示例#1
0
void
tend_helixDoit(Nrrd *nout, double bnd,
               double orig[3], double i2w[9], double mf[9],
               double r, double R, double S, double angle, int incrtwist,
               double ev[3], double bgEval) {
  int sx, sy, sz, xi, yi, zi;
  double th, t0, t1, t2, t3, v1, v2,
    wpos[3], vpos[3], mfT[9],
    W2H[9], H2W[9], H2C[9], C2H[9], fv[3], rv[3], uv[3], mA[9], mB[9], inside,
    tmp[3], len;
  float *out;

  sx = nout->axis[1].size;
  sy = nout->axis[2].size;
  sz = nout->axis[3].size;
  out = (float*)nout->data;
  ELL_3M_TRANSPOSE(mfT, mf);
  for (zi=0; zi<sz; zi++) {
    fprintf(stderr, "zi = %d/%d\n", zi, sz);
    for (yi=0; yi<sy; yi++) {
      for (xi=0; xi<sx; xi++) {
        ELL_3V_SET(tmp, xi, yi, zi);
        ELL_3MV_MUL(vpos, i2w, tmp);
        ELL_3V_INCR(vpos, orig);

#define WPOS(pos, th) ELL_3V_SET((pos),R*cos(th), R*sin(th), S*(th)/(2*AIR_PI))
#define VAL(th) (WPOS(wpos, th), ELL_3V_DIST(wpos, vpos))
#define RR 0.61803399
#define CC (1.0-RR)
#define SHIFT3(a,b,c,d) (a)=(b); (b)=(c); (c)=(d)
#define SHIFT2(a,b,c)   (a)=(b); (b)=(c)
        
        th = atan2(vpos[1], vpos[0]);
        th += 2*AIR_PI*floor(0.5 + vpos[2]/S - th/(2*AIR_PI));
        if (S*th/(2*AIR_PI) > vpos[2]) {
          t0 = th - AIR_PI; t3 = th;
        } else {
          t0 = th; t3 = th + AIR_PI;
        }
        t1 = RR*t0 + CC*t3;
        t2 = CC*t0 + RR*t3;
        v1 = VAL(t1);
        v2 = VAL(t2);
        while ( t3-t0 > 0.000001*(AIR_ABS(t1)+AIR_ABS(t2)) ) {
          if (v1 < v2) {
            SHIFT3(t3, t2, t1, CC*t0 + RR*t2);
            SHIFT2(v2, v1, VAL(t1));
          } else {
            SHIFT3(t0, t1, t2, RR*t1 + CC*t3);
            SHIFT2(v1, v2, VAL(t2));
          }
        }
        /* t1 (and t2) are now the th for which the point on the helix
           (R*cos(th), R*sin(th), S*(th)/(2*AIR_PI)) is closest to vpos */

        WPOS(wpos, t1);
        ELL_3V_SUB(wpos, vpos, wpos);
        ELL_3V_SET(fv, -R*sin(t1), R*cos(t1), S/AIR_PI);  /* helix tangent */
        ELL_3V_NORM(fv, fv, len);
        ELL_3V_COPY(rv, wpos);
        ELL_3V_NORM(rv, rv, len);
        len = ELL_3V_DOT(rv, fv);
        ELL_3V_SCALE(tmp, -len, fv);
        ELL_3V_ADD2(rv, rv, tmp);
        ELL_3V_NORM(rv, rv, len);  /* rv now normal to helix, closest to 
                                      pointing to vpos */
        ELL_3V_CROSS(uv, rv, fv);
        ELL_3V_NORM(uv, uv, len);  /* (rv,fv,uv) now right-handed frame */
        ELL_3MV_ROW0_SET(W2H, uv); /* as is (uv,rv,fv) */
        ELL_3MV_ROW1_SET(W2H, rv);
        ELL_3MV_ROW2_SET(W2H, fv);
        ELL_3M_TRANSPOSE(H2W, W2H);
        inside = 0.5 - 0.5*airErf((ELL_3V_LEN(wpos)-r)/(bnd + 0.0001));
        if (incrtwist) {
          th = angle*ELL_3V_LEN(wpos)/r;
        } else {
          th = angle;
        }
        ELL_3M_ROTATE_Y_SET(H2C, th);
        ELL_3M_TRANSPOSE(C2H, H2C);
        ELL_3M_SCALE_SET(mA,
                         AIR_LERP(inside, bgEval, ev[1]),
                         AIR_LERP(inside, bgEval, ev[2]),
                         AIR_LERP(inside, bgEval, ev[0]));
        ELL_3M_MUL(mB, mA, H2C);
        ELL_3M_MUL(mA, mB, W2H);
        ELL_3M_MUL(mB, mA, mf);
        ELL_3M_MUL(mA, C2H, mB);
        ELL_3M_MUL(mB, H2W, mA);
        ELL_3M_MUL(mA, mfT, mB);
        
