_t is_toint32) {
	duk_small_int_t c = (duk_small_int_t) DUK_FPCLASSIFY(x);
	duk_small_int_t s;

	if (c == DUK_FP_NAN || c == DUK_FP_ZERO || c == DUK_FP_INFINITE) {
		return 0.0;
	}


	/* x = sign(x) * floor(abs(x)), i.e. truncate towards zero, keep sign */
	s = (duk_small_int_t) DUK_SIGNBIT(x);
	x = DUK_FLOOR(DUK_FABS(x));
	if (s) {
		x = -x;
	}

	/* NOTE: fmod(x) result sign is same as sign of x, which
	 * differs from what Javascript wants (see Section 9.6).
	 */

	x = DUK_FMOD(x, DUK_DOUBLE_2TO32);    /* -> x in ]-2**32, 2**32[ */

	if (x < 0.0) {
		x += DUK_DOUBLE_2TO32;
	}
	/* -> x in [0, 2**32[ */

	if (is_toint32) {
		if (x >= DUK_DOUBLE_2TO31) {
			/* x in [2**31, 2**32[ */

			x -= DUK_DOUBLE_2TO32;  /* -> x in [-2**31,2**31[ */
		}
	}

	return x;
}
示例#4
0
DUK_INTERNAL duk_ret_t duk_bi_math_object_hypot(duk_context *ctx) {
	/*
	 *  E6 Section 20.2.2.18: Math.hypot
	 *
	 *  - If no arguments are passed, the result is +0.
	 *  - If any argument is +inf, the result is +inf.
	 *  - If any argument is -inf, the result is +inf.
	 *  - If no argument is +inf or -inf, and any argument is NaN, the result is
	 *    NaN.
	 *  - If all arguments are either +0 or -0, the result is +0.
	 */

	duk_idx_t nargs;
	duk_idx_t i;
	duk_bool_t found_nan;
	duk_double_t max;
	duk_double_t sum, summand;
	duk_double_t comp, prelim;
	duk_double_t t;

	nargs = duk_get_top(ctx);

	/* Find the highest value.  Also ToNumber() coerces. */
	max = 0.0;
	found_nan = 0;
	for (i = 0; i < nargs; i++) {
		t = DUK_FABS(duk_to_number(ctx, i));
		if (DUK_FPCLASSIFY(t) == DUK_FP_NAN) {
			found_nan = 1;
		} else {
			max = duk_double_fmax(max, t);
		}
	}

	/* Early return cases. */
	if (max == DUK_DOUBLE_INFINITY) {
		duk_push_number(ctx, DUK_DOUBLE_INFINITY);
		return 1;
	} else if (found_nan) {
		duk_push_number(ctx, DUK_DOUBLE_NAN);
		return 1;
	} else if (max == 0.0) {
		duk_push_number(ctx, 0.0);
		/* Otherwise we'd divide by zero. */
		return 1;
	}

	/* Use Kahan summation and normalize to the highest value to minimize
	 * floating point rounding error and avoid overflow.
	 *
	 * https://en.wikipedia.org/wiki/Kahan_summation_algorithm
	 */
	sum = 0.0;
	comp = 0.0;
	for (i = 0; i < nargs; i++) {
		t = DUK_FABS(duk_get_number(ctx, i)) / max;
		summand = (t * t) - comp;
		prelim = sum + summand;
		comp = (prelim - sum) - summand;
		sum = prelim;
	}

	duk_push_number(ctx, (duk_double_t) DUK_SQRT(sum) * max);
	return 1;
}
示例#5
0
DUK_LOCAL double duk__fabs(double x) {
	return DUK_FABS(x);
}
示例#6
0
static double duk__pow_fixed(double x, double y) {
	/* The ANSI C pow() semantics differ from Ecmascript.
	 *
	 * E.g. when x==1 and y is +/- infinite, the Ecmascript required
	 * result is NaN, while at least Linux pow() returns 1.
	 */

	int cx, cy, sx;

	DUK_UNREF(cx);
	DUK_UNREF(sx);
	cy = DUK_FPCLASSIFY(y);

	if (cy == DUK_FP_NAN) {
		goto ret_nan;
	}
	if (DUK_FABS(x) == 1.0 && cy == DUK_FP_INFINITE) {
		goto ret_nan;
	}
#if defined(DUK_USE_POW_NETBSD_WORKAROUND)
	/* See test-bug-netbsd-math-pow.js: NetBSD 6.0 on x86 (at least) does not
	 * correctly handle some cases where x=+/-0.  Specific fixes to these
	 * here.
	 */
	cx = DUK_FPCLASSIFY(x);
	if (cx == DUK_FP_ZERO && y < 0.0) {
		sx = DUK_SIGNBIT(x);
		if (sx == 0) {
			/* Math.pow(+0,y) should be Infinity when y<0.  NetBSD pow()
			 * returns -Infinity instead when y is <0 and finite.  The
			 * if-clause also catches y == -Infinity (which works even
			 * without the fix).
			 */
			return DUK_DOUBLE_INFINITY;
		} else {
			/* Math.pow(-0,y) where y<0 should be:
			 *   - -Infinity if y<0 and an odd integer
			 *   - Infinity otherwise
			 * NetBSD pow() returns -Infinity for all finite y<0.  The
			 * if-clause also catches y == -Infinity (which works even
			 * without the fix).
			 */

			/* fmod() return value has same sign as input (negative) so
			 * the result here will be in the range ]-2,0], 1 indicates
			 * odd.  If x is -Infinity, NaN is returned and the odd check
			 * always concludes "not odd" which results in desired outcome.
			 */
			double tmp = DUK_FMOD(y, 2);
			if (tmp == -1.0) {
				return -DUK_DOUBLE_INFINITY;
			} else {
				/* Not odd, or y == -Infinity */
				return DUK_DOUBLE_INFINITY;
			}
		}
	}
#endif
	return DUK_POW(x, y);

 ret_nan:
	return DUK_DOUBLE_NAN;
}