/* * highly inefficient computation of the imaginary part of complex * conjugate eigenvalues of a 3x3 non-symmetric matrix */ double gage_imaginary_part_eigenvalues( gage_t *M ) { double A, B, C, scale, frob, m[9], _eval[3]; double beta, gamma; int roots; frob = ELL_3M_FROB(M); scale = frob > 10 ? 10.0/frob : 1.0; ELL_3M_SCALE(m, scale, M); /* ** from gordon with mathematica; these are the coefficients of the ** cubic polynomial in x: det(x*I - M). The full cubic is ** x^3 + A*x^2 + B*x + C. */ A = -m[0] - m[4] - m[8]; B = m[0]*m[4] - m[3]*m[1] + m[0]*m[8] - m[6]*m[2] + m[4]*m[8] - m[7]*m[5]; C = (m[6]*m[4] - m[3]*m[7])*m[2] + (m[0]*m[7] - m[6]*m[1])*m[5] + (m[3]*m[1] - m[0]*m[4])*m[8]; roots = ell_cubic(_eval, A, B, C, AIR_TRUE); if ( roots != ell_cubic_root_single ) return 0.; /* 2 complex conjuguate eigenvalues */ beta = A + _eval[0]; gamma = -C/_eval[0]; return sqrt( 4.*gamma - beta*beta ); }
/* ******** ell_3m_eigenvalues_d() ** ** finds eigenvalues of given matrix. ** ** returns information about the roots according to ellCubeRoot enum, ** see header for ellCubic for details. ** ** given matrix is NOT modified ** ** This does NOT use biff ** ** Doing the frobenius normalization proved successfull in avoiding the ** the creating of NaN eigenvalues when the coefficients of the matrix ** were really large (> 50000). Also, when the matrix norm was really ** small, the comparison to "epsilon" in ell_cubic mistook three separate ** roots for a single and a double, with this matrix in particular: ** 1.7421892 0.0137642 0.0152975 ** 0.0137642 1.7565432 -0.0062296 ** 0.0152975 -0.0062296 1.7700019 ** (actually, this is prior to tenEigensolve's isotropic removal) ** ** HEY: tenEigensolve_d and tenEigensolve_f start by removing the ** isotropic part of the tensor. It may be that that smarts should ** be migrated here, but GLK is uncertain how it would change the ** handling of non-symmetric matrices. */ int ell_3m_eigenvalues_d(double _eval[3], const double _m[9], const int newton) { double A, B, C, scale, frob, m[9], eval[3]; int roots; frob = ELL_3M_FROB(_m); scale = frob ? 1.0/frob : 1.0; ELL_3M_SCALE(m, scale, _m); /* printf("!%s: m = %g %g %g; %g %g %g; %g %g %g\n", "ell_3m_eigenvalues_d", m[0], m[1], m[2], m[3], m[4], m[5], m[6], m[7], m[8]); */ /* ** from gordon with mathematica; these are the coefficients of the ** cubic polynomial in x: det(x*I - M). The full cubic is ** x^3 + A*x^2 + B*x + C. */ A = -m[0] - m[4] - m[8]; B = m[0]*m[4] - m[3]*m[1] + m[0]*m[8] - m[6]*m[2] + m[4]*m[8] - m[7]*m[5]; C = (m[6]*m[4] - m[3]*m[7])*m[2] + (m[0]*m[7] - m[6]*m[1])*m[5] + (m[3]*m[1] - m[0]*m[4])*m[8]; /* printf("!%s: A B C = %g %g %g\n", "ell_3m_eigenvalues_d", A, B, C); */ roots = ell_cubic(eval, A, B, C, newton); /* no longer need to sort here */ ELL_3V_SCALE(_eval, 1.0/scale, eval); return roots; }
static void scalingMatrix(double mat[9], double vec[3], double scl) { double dir[3], tmp[9], len; ELL_3V_NORM(dir, vec, len); ELL_3MV_OUTER(tmp, dir, dir); ELL_3M_SCALE(tmp, scl-1, tmp); ELL_3M_IDENTITY_SET(mat); ELL_3M_ADD2(mat, mat, tmp); return; }