        TEN_M2T_TT(out, float, mA);
        out[0] = 1.0;
        out += 7;
      }
    }
  }
  return;
}
示例#2
0
文件: glyph.c 项目: BRAINSia/teem
int
tenGlyphGen(limnObject *glyphsLimn, echoScene *glyphsEcho,
            tenGlyphParm *parm,
            const Nrrd *nten, const Nrrd *npos, const Nrrd *nslc) {
  static const char me[]="tenGlyphGen";
  gageShape *shape;
  airArray *mop;
  float *tdata, eval[3], evec[9], *cvec, rotEvec[9], mA_f[16],
    absEval[3], glyphScl[3];
  double pI[3], pW[3], cl, cp, sRot[16], mA[16], mB[16], msFr[9], tmpvec[3],
    R, G, B, qA, qB, qC, glyphAniso, sliceGray;
  unsigned int duh;
  int slcCoord[3], idx, glyphIdx, axis, numGlyphs,
    svRGBAfl=AIR_FALSE;
  limnLook *look; int lookIdx;
  echoObject *eglyph, *inst, *list=NULL, *split, *esquare;
  echoPos_t eM[16], originOffset[3], edge0[3], edge1[3];
  char stmp[AIR_STRLEN_SMALL];
  /*
  int eret;
  double tmp1[3], tmp2[3];
  */

