示例#1
0
// Compute section tangent stiffness, ks, from material tangent, Dt,
// by integrating over section area
// eps = [eps_11, eps_12 ]'
// e   = [eps_a, kappa_z, gamma_y ]'
// ks = int_A a'*Dt*a dA
// a   = [1 -y  0   
//        0  0  1 ]
const Matrix&
TimoshenkoSection2d::getSectionTangent(void)
{
  for (int i=0; i<9; i++)
	kData[i] = 0.0;
 
  double y, z, w;
  double y2, z2, yz;
  double d00, d01;
  double d10, d11;
  double tmp;
  //double five6  = 5./6.;
  //double root56 = sqrt(five6);
  
  for (int i = 0; i < numFibers; i++) {
    
    y = matData[i*3] - yBar;
    z = matData[i*3+1] - zBar;
    w = matData[i*3+2];

    y2 = y*y;
    z2 = z*z;
    yz = y*z;
    
    const Matrix &Dt = theMaterials[i]->getTangent();

	d00 = Dt(0,0)*w; d01 = Dt(0,1)*w; 
	d10 = Dt(1,0)*w; d11 = Dt(1,1)*w; 
    
    kData[0] += d00;    //0,0           P
    kData[4] += y2*d00; //1,1           M
    kData[8] += d11;    //2,2 five6*    V

    tmp = -y*d00;
    kData[1] += tmp; // 0,1
    kData[3] += tmp; // 1,0
    
	// Hit tangent terms with root56
	//d01 *= root56; d10 *= root56;

    kData[2] += d01; //0,2
    kData[6] += d10; //2,0

    kData[5] -= y*d01; //1,2
    kData[7] -= y*d10; //2,1
    
  }

  return *ks;
}
void Foam::SuppressionCollision<CloudType>::collide(const scalar dt)
{
    const kinematicCloud& sc =
        this->owner().mesh().template
        lookupObject<kinematicCloud>(suppressionCloud_);

    volScalarField vDotSweep(sc.vDotSweep());

    dimensionedScalar Dt("dt", dimTime, dt);
    volScalarField P(type() + ":p", 1.0 - exp(-vDotSweep*Dt));

    forAllIter(typename CloudType, this->owner(), iter)
    {
        typename CloudType::parcelType& p = iter();
        label cellI = p.cell();

        scalar xx = this->owner().rndGen().template sample01<scalar>();

        if (xx < P[cellI])
        {
            p.canCombust() = -1;
            p.typeId() = max(p.typeId(), suppressedParcelType_);
        }
    }
}
示例#3
0
文件: OU.cpp 项目: mebrooks/mews
Type objective_function<Type>::operator() ()
{
	DATA_VECTOR(times);
	DATA_VECTOR(obs);
	
	PARAMETER(log_R0);
	PARAMETER(m);
	PARAMETER(log_theta);
	PARAMETER(log_sigma);
	Type theta=exp(log_theta);
	Type sigma=exp(log_sigma);
	Type R0=exp(log_R0);
	
	int n1=times.size();
	int n2=2;//mean and variance
	vector<Type> Dt(n1-1);
	vector<Type> Ex(n1-1);
	vector<Type> Vx(n1-1);
	Type nll=0;
	m=0;
	Dt=diff(times);
	Ex=theta*(Type(1)-exp(-R0*Dt)) + obs.segment(0, n1-1)*exp(-R0*Dt);
	Vx=Type(0.5)*sigma*sigma*(Type(1)-exp(Type(-2)*R0*Dt))/R0;
	
	for(int i=0; i<n1-1; i++)
	{
		nll-= dnorm(obs[i+1], Ex[i], sqrt(Vx[i]), true);
	}
	return nll;
}
示例#4
0
void Remove(edge *e) {
	point *u = Oi(e), *v = Dt(e);
	if (u->in == e) u->in = e->on;
	if (v->in == e) v->in = e->dn;
	if (Oi(e->on) == u) e->on->op = e->op; else e->on->dp = e->op;
	if (Oi(e->op) == u) e->op->on = e->on; else e->op->dn = e->on;
	if (Oi(e->dn) == v) e->dn->op = e->dp; else e->dn->dp = e->dp;
	if (Oi(e->dp) == v) e->dp->on = e->dn; else e->dp->dn = e->dn;
	elist[nfree++] = e;
}
int main(){
    int N = 3;
    CGAL::Timer cost;
    std::vector<Point_d> points;
   