int main(int argc, const char *argv[]) { const char *me; char *err, *outS; double scale[3], matA[9], matB[9], matC[9], sval[3], uu[9], vv[9]; float matAf[9], matBf[16]; float p[3], q[4], mR[9], len, gamma; float os, vs, rad, AB[2], ten[7], view[3]; hestOpt *hopt=NULL; airArray *mop; limnObject *obj; limnLook *look; int lookRod, lookSoid; int partIdx=-1; /* sssh */ int res, sphere; FILE *file; me = argv[0]; hestOptAdd(&hopt, "sc", "scalings", airTypeDouble, 3, 3, scale, "1 1 1", "axis-aligned scaling to do on ellipsoid"); hestOptAdd(&hopt, "AB", "A, B exponents", airTypeFloat, 2, 2, AB, "nan nan", "Directly set the A, B parameters to the superquadric surface, " "over-riding the default behavior of determining them from the " "scalings \"-sc\" as superquadric tensor glyphs"); hestOptAdd(&hopt, "os", "over-all scaling", airTypeFloat, 1, 1, &os, "1", "over-all scaling (multiplied by scalings)"); hestOptAdd(&hopt, "vs", "over-all scaling", airTypeFloat, 1, 1, &vs, "1", "scaling along view-direction (to show off bas-relief " "ambibuity of ellipsoids versus superquads)"); hestOptAdd(&hopt, "fr", "from (eye) point", airTypeFloat, 3, 3, &view, "4 4 4", "eye point, needed for non-unity \"-vs\""); hestOptAdd(&hopt, "gamma", "superquad sharpness", airTypeFloat, 1, 1, &gamma, "0", "how much to sharpen edges as a " "function of differences between eigenvalues"); hestOptAdd(&hopt, "sphere", NULL, airTypeInt, 0, 0, &sphere, NULL, "use a sphere instead of a superquadric"); hestOptAdd(&hopt, "p", "x y z", airTypeFloat, 3, 3, p, "0 0 0", "location in quaternion quotient space"); hestOptAdd(&hopt, "r", "radius", airTypeFloat, 1, 1, &rad, "0.015", "black axis cylinder radius (or 0.0 to not drawn these)"); hestOptAdd(&hopt, "res", "resolution", airTypeInt, 1, 1, &res, "25", "tesselation resolution for both glyph and axis cylinders"); hestOptAdd(&hopt, "o", "output OFF", airTypeString, 1, 1, &outS, "out.off", "output file to save OFF into"); hestParseOrDie(hopt, argc-1, argv+1, NULL, me, info, AIR_TRUE, AIR_TRUE, AIR_TRUE); mop = airMopNew(); airMopAdd(mop, hopt, (airMopper)hestOptFree, airMopAlways); airMopAdd(mop, hopt, (airMopper)hestParseFree, airMopAlways); obj = limnObjectNew(1000, AIR_TRUE); airMopAdd(mop, obj, (airMopper)limnObjectNix, airMopAlways); /* create limnLooks for ellipsoid and for rods */ lookSoid = limnObjectLookAdd(obj); look = obj->look + lookSoid; ELL_4V_SET(look->rgba, 1, 1, 1, 1); ELL_3V_SET(look->kads, 0.2, 0.8, 0); look->spow = 0; lookRod = limnObjectLookAdd(obj); look = obj->look + lookRod; ELL_4V_SET(look->rgba, 0, 0, 0, 1); ELL_3V_SET(look->kads, 1, 0, 0); look->spow = 0; ELL_3M_IDENTITY_SET(matA); ELL_3V_SCALE(scale, os, scale); ELL_3M_SCALE_SET(matB, scale[0], scale[1], scale[2]); ell_3m_post_mul_d(matA, matB); if (1 != vs) { ELL_3V_NORM(view, view, len); if (!len) { /* HEY: perhaps do more diplomatic error message here */ fprintf(stderr, "%s: stupido!