  if (!( (glyphsLimn || glyphsEcho) && nten && parm)) {
    biffAddf(TEN, "%s: got NULL pointer", me);
    return 1;
  }
  mop = airMopNew();
  shape = gageShapeNew();
  shape->defaultCenter = nrrdCenterCell;
  airMopAdd(mop, shape, (airMopper)gageShapeNix, airMopAlways);
  if (npos) {
    if (!( 2 == nten->dim && 7 == nten->axis[0].size )) {
      biffAddf(TEN, "%s: nten isn't 2-D 7-by-N array", me);
      airMopError(mop); return 1;
    }
    if (!( 2 == npos->dim && 3 == npos->axis[0].size
           && nten->axis[1].size == npos->axis[1].size )) {
      biffAddf(TEN, "%s: npos isn't 2-D 3-by-%s array", me,
               airSprintSize_t(stmp, nten->axis[1].size));
      airMopError(mop); return 1;
    }
    if (!( nrrdTypeFloat == nten->type && nrrdTypeFloat == npos->type )) {
      biffAddf(TEN, "%s: nten and npos must be %s, not %s and %s", me,
               airEnumStr(nrrdType, nrrdTypeFloat),
               airEnumStr(nrrdType, nten->type),
               airEnumStr(nrrdType, npos->type));
      airMopError(mop); return 1;
    }
  } else {
    if (tenTensorCheck(nten, nrrdTypeFloat, AIR_TRUE, AIR_TRUE)) {
      biffAddf(TEN, "%s: didn't get a valid DT volume", me);
      airMopError(mop); return 1;
    }
  }
  if (tenGlyphParmCheck(parm, nten, npos, nslc)) {
    biffAddf(TEN, "%s: trouble", me);
    airMopError(mop); return 1;
  }
  if (!npos) {
    if (gageShapeSet(shape, nten, tenGageKind->baseDim)) {
      biffMovef(TEN, GAGE, "%s: trouble", me);
      airMopError(mop); return 1;
    }
  }
  if (parm->doSlice) {
    ELL_3V_COPY(edge0, shape->spacing);
    ELL_3V_COPY(edge1, shape->spacing);
    edge0[parm->sliceAxis] = edge1[parm->sliceAxis] = 0.0;
    switch(parm->sliceAxis) {
    case 0:
      edge0[1] = edge1[2] = 0;
      ELL_4M_ROTATE_Y_SET(sRot, AIR_PI/2);
      break;
    case 1:
      edge0[0] = edge1[2] = 0;
      ELL_4M_ROTATE_X_SET(sRot, AIR_PI/2);
      break;
    case 2: default:
      edge0[0] = edge1[1] = 0;
      ELL_4M_IDENTITY_SET(sRot);
      break;
    }
    ELL_3V_COPY(originOffset, shape->spacing);
    ELL_3V_SCALE(originOffset, -0.5, originOffset);
    originOffset[parm->sliceAxis] *= -2*parm->sliceOffset;
  }
  if (glyphsLimn) {
    /* create limnLooks for diffuse and ambient-only shading */
    /* ??? */
    /* hack: save old value of setVertexRGBAFromLook, and set to true */
    svRGBAfl = glyphsLimn->setVertexRGBAFromLook;
    glyphsLimn->setVertexRGBAFromLook = AIR_TRUE;
  }
  if (glyphsEcho) {
    list = echoObjectNew(glyphsEcho, echoTypeList);
  }
  if (npos) {
    numGlyphs = AIR_UINT(nten->axis[1].size);
  } else {
    numGlyphs = shape->size[0] * shape->size[1] * shape->size[2];
  }
  /* find measurement frame transform */
  if (3 == nten->spaceDim
      && AIR_EXISTS(nten->measurementFrame[0][0])) {
    /*     msFr        nten->measurementFrame
    **   0  1  2      [0][0]   [1][0]   [2][0]
    **   3  4  5      [0][1]   [1][1]   [2][1]
    **   6  7  8      [0][2]   [1][2]   [2][2]
    */
    msFr[0] = nten->measurementFrame[0][0];
    msFr[3] = nten->measurementFrame[0][1];
    msFr[6] = nten->measurementFrame[0][2];
    msFr[1] = nten->measurementFrame[1][0];
    msFr[4] = nten->measurementFrame[1][1];
    msFr[7] = nten->measurementFrame[1][2];
    msFr[2] = nten->measurementFrame[2][0];
    msFr[5] = nten->measurementFrame[2][1];
    msFr[8] = nten->measurementFrame[2][2];
  } else {
    ELL_3M_IDENTITY_SET(msFr);
  }
  for (idx=0; idx<numGlyphs; idx++) {
    tdata = (float*)(nten->data) + 7*idx;
    if (parm->verbose >= 2) {
      fprintf(stderr, "%s: glyph %d/%d: hello %g    %g %g %g %g %g %g\n",
              me, idx, numGlyphs, tdata[0],
              tdata[1], tdata[2], tdata[3],
              tdata[4], tdata[5], tdata[6]);
    }
    if (!( TEN_T_EXISTS(tdata) )) {
      /* there's nothing we can do here */
      if (parm->verbose >= 2) {
        fprintf(stderr, "%s: glyph %d/%d: non-existent data\n",
                me, idx, numGlyphs);
      }
      continue;
    }
    if (npos) {
      ELL_3V_COPY(pW, (float*)(npos->data) + 3*idx);
      if (!( AIR_EXISTS(pW[0]) && AIR_EXISTS(pW[1]) && AIR_EXISTS(pW[2]) )) {
        /* position doesn't exist- perhaps because its from the push
           library, which might kill points by setting coords to nan */
        continue;
      }
    } else {
      NRRD_COORD_GEN(pI, shape->size, 3, idx);
      /* this does take into account full orientation */
      gageShapeItoW(shape, pW, pI);
      if (parm->nmask) {
        if (!( nrrdFLookup[parm->nmask->type](parm->nmask->data, idx)
               >= parm->maskThresh )) {
          if (parm->verbose >= 2) {
            fprintf(stderr, "%s: glyph %d/%d: doesn't meet mask thresh\n",
                    me, idx, numGlyphs);
          }
          continue;
        }
      }
    }
    tenEigensolve_f(eval, evec, tdata);
    /* transform eigenvectors by measurement frame */
    ELL_3MV_MUL(tmpvec, msFr, evec + 0);
    ELL_3V_COPY_TT(evec + 0, float, tmpvec);
    ELL_3MV_MUL(tmpvec, msFr, evec + 3);
    ELL_3V_COPY_TT(evec + 3, float, tmpvec);
    ELL_3MV_MUL(tmpvec, msFr, evec + 6);
    ELL_3V_COPY_TT(evec + 6, float, tmpvec);
    ELL_3V_CROSS(tmpvec, evec + 0, evec + 3);
    if (0 > ELL_3V_DOT(tmpvec, evec + 6)) {
      ELL_3V_SCALE(evec + 6, -1, evec + 6);
    }
    ELL_3M_TRANSPOSE(rotEvec, evec);
    if (parm->doSlice
        && pI[parm->sliceAxis] == parm->slicePos) {
      /* set sliceGray */
      if (nslc) {
        /* we aren't masked by confidence, as anisotropy slice is */
        for (duh=0; duh<parm->sliceAxis; duh++) {
          slcCoord[duh] = (int)(pI[duh]);
        }
        for (duh=duh<parm->sliceAxis; duh<2; duh++) {
          slcCoord[duh] = (int)(pI[duh+1]);
        }
        /* HEY: GLK has no idea what's going here */
        slcCoord[0] = (int)(pI[0]);
        slcCoord[1] = (int)(pI[1]);
        slcCoord[2] = (int)(pI[2]);
        sliceGray =
          nrrdFLookup[nslc->type](nslc->data, slcCoord[0]
                                  + nslc->axis[0].size*slcCoord[1]);
      } else {
        if (!( tdata[0] >= parm->confThresh )) {
          if (parm->verbose >= 2) {
            fprintf(stderr, "%s: glyph %d/%d (slice): conf %g < thresh %g\n",
                    me, idx, numGlyphs, tdata[0], parm->confThresh);
          }
          continue;
        }
        sliceGray = tenAnisoEval_f(eval, parm->sliceAnisoType);
      }
      if (parm->sliceGamma > 0) {
        sliceGray = AIR_AFFINE(0, sliceGray, 1, parm->sliceBias, 1);
        sliceGray = pow(sliceGray, 1.0/parm->sliceGamma);
      } else {
        sliceGray = AIR_AFFINE(0, sliceGray, 1, 0, 1-parm->sliceBias);
        sliceGray = 1.0 - pow(sliceGray, -1.0/parm->sliceGamma);
      }
      /* make slice contribution */
      /* HEY: this is *NOT* aware of shape->fromOrientation */
      if (glyphsLimn) {
        lookIdx = limnObjectLookAdd(glyphsLimn);
        look = glyphsLimn->look + lookIdx;
        ELL_4V_SET_TT(look->rgba, float, sliceGray, sliceGray, sliceGray, 1);
        ELL_3V_SET(look->kads, 1, 0, 0);
        look->spow = 0;
        glyphIdx = limnObjectSquareAdd(glyphsLimn, lookIdx);
        ELL_4M_IDENTITY_SET(mA);
        ell_4m_post_mul_d(mA, sRot);
        if (!npos) {
          ELL_4M_SCALE_SET(mB,
                           shape->spacing[0],
                           shape->spacing[1],
                           shape->spacing[2]);
        }
        ell_4m_post_mul_d(mA, mB);
        ELL_4M_TRANSLATE_SET(mB, pW[0], pW[1], pW[2]);
        ell_4m_post_mul_d(mA, mB);
        ELL_4M_TRANSLATE_SET(mB,
                             originOffset[0],
                             originOffset[1],
                             originOffset[2]);
        ell_4m_post_mul_d(mA, mB);
        ELL_4M_COPY_TT(mA_f, float, mA);
        limnObjectPartTransform(glyphsLimn, glyphIdx, mA_f);
      }
      if (glyphsEcho) {
        esquare = echoObjectNew(glyphsEcho,echoTypeRectangle);
        ELL_3V_ADD2(((echoRectangle*)esquare)->origin, pW, originOffset);
        ELL_3V_COPY(((echoRectangle*)esquare)->edge0, edge0);
        ELL_3V_COPY(((echoRectangle*)esquare)->edge1, edge1);
        echoColorSet(esquare,
                     AIR_CAST(echoCol_t, sliceGray),
                     AIR_CAST(echoCol_t, sliceGray),
                     AIR_CAST(echoCol_t, sliceGray), 1);
        /* this is pretty arbitrary- but I want shadows to have some effect.
           Previously, the material was all ambient: (A,D,S) = (1,0,0),
           which avoided all shadow effects. */
        echoMatterPhongSet(glyphsEcho, esquare, 0.4f, 0.6f, 0, 40);
        echoListAdd(list, esquare);
      }
    }
    if (parm->onlyPositive) {
      if (eval[2] < 0) {
        /* didn't have all positive eigenvalues, its outta here */
        if (parm->verbose >= 2) {
          fprintf(stderr, "%s: glyph %d/%d: not all evals %g %g %g > 0\n",
                  me, idx, numGlyphs, eval[0], eval[1], eval[2]);
        }
        continue;
      }
    }
    if (!( tdata[0] >= parm->confThresh )) {
      if (parm->verbose >= 2) {
        fprintf(stderr, "%s: glyph %d/%d: conf %g < thresh %g\n",
                me, idx, numGlyphs, tdata[0], parm->confThresh);
      }
      continue;
    }
    if (!( tenAnisoEval_f(eval, parm->anisoType) >= parm->anisoThresh )) {
      if (parm->verbose >= 2) {
        fprintf(stderr, "%s: glyph %d/%d: aniso[%d] %g < thresh %g\n",
                me, idx, numGlyphs, parm->anisoType,
                tenAnisoEval_f(eval, parm->anisoType), parm->anisoThresh);
      }
      continue;
    }
    glyphAniso = tenAnisoEval_f(eval, parm->colAnisoType);
    /*
      fprintf(stderr, "%s: eret = %d; evals = %g %g %g\n", me,
      eret, eval[0], eval[1], eval[2]);
      ELL_3V_CROSS(tmp1, evec+0, evec+3); tmp2[0] = ELL_3V_LEN(tmp1);
      ELL_3V_CROSS(tmp1, evec+0, evec+6); tmp2[1] = ELL_3V_LEN(tmp1);
      ELL_3V_CROSS(tmp1, evec+3, evec+6); tmp2[2] = ELL_3V_LEN(tmp1);
      fprintf(stderr, "%s: crosses = %g %g %g\n", me,
      tmp2[0], tmp2[1], tmp2[2]);
    */