   Point_d point1(1,3,5);
   Point_d point2(4,8,10);
   Point_d point3(2,7,9);

    Point_d point(1,2,3);


    points.push_back(point1);
    points.push_back(point2);
    points.push_back(point3);
   
    K Kernel 
    D Dt(d,Kernel,Kernel);
  //  CGAL_assertion(Dt.empty());
   
    // insert the points in the triangulation
    cost.reset();cost.start();
    std::cout << "  Delaunay triangulation of "<<N<<" points in dim "<<d<< std::flush;
    std::vector<Point_d>::iterator it;
    for(it = points.begin(); it!= points.end(); ++it){
	Dt.insert(*it); 
    }
    std::list<Simplex_handle> NL = Dt.all_simplices(D::NEAREST);
    std::cout << " done in "<<cost.time()<<" seconds." << std::endl;
    CGAL_assertion(Dt.is_valid() );
    CGAL_assertion(!Dt.empty());
 
   
    Vertex_handle v = Dt.nearest_neighbor(point);
    Simplex_handle s = Dt.simplex(v);    
     
    std::vector<Point_d> Simplex_vertices;
    for(int j=0; j<=d; ++j){
 	  Vertex_handle vertex = Dt.vertex_of_simplex(s,j);
       	  Simplex_vertices.push_back(Dt.associated_point(vertex));
     }
    
    std::vector<K::FT> coords;
    K::Barycentric_coordinates_d BaryCoords;
    BaryCoords(Simplex_vertices.begin(), Simplex_vertices.end(),point,std::inserter(coords, coords.begin()));
    std::cout << coords[0] << std::endl; 
   return 0;
}
示例#6
0
double
TimoshenkoSection2d::getGAy(void)
{
  double G, GAy = 0.;
  double y, z, A;
  for (int i = 0; i < numFibers; i++) {
	//y =matData[i*3] - yBar;
 	//z =matData[i*3+1] - zBar;
	A =matData[i*3+2];

	const Matrix &Dt = theMaterials[i]->getTangent();
	G = Dt(1,1);
	GAy += G * A;
  }

  return GAy;
}
示例#7
0
double
TimoshenkoSection2d::getEIz(void)
{
  double G, E, K, EIz = 0.;
  double y, z, A;
  for (int i = 0; i < numFibers; i++) {
    y = matData[i*3] - yBar;
    z = matData[i*3+1] - zBar;
	A = matData[i*3+2];

	const Matrix &Dt = theMaterials[i]->getTangent();

	//G = Dt(1,1); K= Dt(0,0) - 4./3.*G;
	E = Dt(0,0); //9.*K*G/(3.*K+G);
	EIz += E * A * pow(y,2.);
  }

  return EIz;
}
示例#8
0
void Divide(int s, int t, edge **L, edge **R) {
	edge *a, *b, *c, *ll, *lr, *rl, *rr, *tangent;
	int n = t - s + 1;
	if (n == 2) *L = *R = Make_edge(Q[s], Q[t]);
	else if (n == 3) {
		a = Make_edge(Q[s], Q[s + 1]), b = Make_edge(Q[s + 1], Q[t]);
		Splice(a, b, Q[s + 1]);
		double v = C3(Q[s], Q[s + 1], Q[t]);
		if (v > eps)       c = Join(a, Q[s], b, Q[t], 0), *L = a, *R = b;
		else if (v < -eps) c = Join(a, Q[s], b, Q[t], 1), *L = c, *R = c;
		else *L = a, *R = b;
	} else if (n > 3) {
		int split = (s + t) / 2;
		Divide(s, split, &ll, &lr); Divide(split + 1, t, &rl, &rr);
		Merge(lr, Q[split], rl, Q[split + 1], &tangent);
		if (Oi(tangent) == Q[s]) ll = tangent;
		if (Dt(tangent) == Q[t]) rr = tangent;
		*L = ll; *R = rr;
	}
}
示例#9
0
void extr(jvec &ext_EP,jvec &ext_ED,jvec &ext_Q2,jvec &ext_fP,jvec &ext_fM,jvec &ext_f0,jvec &ext_fT,int il_sea,int il,int ic)
{
  ////////////////////////////////////////// R0 //////////////////////////////////////  

  jvec R0_corr;
  jack R0(njack);
  