\n", me); exit(1); } ELL_3MV_OUTER(matB, view, view); ELL_3M_SCALE(matB, vs-1, matB); ELL_3M_IDENTITY_SET(matC); ELL_3M_ADD2(matB, matC, matB); ell_3m_post_mul_d(matA, matB); } ell_3m_svd_d(uu, sval, vv, matA, AIR_TRUE); /* fprintf(stderr, "%s: ____________________________________\n", me); fprintf(stderr, "%s: mat = \n", me); ell_3m_print_d(stderr, matA); fprintf(stderr, "%s: uu = \n", me); ell_3m_print_d(stderr, uu); ELL_3M_TRANSPOSE(matC, uu); ELL_3M_MUL(matB, uu, matC); fprintf(stderr, "%s: uu * uu^T = \n", me); ell_3m_print_d(stderr, matB); fprintf(stderr, "%s: sval = %g %g %g\n", me, sval[0], sval[1], sval[2]); fprintf(stderr, "%s: vv = \n", me); ell_3m_print_d(stderr, vv); ELL_3M_MUL(matB, vv, vv); fprintf(stderr, "%s: vv * vv^T = \n", me); ELL_3M_TRANSPOSE(matC, vv); ELL_3M_MUL(matB, vv, matC); ell_3m_print_d(stderr, matB); ELL_3M_IDENTITY_SET(matA); ell_3m_pre_mul_d(matA, uu); ELL_3M_SCALE_SET(matB, sval[0], sval[1], sval[2]); ell_3m_pre_mul_d(matA, matB); ell_3m_pre_mul_d(matA, vv); fprintf(stderr, "%s: uu * diag(sval) * vv = \n", me); ell_3m_print_d(stderr, matA); fprintf(stderr, "%s: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", me); */ ELL_3M_IDENTITY_SET(matA); ell_3m_pre_mul_d(matA, uu); ELL_3M_SCALE_SET(matB, sval[0], sval[1], sval[2]); ell_3m_pre_mul_d(matA, matB); ELL_3M_TRANSPOSE(matB, uu); ell_3m_pre_mul_d(matA, matB); TEN_M2T(ten, matA); partIdx = soidDoit(obj, lookSoid, sphere, gamma, res, (AIR_EXISTS(AB[0]) && AIR_EXISTS(AB[1])) ? AB : NULL, ten); ELL_4V_SET(q, 1, p[0], p[1], p[2]); ELL_4V_NORM(q, q, len); ell_q_to_3m_f(mR, q); ELL_43M_INSET(matBf, mR); limnObjectPartTransform(obj, partIdx, matBf); if (rad) { partIdx = limnObjectCylinderAdd(obj, lookRod, 0, res); ELL_4M_IDENTITY_SET(matAf); ELL_4M_SCALE_SET(matBf, (1-scale[0])/2, rad, rad); ell_4m_post_mul_f(matAf, matBf); ELL_4M_TRANSLATE_SET(matBf, (1+scale[0])/2, 0.0, 0.0); ell_4m_post_mul_f(matAf, matBf); limnObjectPartTransform(obj, partIdx, matAf); partIdx = limnObjectCylinderAdd(obj, lookRod, 0, res); ELL_4M_IDENTITY_SET(matAf); ELL_4M_SCALE_SET(matBf, (1-scale[0])/2, rad, rad); ell_4m_post_mul_f(matAf, matBf); ELL_4M_TRANSLATE_SET(matBf, -(1+scale[0])/2, 0.0, 0.0); ell_4m_post_mul_f(matAf, matBf); limnObjectPartTransform(obj, partIdx, matAf); partIdx = limnObjectCylinderAdd(obj, lookRod, 1, res); ELL_4M_IDENTITY_SET(matAf); ELL_4M_SCALE_SET(matBf, rad, (1-scale[1])/2, rad); ell_4m_post_mul_f(matAf, matBf); ELL_4M_TRANSLATE_SET(matBf, 0.0, (1+scale[1])/2, 0.0); ell_4m_post_mul_f(matAf, matBf); limnObjectPartTransform(obj, partIdx, matAf); partIdx = limnObjectCylinderAdd(obj, lookRod, 1, res); ELL_4M_IDENTITY_SET(matAf); ELL_4M_SCALE_SET(matBf, rad, (1-scale[1])/2, rad); ell_4m_post_mul_f(matAf, matBf); ELL_4M_TRANSLATE_SET(matBf, 0.0, -(1+scale[1])/2, 0.0); ell_4m_post_mul_f(matAf, matBf); limnObjectPartTransform(obj, partIdx, matAf); partIdx = limnObjectCylinderAdd(obj, lookRod, 2, res); ELL_4M_IDENTITY_SET(matAf); ELL_4M_SCALE_SET(matBf, rad, rad, (1-scale[2])/2); ell_4m_post_mul_f(matAf, matBf); ELL_4M_TRANSLATE_SET(matBf, 0.0, 0.0, (1+scale[2])/2); ell_4m_post_mul_f(matAf, matBf); limnObjectPartTransform(obj, partIdx, matAf); partIdx = limnObjectCylinderAdd(obj, lookRod, 2, res); ELL_4M_IDENTITY_SET(matAf); ELL_4M_SCALE_SET(matBf, rad, rad, (1-scale[2])/2); ell_4m_post_mul_f(matAf, matBf); ELL_4M_TRANSLATE_SET(matBf, 0.0, 0.0, -(1+scale[2])/2); ell_4m_post_mul_f(matAf, matBf); limnObjectPartTransform(obj, partIdx, matAf); } file = airFopen(outS, stdout, "w"); airMopAdd(mop, file, (airMopper)airFclose, airMopAlways); if (limnObjectWriteOFF(file, obj)) { airMopAdd(mop, err = biffGetDone(LIMN), airFree, airMopAlways); fprintf(stderr, "%s: trouble:\n%s\n", me, err); airMopError(mop); return 1; } airMopOkay(mop); return 0; }