    /* set transform (in mA) */
    ELL_3V_ABS(absEval, eval);
    ELL_4M_IDENTITY_SET(mA);                        /* reset */
    ELL_3V_SCALE(glyphScl, parm->glyphScale, absEval); /* scale by evals */
    ELL_4M_SCALE_SET(mB, glyphScl[0], glyphScl[1], glyphScl[2]);

    ell_4m_post_mul_d(mA, mB);
    ELL_43M_INSET(mB, rotEvec);                     /* rotate by evecs */
    ell_4m_post_mul_d(mA, mB);
    ELL_4M_TRANSLATE_SET(mB, pW[0], pW[1], pW[2]);  /* translate */
    ell_4m_post_mul_d(mA, mB);

    /* set color (in R,G,B) */
    cvec = evec + 3*(AIR_CLAMP(0, parm->colEvec, 2));
    R = AIR_ABS(cvec[0]);                           /* standard mapping */
    G = AIR_ABS(cvec[1]);
    B = AIR_ABS(cvec[2]);
    /* desaturate by colMaxSat */
    R = AIR_AFFINE(0.0, parm->colMaxSat, 1.0, parm->colIsoGray, R);
    G = AIR_AFFINE(0.0, parm->colMaxSat, 1.0, parm->colIsoGray, G);
    B = AIR_AFFINE(0.0, parm->colMaxSat, 1.0, parm->colIsoGray, B);
    /* desaturate some by anisotropy */
    R = AIR_AFFINE(0.0, parm->colAnisoModulate, 1.0,
                   R, AIR_AFFINE(0.0, glyphAniso, 1.0, parm->colIsoGray, R));
    G = AIR_AFFINE(0.0, parm->colAnisoModulate, 1.0,
                   G, AIR_AFFINE(0.0, glyphAniso, 1.0, parm->colIsoGray, G));
    B = AIR_AFFINE(0.0, parm->colAnisoModulate, 1.0,
                   B, AIR_AFFINE(0.0, glyphAniso, 1.0, parm->colIsoGray, B));
    /* clamp and do gamma */
    R = AIR_CLAMP(0.0, R, 1.0);
    G = AIR_CLAMP(0.0, G, 1.0);
    B = AIR_CLAMP(0.0, B, 1.0);
    R = pow(R, parm->colGamma);
    G = pow(G, parm->colGamma);
    B = pow(B, parm->colGamma);