  //load standing
  jvec ll0_st=load_3pts("V0",il,il,0,RE,ODD,1);
  jvec lc0_st=load_3pts("V0",ic,il,0,RE,ODD,1);
  jvec cc0_st=load_3pts("V0",ic,ic,0,RE,ODD,1);
  
  //build R0
  R0_corr=lc0_st*lc0_st.simmetric()/(cc0_st*ll0_st);
  
  //fit and plot
  R0=constant_fit(R0_corr,TH-tmax,tmax,combine("plots/R0_il_%d_ic_%d.xmg",il,ic).c_str());
  
  //////////////////////////////////////////// R2 ////////////////////////////////////
  
  jvec R2_corr[nth];
  jvec RT_corr[nth];
  jvec R2(nth,njack);
  jvec RT(nth,njack);
  
  ofstream out_R2(combine("plots/R2_il_%d_ic_%d.xmg",il,ic).c_str());
  ofstream out_RT(combine("plots/RT_il_%d_ic_%d.xmg",il,ic).c_str());
  jvec lcK_th[nth],lc0_th[nth],lcT_th[nth];
  for(int ith=0;ith<nth;ith++)
    {
      //load corrs
      lcK_th[ith]=load_3pts("VK",ic,il,ith,IM,EVN,-1)/(6*th_P[ith]);
      lc0_th[ith]=load_3pts("V0",ic,il,ith,RE,ODD,1);
      lcT_th[ith]=load_3pts("VTK",ic,il,ith,IM,ODD,1)/(6*th_P[ith]);
      
      //build ratios
      R2_corr[ith]=lcK_th[ith]/lc0_th[ith];
      RT_corr[ith]=lcT_th[ith]/lcK_th[ith];
      
      //fit
      R2[ith]=constant_fit(R2_corr[ith],tmin,tmax);
      RT[ith]=constant_fit(RT_corr[ith],tmin,tmax);
      
      //plot
      out_R2<<write_constant_fit_plot(R2_corr[ith],R2[ith],tmin,tmax);
      out_RT<<write_constant_fit_plot(RT_corr[ith],RT[ith],tmin,tmax);
    }
  
  ////////////////////////////////////////// R1 //////////////////////////////////////  
  
  jvec R1_corr[nth];
  jvec R1(nth,njack);

  ofstream out_P(combine("plots/out_P_il_%d_ic_%d.xmg",il,ic).c_str());
  out_P<<"@type xydy"<<endl;
  ofstream out_D(combine("plots/out_D_il_%d_ic_%d.xmg",il,ic).c_str());
  out_D<<"@type xydy"<<endl;
  ofstream out_R1(combine("plots/out_R1_il_%d_ic_%d.xmg",il,ic).c_str());
  out_R1<<"@type xydy"<<endl;
  
  //load Pi and D
  jvec P_corr[nth],D_corr[nth];
  jvec ED(nth,njack),EP(nth,njack);
  for(int ith=0;ith<nth;ith++)
    {
      //load moving pion
      P_corr[ith]=load_2pts("2pts_P5P5.dat",il_sea,il,ith);
      out_P<<"@type xydy"<<endl;
      EP[ith]=constant_fit(effective_mass(P_corr[ith]),tmin_P,TH,combine("plots/P_eff_mass_il_%d_ic_%d_ith_%d.xmg",
									 il,ic,ith).c_str());
      out_P<<write_constant_fit_plot(effective_mass(P_corr[ith]),EP[ith],tmin_P,TH);
      out_P<<"&"<<endl;
      
      //recompute EP and ED from standing one
      if(ith)
	{
	  ED[ith]=latt_en(ED[0],th_P[ith]);
	  EP[ith]=latt_en(EP[0],th_P[ith]);
	}

      //load moving D
      D_corr[ith]=load_2pts("2pts_P5P5.dat",il,ic,ith);
      out_D<<"@type xydy"<<endl;
      ED[ith]=constant_fit(effective_mass(D_corr[ith]),tmin_D,TH,combine("plots/D_eff_mass_il_%d_ic_%d_ith_%d.xmg",
									 il,ic,ith).c_str());
      out_D<<write_constant_fit_plot(effective_mass(D_corr[ith]),ED[ith],tmin_D,TH);
      out_D<<"&"<<endl;
      