void _gageSclAnswer (gageContext *ctx, gagePerVolume *pvl) { char me[]="_gageSclAnswer"; double gmag=0, *hess, *norm, *gvec, *gten, *k1, *k2, curv=0, sHess[9]={0,0,0,0,0,0,0,0,0}; double tmpMat[9], tmpVec[3], hevec[9], heval[3]; double len, gp1[3], gp2[3], *nPerp, ncTen[9], nProj[9]={0,0,0,0,0,0,0,0,0}; double alpha = 0.5; double beta = 0.5; double gamma = 5; double cc = 1e-6; #define FD_MEDIAN_MAX 16 int fd, nidx, xi, yi, zi; double *fw, iv3wght[2*FD_MEDIAN_MAX*FD_MEDIAN_MAX*FD_MEDIAN_MAX], wghtSum, wght; /* convenience pointers for work below */ hess = pvl->directAnswer[gageSclHessian]; gvec = pvl->directAnswer[gageSclGradVec]; norm = pvl->directAnswer[gageSclNormal]; nPerp = pvl->directAnswer[gageSclNPerp]; gten = pvl->directAnswer[gageSclGeomTens]; k1 = pvl->directAnswer[gageSclK1]; k2 = pvl->directAnswer[gageSclK2]; if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclValue)) { /* done if doV */ if (ctx->verbose) { fprintf(stderr, "%s: val = % 15.7f\n", me, (double)(pvl->directAnswer[gageSclValue][0])); } } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclGradVec)) { /* done if doD1 */ if (ctx->verbose) { fprintf(stderr, "%s: gvec = ", me); ell_3v_print_d(stderr, gvec); } } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclGradMag)) { /* this is the true value of gradient magnitude */ gmag = pvl->directAnswer[gageSclGradMag][0] = sqrt(ELL_3V_DOT(gvec, gvec)); } /* NB: it would seem that gageParmGradMagMin is completely ignored ... */ if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclNormal)) { if (gmag) { ELL_3V_SCALE(norm, 1/gmag, gvec); /* polishing ... len = sqrt(ELL_3V_DOT(norm, norm)); ELL_3V_SCALE(norm, 1/len, norm); */ } else { ELL_3V_COPY(norm, gageZeroNormal); } } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclNPerp)) { /* nPerp = I - outer(norm, norm) */ /* NB: this sets both nPerp and nProj */ ELL_3MV_OUTER(nProj, norm, norm); ELL_3M_SCALE(nPerp, -1, nProj); nPerp[0] += 1; nPerp[4] += 1; nPerp[8] += 1; } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclHessian)) { /* done if doD2 */ if (ctx->verbose) { fprintf(stderr, "%s: hess = \n", me); ell_3m_print_d(stderr, hess); } } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclLaplacian)) { pvl->directAnswer[gageSclLaplacian][0] = hess[0] + hess[4] + hess[8]; if (ctx->verbose) { fprintf(stderr, "%s: lapl = %g + %g + %g = %g\n", me, hess[0], hess[4], hess[8], pvl->directAnswer[gageSclLaplacian][0]); } } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclHessFrob)) { pvl->directAnswer[gageSclHessFrob][0] = ELL_3M_FROB(hess); } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclHessEval)) { /* HEY: look at the return value for root multiplicity? */ ell_3m_eigensolve_d(heval, hevec, hess, AIR_TRUE); ELL_3V_COPY(pvl->directAnswer[gageSclHessEval], heval); } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclHessEvec)) { ELL_3M_COPY(pvl->directAnswer[gageSclHessEvec], hevec); } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclHessRidgeness)) { double A, B, S; if (heval[1] >0 || heval[2]>0) { pvl->directAnswer[gageSclHessRidgeness][0] = 0; } else if (AIR_ABS(heval[1])<1e-10 || AIR_ABS(heval[2])<1e-10) { pvl->directAnswer[gageSclHessRidgeness][0] = 0; } else { double *ans; A = AIR_ABS(heval[1])/AIR_ABS(heval[2]); B = AIR_ABS(heval[0])/sqrt(AIR_ABS(heval[1]*heval[2])); S = sqrt(heval[0]*heval[0] + heval[1]*heval[1] + heval[2]*heval[2]); ans = pvl->directAnswer[gageSclHessRidgeness]; ans[0] = (1-exp(-A*A/(2*alpha*alpha))) * exp(-B*B/(2*beta*beta)) * (1-exp(-S*S/(2*gamma*gamma))) * exp(-2*cc*cc/(AIR_ABS(heval[1])*heval[2]*heval[2])); } } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclHessValleyness)) { double A, B, S; if (heval[0] <0 || heval[1]<0) { pvl->directAnswer[gageSclHessValleyness][0] = 0; } else if (AIR_ABS(heval[0])<1e-10 || AIR_ABS(heval[1])<1e-10) { pvl->directAnswer[gageSclHessValleyness][0] = 0; } else { double *ans; A = AIR_ABS(heval[1])/AIR_ABS(heval[0]); B = AIR_ABS(heval[2])/sqrt(AIR_ABS(heval[1]*heval[0])); S = sqrt(heval[0]*heval[0] + heval[1]*heval[1] + heval[2]*heval[2]); ans = pvl->directAnswer[gageSclHessValleyness]; ans[0] = (1-exp(-A*A/(2*alpha*alpha))) * exp(-B*B/(2*beta*beta)) * (1-exp(-S*S/(2*gamma*gamma))) * exp(-2*cc*cc/(AIR_ABS(heval[1])*heval[0]*heval[0])); } } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclHessMode)) { pvl->directAnswer[gageSclHessMode][0] = airMode3_d(heval); } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageScl2ndDD)) { ELL_3MV_MUL(tmpVec, hess, norm); pvl->directAnswer[gageScl2ndDD][0] = ELL_3V_DOT(norm, tmpVec); } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclGeomTens)) { if (gmag > ctx->parm.gradMagCurvMin) { /* parm.curvNormalSide applied here to determine the sense of the normal when doing all curvature calculations */ ELL_3M_SCALE(sHess, -(ctx->parm.curvNormalSide)/gmag, hess); /* gten = nPerp * sHess * nPerp */ ELL_3M_MUL(tmpMat, sHess, nPerp); ELL_3M_MUL(gten, nPerp, tmpMat); if (ctx->verbose) { fprintf(stderr, "%s: gten: \n", me); ell_3m_print_d(stderr, gten); ELL_3MV_MUL(tmpVec, gten, norm); len = ELL_3V_LEN(tmpVec); fprintf(stderr, "%s: should be small: %30.15f\n", me, (double)len); ell_3v_perp_d(gp1, norm); ELL_3MV_MUL(tmpVec, gten, gp1); len = ELL_3V_LEN(tmpVec); fprintf(stderr, "%s: should be bigger: %30.15f\n", me, (double)len); ELL_3V_CROSS(gp2, gp1, norm); ELL_3MV_MUL(tmpVec, gten, gp2); len = ELL_3V_LEN(tmpVec); fprintf(stderr, "%s: should (also) be bigger: %30.15f\n", me, (double)len); } } else { ELL_3M_ZERO_SET(gten); } } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclTotalCurv)) { curv = pvl->directAnswer[gageSclTotalCurv][0] = ELL_3M_FROB(gten); } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclShapeTrace)) { pvl->directAnswer[gageSclShapeTrace][0] = (curv ? ELL_3M_TRACE(gten)/curv : 0); } if ( (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclK1)) || (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclK2)) ){ double T, N, D; T = ELL_3M_TRACE(gten); N = curv; D = 2*N*N - T*T; /* if (D < -0.0000001) { fprintf(stderr, "%s: %g %g\n", me, T, N); fprintf(stderr, "%s: !!! D curv determinant % 22.10f < 0.0\n", me, D); fprintf(stderr, "%s: gten: \n", me); ell_3m_print_d(stderr, gten); } */ D = AIR_MAX(D, 0); D = sqrt(D); k1[0] = 0.5*(T + D); k2[0] = 0.5*(T - D); } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclMeanCurv)) { pvl->directAnswer[gageSclMeanCurv][0] = (*k1 + *k2)/2; } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclGaussCurv)) { pvl->directAnswer[gageSclGaussCurv][0] = (*k1)*(*k2); } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclShapeIndex)) { pvl->directAnswer[gageSclShapeIndex][0] = -(2/AIR_PI)*atan2(*k1 + *k2, *k1 - *k2); } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclCurvDir1)) { /* HEY: this only works when K1, K2, 0 are all well mutually distinct, since these are the eigenvalues of the geometry tensor, and this code assumes that the eigenspaces are all one-dimensional */ ELL_3M_COPY(tmpMat, gten); ELL_3M_DIAG_SET(tmpMat, gten[0] - *k1, gten[4]- *k1, gten[8] - *k1); ell_3m_1d_nullspace_d(tmpVec, tmpMat); ELL_3V_COPY(pvl->directAnswer[gageSclCurvDir1], tmpVec); } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclCurvDir2)) { /* HEY: this only works when K1, K2, 0 are all well mutually distinct, since these are the eigenvalues of the geometry tensor, and this code assumes that the eigenspaces are all one-dimensional */ ELL_3M_COPY(tmpMat, gten); ELL_3M_DIAG_SET(tmpMat, gten[0] - *k2, gten[4] - *k2, gten[8] - *k2); ell_3m_1d_nullspace_d(tmpVec, tmpMat); ELL_3V_COPY(pvl->directAnswer[gageSclCurvDir2], tmpVec); } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclFlowlineCurv)) { if (gmag >= ctx->parm.gradMagCurvMin) { /* because of the gageSclGeomTens prerequisite, sHess, nPerp, and nProj are all already set */ /* ncTen = nPerp * sHess * nProj */ ELL_3M_MUL(tmpMat, sHess, nProj); ELL_3M_MUL(ncTen, nPerp, tmpMat); } else { ELL_3M_ZERO_SET(ncTen); } /* there used to be a wrong extra sqrt() here */ pvl->directAnswer[gageSclFlowlineCurv][0] = ELL_3M_FROB(ncTen); } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclMedian)) { /* this item is currently a complete oddball in that it does not benefit from anything done in the "filter" stage, which is in fact a waste of time if the query consists only of this item */ fd = 2*ctx->radius; if (fd > FD_MEDIAN_MAX) { fprintf(stderr, "%s: PANIC: current filter diameter = %d " "> FD_MEDIAN_MAX = %d\n", me, fd, FD_MEDIAN_MAX); exit(1); } fw = ctx->fw + fd*3*gageKernel00; /* HEY: this needs some optimization help */ wghtSum = 0; nidx = 0; for (xi=0; xi<fd; xi++) { for (yi=0; yi<fd; yi++) { for (zi=0; zi<fd; zi++) { iv3wght[0 + 2*nidx] = pvl->iv3[nidx]; iv3wght[1 + 2*nidx] = fw[xi + 0*fd]*fw[yi + 1*fd]*fw[zi + 2*fd]; wghtSum += iv3wght[1 + 2*nidx]; nidx++; } } } qsort(iv3wght, fd*fd*fd, 2*sizeof(double), nrrdValCompare[nrrdTypeDouble]); wght = 0; for (nidx=0; nidx<fd*fd*fd; nidx++) { wght += iv3wght[1 + 2*nidx]; if (wght > wghtSum/2) { break; } } pvl->directAnswer[gageSclMedian][0] = iv3wght[0 + 2*nidx]; } return; }