    /* find axis, and superquad exponents qA and qB */
    if (eval[2] > 0) {
      /* all evals positive */
      cl = AIR_MIN(0.99, tenAnisoEval_f(eval, tenAniso_Cl1));
      cp = AIR_MIN(0.99, tenAnisoEval_f(eval, tenAniso_Cp1));
      if (cl > cp) {
        axis = 0;
        qA = pow(1-cp, parm->sqdSharp);
        qB = pow(1-cl, parm->sqdSharp);
      } else {
        axis = 2;
        qA = pow(1-cl, parm->sqdSharp);
        qB = pow(1-cp, parm->sqdSharp);
      }
      qC = qB;
    } else if (eval[0] < 0) {
      /* all evals negative */
      float aef[3];
      aef[0] = absEval[2];
      aef[1] = absEval[1];
      aef[2] = absEval[0];
      cl = AIR_MIN(0.99, tenAnisoEval_f(aef, tenAniso_Cl1));
      cp = AIR_MIN(0.99, tenAnisoEval_f(aef, tenAniso_Cp1));
      if (cl > cp) {
        axis = 2;
        qA = pow(1-cp, parm->sqdSharp);
        qB = pow(1-cl, parm->sqdSharp);
      } else {
        axis = 0;
        qA = pow(1-cl, parm->sqdSharp);
        qB = pow(1-cp, parm->sqdSharp);
      }
      qC = qB;
    } else {
#define OOSQRT2 0.70710678118654752440
#define OOSQRT3 0.57735026918962576451
      /* double poleA[3]={OOSQRT3, OOSQRT3, OOSQRT3}; */
      double poleB[3]={1, 0, 0};
      double poleC[3]={OOSQRT2, OOSQRT2, 0};
      double poleD[3]={OOSQRT3, -OOSQRT3, -OOSQRT3};
      double poleE[3]={OOSQRT2, 0, -OOSQRT2};
      double poleF[3]={OOSQRT3, OOSQRT3, -OOSQRT3};
      double poleG[3]={0, -OOSQRT2, -OOSQRT2};
      double poleH[3]={0, 0, -1};
      /* double poleI[3]={-OOSQRT3, -OOSQRT3, -OOSQRT3}; */
      double funk[3]={0,4,2}, thrn[3]={1,4,4};
      double octa[3]={0,2,2}, cone[3]={1,2,2};
      double evalN[3], tmp, bary[3];
      double qq[3];

      ELL_3V_NORM(evalN, eval, tmp);
      if (eval[1] >= -eval[2]) {
        /* inside B-F-C */
        ell_3v_barycentric_spherical_d(bary, poleB, poleF, poleC, evalN);
        ELL_3V_SCALE_ADD3(qq, bary[0], octa, bary[1], thrn, bary[2], cone);
        axis = 2;
      } else if (eval[0] >= -eval[2]) {
        /* inside B-D-F */
        if (eval[1] >= 0) {
          /* inside B-E-F */
          ell_3v_barycentric_spherical_d(bary, poleB, poleE, poleF, evalN);
          ELL_3V_SCALE_ADD3(qq, bary[0], octa, bary[1], funk, bary[2], thrn);
          axis = 2;
        } else {
          /* inside B-D-E */
          ell_3v_barycentric_spherical_d(bary, poleB, poleD, poleE, evalN);
          ELL_3V_SCALE_ADD3(qq, bary[0], cone, bary[1], thrn, bary[2], funk);
          axis = 0;
        }
      } else if (eval[0] < -eval[1]) {
        /* inside D-G-H */
        ell_3v_barycentric_spherical_d(bary, poleD, poleG, poleH, evalN);
        ELL_3V_SCALE_ADD3(qq, bary[0], thrn, bary[1], cone, bary[2], octa);
        axis = 0;
      } else if (eval[1] < 0) {
        /* inside E-D-H */
        ell_3v_barycentric_spherical_d(bary, poleE, poleD, poleH, evalN);
        ELL_3V_SCALE_ADD3(qq, bary[0], funk, bary[1], thrn, bary[2], octa);
        axis = 0;
      } else {
        /* inside F-E-H */
        ell_3v_barycentric_spherical_d(bary, poleF, poleE, poleH, evalN);
        ELL_3V_SCALE_ADD3(qq, bary[0], thrn, bary[1], funk, bary[2], cone);
        axis = 2;
      }
      qA = qq[0];
      qB = qq[1];
      qC = qq[2];
#undef OOSQRT2
#undef OOSQRT3
    }