      //build the ratio
      R1_corr[ith]=lc0_th[ith]/lc0_th[0];
      for(int t=0;t<TH;t++)
	{
	  int E_fit_reco_flag=1;

	  jack Dt(njack),Pt(njack);	  
	  if(E_fit_reco_flag==0)
	    {
	      Dt=D_corr[0][t]/D_corr[ith][t];
	      Pt=P_corr[0][TH-t]/P_corr[ith][TH-t];
	    }
	  else
	    {
	      jack ED_th=latt_en(ED[0],th_P[ith]),EP_th=latt_en(EP[0],th_P[ith]);
	      Dt=exp(-(ED[0]-ED_th)*t)*ED_th/ED[0];
	      Pt=exp(-(EP[0]-EP_th)*(TH-t))*EP_th/EP[0];
	    }
	  
	  R1_corr[ith][t]*=Dt*Pt;
	}
      
      //fit
      R1[ith]=constant_fit(R1_corr[ith],tmin,tmax);
      
      //plot
      out_R1<<write_constant_fit_plot(R1_corr[ith],R1[ith],tmin,tmax);
    }
  
  //////////////////////////////////////// solve the ratios //////////////////////////////
  
  //compute f0[q2max]
  jvec f0_r(nth,njack),fP_r(nth,njack),fT_r(nth,njack);
  f0_r[0]=sqrt(R0*4*ED[0]*EP[0])/(ED[0]+EP[0]);
  cout<<"f0_r[q2max]: "<<f0_r[0]<<endl;
  
  //compute QK and Q2
  double mom[nth];
  jvec PK(nth,njack),QK(nth,njack);
  jvec P0(nth,njack),Q0(nth,njack),Q2(nth,njack),P2(nth,njack);
  jvec P0_r(nth,njack),Q0_r(nth,njack),Q2_r(nth,njack),P2_r(nth,njack);
  for(int ith=0;ith<nth;ith++)
    {
      P0[ith]=ED[ith]+EP[ith]; //P=initial+final
      Q0[ith]=ED[ith]-EP[ith]; //Q=initial-final
      P0_r[ith]=latt_en(ED[0],th_P[ith])+latt_en(EP[0],th_P[ith]);
      Q0_r[ith]=latt_en(ED[0],th_P[ith])-latt_en(EP[0],th_P[ith]);

      //we are describing the process D->Pi
      mom[ith]=momentum(th_P[ith]);
      double P_D=-mom[ith];
      double P_Pi=mom[ith];
  
      PK[ith]=P_D+P_Pi;
      QK[ith]=P_D-P_Pi;
      
      P2[ith]=sqr(P0[ith])-3*sqr(PK[ith]);
      Q2[ith]=sqr(Q0[ith])-3*sqr(QK[ith]);
      
      //reconstruct Q2
      P2_r[ith]=sqr(P0_r[ith])-3*sqr(PK[ith]);
      Q2_r[ith]=sqr(Q0_r[ith])-3*sqr(QK[ith]);
    }

  //checking Pion dispertion relation
  ofstream out_disp_P(combine("plots/Pion_disp_rel_il_%d_ic_%d.xmg",il,ic).c_str());
  out_disp_P<<"@type xydy"<<endl;
  for(int ith=0;ith<nth;ith++) out_disp_P<<3*sqr(mom[ith])<<" "<<sqr(EP[ith])<<endl;
  out_disp_P<<"&"<<endl;
  for(int ith=0;ith<nth;ith++) out_disp_P<<3*sqr(mom[ith])<<" "<<sqr(cont_en(EP[0],th_P[ith]))<<endl;
  out_disp_P<<"&"<<endl;
  for(int ith=0;ith<nth;ith++) out_disp_P<<3*sqr(mom[ith])<<" "<<sqr(latt_en(EP[0],th_P[ith]))<<endl;
  out_disp_P<<"&"<<endl;
  
  //checking D dispertion relation
  ofstream out_disp_D(combine("plots/D_disp_rel_il_%d_ic_%d.xmg",il,ic).c_str());
  out_disp_D<<"@type xydy"<<endl;
  for(int ith=0;ith<nth;ith++) out_disp_D<<3*sqr(mom[ith])<<" "<<sqr(ED[ith])<<endl;
  out_disp_D<<"&"<<endl;
  for(int ith=0;ith<nth;ith++) out_disp_D<<3*sqr(mom[ith])<<" "<<sqr(cont_en(ED[0],th_P[ith]))<<endl;
  out_disp_D<<"&"<<endl;
  for(int ith=0;ith<nth;ith++) out_disp_D<<3*sqr(mom[ith])<<" "<<sqr(latt_en(ED[0],th_P[ith]))<<endl;
  out_disp_D<<"&"<<endl;
  
  //compute xi
  jvec xi(nth,njack);
  for(int ith=1;ith<nth;ith++)
    {
      int E_fit_reco_flag=0; //it makes no diff
      
      jack P0_th=E_fit_reco_flag?P0_r[ith]:P0[ith];
      jack Q0_th=E_fit_reco_flag?Q0_r[ith]:Q0[ith];
      
      xi[ith]=R2[ith]*P0_th;
      xi[ith]/=QK[ith]-R2[ith]*Q0_th;
    }
  
  //compute fP
  ofstream out_fP_r(combine("plots/fP_r_il_%d_ic_%d.xmg",il,ic).c_str());
  out_fP_r<<"@type xydy"<<endl;
  for(int ith=1;ith<nth;ith++)
    {
      int E_fit_reco_flag=1; //it makes no diff
      
      jack P0_th=E_fit_reco_flag?P0_r[ith]:P0[ith];
      jack Q0_th=E_fit_reco_flag?Q0_r[ith]:Q0[ith];
      
      jack c=P0_th/(ED[0]+EP[0])*(1+xi[ith]*Q0_th/P0_th);
      fP_r[ith]=R1[ith]/c*f0_r[0];

      out_fP_r<<Q2[ith].med()<<" "<<fP_r[ith]<<endl;
    }
  
  //compute f0 and fT
  ofstream out_f0_r(combine("plots/f0_r_il_%d_ic_%d.xmg",il,ic).c_str());
  ofstream out_fT_r(combine("plots/fT_r_il_%d_ic_%d.xmg",il,ic).c_str());;
  out_f0_r<<"@type xydy"<<endl;
  out_f0_r<<Q2[0].med()<<" "<<f0_r[0]<<endl;
  out_fT_r<<"@type xydy"<<endl;
  for(int ith=1;ith<nth;ith++)
    {
      //it seems better here to solve using reconstructed energies
      int E_fit_reco_flag=0;
  
      jack EP_th=E_fit_reco_flag?latt_en(EP[0],th_P[ith]):EP[ith];
      jack ED_th=E_fit_reco_flag?latt_en(ED[0],th_P[ith]):ED[ith];
      jack Q2_th=E_fit_reco_flag?Q2_r[ith]:Q2[ith];
      
      jack fM_r=xi[ith]*fP_r[ith]; //checked
      f0_r[ith]=fP_r[ith]+fM_r[ith]*Q2_th/(sqr(ED_th)-sqr(EP_th));
      
      out_f0_r<<Q2[ith].med()<<" "<<f0_r[ith]<<endl;
      
      fT_r[ith]=fM_r[ith]*RT[ith]*Zt_med[ibeta]/Zv_med[ibeta]*(EP[0]+ED[0])/(ED[ith]+EP[ith]); //ADD
      
      out_fT_r<<Q2[ith].med()<<" "<<fT_r[ith]<<endl;
    }
  
  
  //////////////////////////////////////// analytic method /////////////////////////////  
  
  jvec fP_a(nth,njack),fM_a(nth,njack),f0_a(nth,njack),fT_a(nth,njack);
  jvec fP_n(nth,njack),fM_n(nth,njack),f0_n(nth,njack),fT_n(nth,njack);
  
  //determine M and Z for pion and D
  jvec ZP(nth,njack),ZD(nth,njack);
  for(int ith=0;ith<nth;ith++)
    {
      jack E,Z2;
      two_pts_fit(E,Z2,P_corr[ith],tmin_P,TH);
      ZP[ith]=sqrt(Z2);
      two_pts_fit(E,Z2,D_corr[ith],tmin_D,TH);
      ZD[ith]=sqrt(Z2);
    }
  