    /* add the glyph */
    if (parm->verbose >= 2) {
      fprintf(stderr, "%s: glyph %d/%d: the glyph stays!\n",
              me, idx, numGlyphs);
    }
    if (glyphsLimn) {
      lookIdx = limnObjectLookAdd(glyphsLimn);
      look = glyphsLimn->look + lookIdx;
      ELL_4V_SET_TT(look->rgba, float, R, G, B, 1);
      ELL_3V_SET(look->kads, parm->ADSP[0], parm->ADSP[1], parm->ADSP[2]);
      look->spow = 0;
      switch(parm->glyphType) {
      case tenGlyphTypeBox:
        glyphIdx = limnObjectCubeAdd(glyphsLimn, lookIdx);
        break;
      case tenGlyphTypeSphere:
        glyphIdx = limnObjectPolarSphereAdd(glyphsLimn, lookIdx, axis,
                                            2*parm->facetRes, parm->facetRes);
        break;
      case tenGlyphTypeCylinder:
        glyphIdx = limnObjectCylinderAdd(glyphsLimn, lookIdx, axis,
                                         parm->facetRes);
        break;
      case tenGlyphTypeSuperquad:
      default:
        glyphIdx =
          limnObjectPolarSuperquadFancyAdd(glyphsLimn, lookIdx, axis,
                                           AIR_CAST(float, qA),
                                           AIR_CAST(float, qB),
                                           AIR_CAST(float, qC), 0,
                                           2*parm->facetRes,
                                           parm->facetRes);
        break;
      }
      ELL_4M_COPY_TT(mA_f, float, mA);
      limnObjectPartTransform(glyphsLimn, glyphIdx, mA_f);
    }
    if (glyphsEcho) {
      switch(parm->glyphType) {
      case tenGlyphTypeBox:
        eglyph = echoObjectNew(glyphsEcho, echoTypeCube);
        /* nothing else to set */
        break;
      case tenGlyphTypeSphere:
        eglyph = echoObjectNew(glyphsEcho, echoTypeSphere);
        echoSphereSet(eglyph, 0, 0, 0, 1);
        break;
      case tenGlyphTypeCylinder:
        eglyph = echoObjectNew(glyphsEcho, echoTypeCylinder);
        echoCylinderSet(eglyph, axis);
        break;
      case tenGlyphTypeSuperquad:
      default:
        eglyph = echoObjectNew(glyphsEcho, echoTypeSuperquad);
        echoSuperquadSet(eglyph, axis, qA, qB);
        break;
      }
      echoColorSet(eglyph,
                   AIR_CAST(echoCol_t, R),
                   AIR_CAST(echoCol_t, G),
                   AIR_CAST(echoCol_t, B), 1);
      echoMatterPhongSet(glyphsEcho, eglyph,
                         parm->ADSP[0], parm->ADSP[1],
                         parm->ADSP[2], parm->ADSP[3]);
      inst = echoObjectNew(glyphsEcho, echoTypeInstance);
      ELL_4M_COPY(eM, mA);
      echoInstanceSet(inst, eM, eglyph);
      echoListAdd(list, inst);
    }
  }
  if (glyphsLimn) {
    glyphsLimn->setVertexRGBAFromLook = svRGBAfl;
  }
  if (glyphsEcho) {
    split = echoListSplit3(glyphsEcho, list, 10);
    echoObjectAdd(glyphsEcho, split);
  }

  airMopOkay(mop);
  return 0;
}
示例#3
0
文件: grads.c 项目: BRAINSia/teem
/*
** Do asynchronous update of positions in "npos', based on force
** calculations wherein the distances are normalized "edge".  Using a
** small "edge" allows forces to either underflow to zero, or be
** finite, instead of exploding to infinity, for high exponents.
**
** The smallest seen edge length is recorded in "*edgeMin", which is
** initialized to the given "edge".  This allows, for example, the
** caller to try again with a smaller edge normalization.
**
** The mean velocity of the points through the update is recorded in
** "*meanVel".
**
** Based on the observation that when using large exponents, numerical
** difficulties arise from the (force-based) update of the positions
** of the two (or few) closest particles, this function puts a speed
** limit (variable "limit") on the distance a particle may move during
** update, expressed as a fraction of the normalizing edge length.
** "limit" has been set heuristically, according to the exponent (we
** have to clamp speeds more aggresively with higher exponents), as
** well as (even more heuristically) according to the number of times
** the step size has been decreased.  This latter factor has to be
** bounded, so that the update is not unnecessarily bounded when the
** step size gets very small at the last stages of computation.
** Without the step-size-based speed limit, the step size would
** sometimes (e.g. num=200, expo=300) have to reduced to a miniscule
** value, which slows subsequent convergence terribly.
**
** this function is not static, though it could be, so that mac's
** "Sampler" app can profile this
*/
int
_tenGradientUpdate(double *meanVel, double *edgeMin,
                   Nrrd *npos, double edge, tenGradientParm *tgparm) {
  /* static const char me[]="_tenGradientUpdate"; */
  double *pos, newpos[3], grad[3], ngrad[3],
    dir[3], len, rep, step, diff[3], limit, expo;
  int num, ii, jj, E;

  E = 0;
  pos = AIR_CAST(double *, npos->data);
  num = AIR_UINT(npos->axis[1].size);
  *meanVel = 0;
  *edgeMin = edge;
  expo = tgparm->expo ? tgparm->expo : tgparm->expo_d;
  limit = expo*AIR_MIN(sqrt(expo),
                       log(1 + tgparm->initStep/tgparm->step));
  for (ii=0; ii<num; ii++) {
    ELL_3V_SET(grad, 0, 0, 0);
    for (jj=0; jj<num; jj++) {
      if (ii == jj) {
        continue;
      }
      ELL_3V_SUB(dir, pos + 3*ii, pos + 3*jj);
      ELL_3V_NORM(dir, dir, len);
      *edgeMin = AIR_MIN(*edgeMin, len);
      if (tgparm->expo) {
        rep = airIntPow(edge/len, tgparm->expo+1);
      } else {
        rep = pow(edge/len, tgparm->expo_d+1);
      }
      ELL_3V_SCALE_INCR(grad, rep/num, dir);
      if (!tgparm->single) {
        ELL_3V_ADD2(dir, pos + 3*ii, pos + 3*jj);
        ELL_3V_NORM(dir, dir, len);
        *edgeMin = AIR_MIN(*edgeMin, len);
        if (tgparm->expo) {
          rep = airIntPow(edge/len, tgparm->expo+1);
        } else {
          rep = pow(edge/len, tgparm->expo_d+1);
        }
        ELL_3V_SCALE_INCR(grad, rep/num, dir);
      }
    }
    ELL_3V_NORM(ngrad, grad, len);
    if (!( AIR_EXISTS(len) )) {
      /* things blew up, either in incremental force
         additions, or in the attempt at normalization */
      E = 1;
      *meanVel = AIR_NAN;
      break;
    }
    if (0 == len) {
      /* if the length of grad[] underflowed to zero, we can
         legitimately zero out ngrad[] */
      ELL_3V_SET(ngrad, 0, 0, 0);
    }
    step = AIR_MIN(len*tgparm->step, edge/limit);
    ELL_3V_SCALE_ADD2(newpos,
                      1.0, pos + 3*ii,
                      step, ngrad);
    ELL_3V_NORM(newpos, newpos, len);
    ELL_3V_SUB(diff, pos + 3*ii, newpos);
    *meanVel += ELL_3V_LEN(diff);
    ELL_3V_COPY(pos + 3*ii, newpos);
  }
  *meanVel /= num;

  return E;
}
示例#4
0
文件: grads.c 项目: BRAINSia/teem
void
tenGradientMeasure(double *pot, double *minAngle, double *minEdge,
                   const Nrrd *npos, tenGradientParm *tgparm,
                   int edgeNormalize) {
  /* static const char me[]="tenGradientMeasure"; */
  double diff[3], *pos, atmp=0, ptmp, edge, len;
  unsigned int ii, jj, num;

  /* allow minAngle NULL */
  if (!(pot && npos && tgparm )) {
    return;
  }

  num = AIR_UINT(npos->axis[1].size);
  pos = AIR_CAST(double *, npos->data);
  edge = (edgeNormalize
          ? tenGradientIdealEdge(num, tgparm->single)
          : 1.0);
  *pot = 0;
  if (minAngle) {
    *minAngle = AIR_PI;
  }
  if (minEdge) {
    *minEdge = 2;
  }
  for (ii=0; ii<num; ii++) {
    for (jj=0; jj<ii; jj++) {
      ELL_3V_SUB(diff, pos + 3*ii, pos + 3*jj);
      len = ELL_3V_LEN(diff);
      if (minEdge) {
        *minEdge = AIR_MIN(*minEdge, len);
      }
      if (tgparm->expo) {
        ptmp = airIntPow(edge/len, tgparm->expo);
      } else {
        ptmp = pow(edge/len, tgparm->expo_d);
      }
      *pot += ptmp;
      if (minAngle) {
        atmp = ell_3v_angle_d(pos + 3*ii, pos + 3*jj);
        *minAngle = AIR_MIN(atmp, *minAngle);
      }
      if (!tgparm->single) {
        *pot += ptmp;
        ELL_3V_ADD2(diff, pos + 3*ii, pos + 3*jj);
        len = ELL_3V_LEN(diff);
        if (minEdge) {
          *minEdge = AIR_MIN(*minEdge, len);
        }
        if (tgparm->expo) {
          *pot += 2*airIntPow(edge/len, tgparm->expo);
        } else {
          *pot += 2*pow(edge/len, tgparm->expo_d);
        }
        if (minAngle) {
          *minAngle = AIR_MIN(AIR_PI-atmp, *minAngle);
        }
      }
    }
  }
  return;
}
示例#5
0
文件: ray.c 项目: CIBC-Internal/teem
void
_miteRGBACalc(mite_t *R, mite_t *G, mite_t *B, mite_t *A,
              miteThread *mtt, miteRender *mrr, miteUser *muu) {
  static const char me[]="_miteRGBACalc";
  mite_t tmp,
    ad[3],                          /* ambient+diffuse light contribution */
    s[3] = {0,0,0},                 /* specular light contribution */
    col[3], E, ka, kd, ks, sp,      /* txf-determined rendering variables */
    LdotN=0, HdotN, H[3], N[3];     /* for lighting calculation */