  //compute V
  jvec VK_a(nth,njack),V0_a(nth,njack),TK_a(nth,njack);
  jvec VK_n(nth,njack),V0_n(nth,njack),TK_n(nth,njack);
  for(int ith=0;ith<nth;ith++)
    {
      ofstream out_V0(combine("plots/V0_il_%d_ic_%d_ith_%d_analytic_numeric.xmg",il,ic,ith).c_str());
      out_V0<<"@type xydy"<<endl;
      ofstream out_VK(combine("plots/VK_il_%d_ic_%d_ith_%d_analytic_numeric.xmg",il,ic,ith).c_str());
      out_VK<<"@type xydy"<<endl;
      ofstream out_TK(combine("plots/TK_il_%d_ic_%d_ith_%d_analytic_numeric.xmg",il,ic,ith).c_str());
      out_TK<<"@type xydy"<<endl;
      ofstream out_dt(combine("plots/dt_il_%d_ic_%d_ith_%d.xmg",il,ic,ith).c_str());
      out_dt<<"@type xydy"<<endl;
      
      //computing time dependance
      jvec dt_a(TH+1,njack),dt_n(TH+1,njack);
      {
	//it seems better here to use fitted energies
	int E_fit_reco_flag=1;
	jack EP_th=E_fit_reco_flag?latt_en(EP[0],th_P[ith]):EP[ith];
	jack ED_th=E_fit_reco_flag?latt_en(ED[0],th_P[ith]):ED[ith];
	
	for(int t=0;t<=TH;t++)
	  {
	    dt_a[t]=exp(-(ED_th*t+EP_th*(TH-t)))*ZP[0]*ZD[0]/(4*EP_th*ED_th);
	    dt_n[t]=D_corr[ith][t]*P_corr[ith][TH-t]/(ZD[0]*ZP[0]);
	  }
      }
      
      //remove time dependance using analytic or numeric expression
      jvec VK_corr_a=Zv_med[ibeta]*lcK_th[ith]/dt_a,V0_corr_a=Zv_med[ibeta]*lc0_th[ith]/dt_a;
      jvec VK_corr_n=Zv_med[ibeta]*lcK_th[ith]/dt_n,V0_corr_n=Zv_med[ibeta]*lc0_th[ith]/dt_n;
      jvec TK_corr_n=Zt_med[ibeta]*lcT_th[ith]/dt_n,TK_corr_a=Zt_med[ibeta]*lcT_th[ith]/dt_a;
      
      //fit V0
      V0_a[ith]=constant_fit(V0_corr_a,tmin,tmax);
      V0_n[ith]=constant_fit(V0_corr_n,tmin,tmax);
      out_V0<<write_constant_fit_plot(V0_corr_a,V0_a[ith],tmin,tmax)<<"&"<<endl;
      out_V0<<write_constant_fit_plot(V0_corr_n,V0_n[ith],tmin,tmax)<<"&"<<endl;
      
      //fit VK
      VK_a[ith]=constant_fit(VK_corr_a,tmin,tmax);
      VK_n[ith]=constant_fit(VK_corr_n,tmin,tmax);
      out_VK<<write_constant_fit_plot(VK_corr_a,VK_a[ith],tmin,tmax)<<"&"<<endl;
      out_VK<<write_constant_fit_plot(VK_corr_n,VK_n[ith],tmin,tmax)<<"&"<<endl;

      //fit TK
      TK_a[ith]=constant_fit(TK_corr_a,tmin,tmax);
      TK_n[ith]=constant_fit(TK_corr_n,tmin,tmax);
      out_TK<<write_constant_fit_plot(TK_corr_a,TK_a[ith],tmin,tmax)<<"&"<<endl;
      out_TK<<write_constant_fit_plot(TK_corr_n,TK_n[ith],tmin,tmax)<<"&"<<endl;
    }
  
  //compute f0(q2max)
  f0_a[0]=V0_a[0]/(ED[0]+EP[0]);
  f0_n[0]=V0_n[0]/(ED[0]+EP[0]);
  cout<<"f0_a["<<Q2[0].med()<<"]: "<<f0_a[0]<<endl;
  cout<<"f0_n["<<Q2[0].med()<<"]: "<<f0_n[0]<<endl;
  
  //solve for fP and f0
  for(int ith=1;ith<nth;ith++)
    {
      jack delta=P0[ith]*QK[ith]-Q0[ith]*PK[ith];

      //solve using analytic fit
      jack deltaP_a=V0_a[ith]*QK[ith]-Q0[ith]*VK_a[ith];
      jack deltaM_a=P0[ith]*VK_a[ith]-V0_a[ith]*PK[ith];  
      fP_a[ith]=deltaP_a/delta;
      fM_a[ith]=deltaM_a/delta;
      
      //solve using numeric fit
      jack deltaP_n=V0_n[ith]*QK[ith]-Q0[ith]*VK_n[ith];
      jack deltaM_n=P0[ith]*VK_n[ith]-V0_n[ith]*PK[ith];  
      fP_n[ith]=deltaP_n/delta;
      fM_n[ith]=deltaM_n/delta;

      //compute f0
      f0_a[ith]=fP_a[ith]+fM_a[ith]*Q2[ith]/(ED[0]*ED[0]-EP[0]*EP[0]);
      f0_n[ith]=fP_n[ith]+fM_n[ith]*Q2[ith]/(ED[0]*ED[0]-EP[0]*EP[0]);

      //solve fT
      fT_a[ith]=-TK_a[ith]*(EP[0]+ED[0])/(2*(ED[ith]+EP[ith]))/mom[ith];
      fT_n[ith]=-TK_n[ith]*(EP[0]+ED[0])/(2*(ED[ith]+EP[ith]))/mom[ith];
    }
  
  //write analytic and umeric plot of fP and f0
  ofstream out_fP_a("plots/fP_a.xmg"),out_fP_n("plots/fP_n.xmg");
  ofstream out_fM_a("plots/fM_a.xmg"),out_fM_n("plots/fM_n.xmg");
  ofstream out_f0_a("plots/f0_a.xmg"),out_f0_n("plots/f0_n.xmg");
  ofstream out_fT_a("plots/fT_a.xmg"),out_fT_n("plots/fT_n.xmg");
  out_fP_a<<"@type xydy"<<endl;
  out_fP_n<<"@type xydy"<<endl;
  out_f0_a<<"@type xydy"<<endl;
  out_f0_n<<"@type xydy"<<endl;
  out_fM_a<<"@type xydy"<<endl;
  out_fM_n<<"@type xydy"<<endl;
  out_fT_a<<"@type xydy"<<endl;
  out_fT_n<<"@type xydy"<<endl;
  out_f0_a<<Q2[0].med()<<" "<<f0_a[0]<<endl;
  out_f0_n<<Q2[0].med()<<" "<<f0_n[0]<<endl;
  for(int ith=1;ith<nth;ith++)
    {
      out_fP_a<<Q2[ith].med()<<" "<<fP_a[ith]<<endl;
      out_fP_n<<Q2[ith].med()<<" "<<fP_n[ith]<<endl;
      out_fM_a<<Q2[ith].med()<<" "<<fM_a[ith]<<endl;
      out_fM_n<<Q2[ith].med()<<" "<<fM_n[ith]<<endl;
      out_f0_a<<Q2[ith].med()<<" "<<f0_a[ith]<<endl;
      out_f0_n<<Q2[ith].med()<<" "<<f0_n[ith]<<endl;
      out_fT_a<<Q2[ith].med()<<" "<<fT_a[ith]<<endl;
      out_fT_n<<Q2[ith].med()<<" "<<fT_n[ith]<<endl;
    }
  
  ext_EP=EP;
  ext_ED=ED;
  ext_Q2=Q2;
  ext_fP=fP_a;
  ext_fM=fM_a;
  ext_f0=f0_a;
  ext_fT=fT_a;
}
示例#10
0
// Compute section tangent stiffness, ks, from material tangent, Dt,
// by integrating over section area
// ks = int_A a'*Dt*a dA
// a   = [1 -y z         0         0  0
//        0  0 0 sqrt(5/6)         0 -z
//        0  0 0         0 sqrt(5/6)  y]
const Matrix&
WSection2d::getSectionTangent(void)
{
  ks.Zero();
 
  double y, z, w;
  double y2, z2, yz;
  
  double d00, d01, d02;
  double d10, d11, d12;
  double d20, d21, d22;
  
  double tmp;
  
  double five6  = shapeFactor;
  double root56 = sqrt(shapeFactor);

  int numFibers = nfdw + 2*nftf;
  
  for (int i = 0; i < numFibers; i++) {
    
    y = yFibers[i];
    z = 0.0;
    w = AFibers[i];

    y2 = y*y;
    z2 = z*z;
    yz = y*z;
    
    const Matrix &Dt = theFibers[i]->getTangent();

    d00 = Dt(0,0)*w; d01 = Dt(0,1)*w; d02 = Dt(0,2)*w;
    d10 = Dt(1,0)*w; d11 = Dt(1,1)*w; d12 = Dt(1,2)*w;
    d20 = Dt(2,0)*w; d21 = Dt(2,1)*w; d22 = Dt(2,2)*w;
    
    // Bending terms
    ks(0,0) += d00;
    ks(1,1) += y2*d00;
    ks(2,2) += z2*d00;
    tmp = -y*d00;
    ks(0,1) += tmp;
    ks(1,0) += tmp;
    tmp = z*d00;
    ks(0,2) += tmp;
    ks(2,0) += tmp;
    tmp = -yz*d00;
    ks(1,2) += tmp;
    ks(2,1) += tmp;
    
    // Shear terms
    ks(3,3) += five6*d11;
    ks(3,4) += five6*d12;
    ks(4,3) += five6*d21;
    ks(4,4) += five6*d22;
    
    // Torsion term
    ks(5,5) += z2*d11 - yz*(d12+d21) + y2*d22;
    
    // Bending-torsion coupling terms
    tmp = -z*d01 + y*d02;
    ks(0,5) += tmp;
    ks(1,5) -= y*tmp;
    ks(2,5) += z*tmp;
    tmp = -z*d10 + y*d20;
    ks(5,0) += tmp;
    ks(5,1) -= y*tmp;
    ks(5,2) += z*tmp;
    
    // Hit tangent terms with root56
    d01 *= root56; d02 *= root56;
    d10 *= root56; d11 *= root56; d12 *= root56;
    d20 *= root56; d21 *= root56; d22 *= root56;
    
    // Bending-shear coupling terms
    ks(0,3) += d01;
    ks(0,4) += d02;
    ks(1,3) -= y*d01;
    ks(1,4) -= y*d02;
    ks(2,3) += z*d01;
    ks(2,4) += z*d02;
    ks(3,0) += d10;
    ks(4,0) += d20;
    ks(3,1) -= y*d10;
    ks(4,1) -= y*d20;
    ks(3,2) += z*d10;
    ks(4,2) += z*d20;
    
    // Torsion-shear coupling terms
    y2 =  y*d22;
    z2 = -z*d11;
    ks(5,3) +=  z2 + y*d21;
    ks(5,4) += -z*d12 + y2;
    ks(3,5) +=  z2 + y*d12;
    ks(4,5) += -z*d21 + y2;
  }

  // Non-zero value since this is 2d section (so ks can be inverted)
  ks(2,2) = 1.0;

  return ks;
}
void CExWRegularGridBP::msg(float* s1, float* s2, 
float* s3, float* s4, float* dst, int offset, float w, float trunc) {
	float val;
	////added by dy
	//float * dst_old = new float[VALUES];
	//for (int i=0;i<VALUES;i++)
	//{
	//	dst_old[i] = dst[i];
	//}

	////added by dy end

	// offset: dstOffset - srcOffset
	// aggregate and find min
	float minimum = INF;

	for(int value = 0; value <VALUES; value++){
		dst[value] = INF;
	}
	for (int value = 0; value < VALUES; value++) {
		//message y->x: h(y) + |x-y+offset|
		//h(y), y = value, dstOffset + x = srcOffset + y
		float hVal = s1[value] + s2[value] + s3[value] + s4[value];		

		//Calculating minimum should be here! Corrected by Xiangli Kong.
		if (hVal < minimum)
			minimum = hVal;

		int xVal = min(VALUES-1, max(0,value - offset));
		hVal += abs(xVal - (value-offset));
		dst[xVal] = min(dst[xVal],hVal);

		//if (hVal < minimum)
		//	minimum = hVal;
	}

	// dt
	Dt(dst,w);

	// truncate 
	minimum += w * trunc;
	for (int value = 0; value < VALUES; value++)
		if (minimum < dst[value])
			dst[value] = minimum;

	// normalize 
	val = 0;
	for (int value = 0; value < VALUES; value++) 
		val += dst[value];

	val /= VALUES;
	for (int value = 0; value < VALUES; value++) 
		dst[value] -= val;
	//added by dy
	//static FILE * fout=fopen("dst.txt","w+");

	//for (int value = 0; value < VALUES; value++) 
	//	dst[value] = (dst[value]+ dst_old[value])*0.25;
	//if (dst[5]>0)
	//	fprintf(fout,"%f\n ",dst[5]);
	////fclose(fout);


	//delete [] dst_old;dst_old = NULL;
	///*for (int value = 0; value < VALUES; value++) 
	//	dst_old[value] = dst[value];*/

	////added by dy end
}