  col[0] = mtt->range[miteRangeRed];
  col[1] = mtt->range[miteRangeGreen];
  col[2] = mtt->range[miteRangeBlue];
  E = mtt->range[miteRangeEmissivity];
  ka = mtt->range[miteRangeKa];
  kd = mtt->range[miteRangeKd];
  ks = mtt->range[miteRangeKs];
  ELL_3V_SCALE(ad, ka, muu->lit->amb);
  switch (mrr->shadeSpec->method) {
  case miteShadeMethodNone:
    /* nothing to do */
    break;
  case miteShadeMethodPhong:
    if (kd || ks) {
      ELL_3V_NORM(N, mtt->shadeVec0, tmp);
      if (1 == muu->normalSide) {
        ELL_3V_SCALE(N, -1, N);
      }
      /* else -1==side --> N = -1*-1*N = N
         or 0==side --> N = N, so there's nothing to do */
      if (kd) {
        LdotN = ELL_3V_DOT(muu->lit->dir[0], N);
        if (!muu->normalSide) {
          LdotN = AIR_ABS(LdotN);
        }
        if (LdotN > 0) {
          ELL_3V_SCALE_INCR(ad, LdotN*kd, muu->lit->col[0]);
        }
      }
      if (ks) {
        sp = mtt->range[miteRangeSP];
        ELL_3V_ADD2(H, muu->lit->dir[0], mtt->V);
        ELL_3V_NORM(H, H, tmp);
        HdotN = ELL_3V_DOT(H, N);
        if (!muu->normalSide) {
          HdotN = AIR_ABS(HdotN);
        }
        if (HdotN > 0) {
          HdotN = pow(HdotN, sp);
          ELL_3V_SCALE(s, HdotN*ks, muu->lit->col[0]);
        }
      }
    }
    break;
  case miteShadeMethodLitTen:
    fprintf(stderr, "!%s: lit-tensor not yet implemented\n", me);
    break;
  default:
    fprintf(stderr, "!%s: PANIC, shadeMethod %d unimplemented\n",
            me, mrr->shadeSpec->method);
    exit(1);
    break;
  }
  *R = (E - 1 + ad[0])*col[0] + s[0];
  *G = (E - 1 + ad[1])*col[1] + s[1];
  *B = (E - 1 + ad[2])*col[2] + s[2];
  *A = mtt->range[miteRangeAlpha];
  *A = AIR_CLAMP(0.0, *A, 1.0);
  /*
  if (mtt->verbose) {
    fprintf(stderr, "%s: col[] = %g,%g,%g; A,E = %g,%g; Kads = %g,%g,%g\n", me,
            col[0], col[1], col[2], mtt->range[miteRangeAlpha], E, ka, kd, ks);
    fprintf(stderr, "%s: N = (%g,%g,%g), L = (%g,%g,%g) ---> LdotN = %g\n",
            me, N[0], N[1], N[2], muu->lit->dir[0][0], muu->lit->dir[0][1],
            muu->lit->dir[0][2], LdotN);
    fprintf(stderr, "%s: ad[] = %g,%g,%g\n", me, ad[0], ad[1], ad[2]);
    fprintf(stderr, "%s:  --> R,G,B,A = %g,%g,%g,%g\n", me, *R, *G, *B, *A);
  }
  */
  return;
}
/*
******** tenFiberTraceSet
**
** slightly more flexible API for fiber tracking than tenFiberTrace
**
** EITHER: pass a non-NULL nfiber, and NULL, 0, NULL, NULL for 
** the following arguments, and things are the same as with tenFiberTrace:
** data inside the nfiber is allocated, and the tract vertices are copied
** into it, having been stored in dynamically allocated airArrays
**
** OR: pass a NULL nfiber, and a buff allocated for 3*(2*halfBuffLen + 1)
** (note the "+ 1" !!!) doubles.  The fiber tracking on each half will stop
** at halfBuffLen points. The given seedpoint will be stored in
** buff[0,1,2 + 3*halfBuffLen].  The indices for the end of the first
** tract half, and the end of the second tract half, will be set in
** *startIdxP and *endIdxP respectively.
*/
int
tenFiberTraceSet(tenFiberContext *tfx, Nrrd *nfiber,
                 double *buff, unsigned int halfBuffLen,
                 unsigned int *startIdxP, unsigned int *endIdxP,
                 double seed[3]) {
  char me[]="tenFiberTraceSet", err[BIFF_STRLEN];
  airArray *fptsArr[2];      /* airArrays of backward (0) and forward (1)
                                fiber points */
  double *fpts[2];           /* arrays storing forward and backward
                                fiber points */
  double
    tmp[3],
    iPos[3],
    currPoint[3], 
    forwDir[3],
    *fiber;                  /* array of both forward and backward points, 
                                when finished */
  int ret, whyStop, buffIdx, fptsIdx, outIdx, oldStop;
  unsigned int i;
  airArray *mop;

  if (!(tfx)) {
    sprintf(err, "%s: got NULL pointer", me);
    biffAdd(TEN, err); return 1;
  }
  /* HEY: a hack to preserve the state inside tenFiberContext so that
     we have fewer side effects (tfx->maxNumSteps may still be set) */
  oldStop = tfx->stop;
  if (!nfiber) {
    if (!( buff && halfBuffLen > 0 && startIdxP && startIdxP )) {
      sprintf(err, "%s: need either non-NULL nfiber or fpts buffer info", me);
      biffAdd(TEN, err); return 1;
    }
    if (tenFiberStopSet(tfx, tenFiberStopNumSteps, halfBuffLen)) {
      sprintf(err, "%s: error setting new fiber stop", me);
      biffAdd(TEN, err); return 1;
    }
  }

  /* initialize the quantities which describe the fiber halves */
  tfx->halfLen[0] = tfx->halfLen[1] = 0.0;
  tfx->numSteps[0] = tfx->numSteps[1] = 0;
  tfx->whyStop[0] = tfx->whyStop[1] = tenFiberStopUnknown;

  /* try probing once */
  if (tfx->useIndexSpace) {
    ret = gageProbe(tfx->gtx,
                    AIR_CAST(gage_t, seed[0]),
                    AIR_CAST(gage_t, seed[1]),
                    AIR_CAST(gage_t, seed[2]));
  } else {
    gageShapeWtoI(tfx->gtx->shape, tmp, seed);
    ret = gageProbe(tfx->gtx,
                    AIR_CAST(gage_t, tmp[0]),
                    AIR_CAST(gage_t, tmp[1]),
                    AIR_CAST(gage_t, tmp[2]));
  }
  if (ret) {
    sprintf(err, "%s: first gageProbe failed: %s (%d)", 
            me, tfx->gtx->errStr, tfx->gtx->errNum);
    biffAdd(TEN, err); return 1;
  }

  /* see if we're doomed */
  if ((whyStop = _tenFiberStopCheck(tfx))) {
    /* stopped immediately at seed point, but that's not an error */
    tfx->whyNowhere = whyStop;
    if (nfiber) {
      nrrdEmpty(nfiber);
    } else {
      *startIdxP = *endIdxP = 0;
    }
    return 0;
  } else {
    /* did not immediately halt */
    tfx->whyNowhere = tenFiberStopUnknown;
  }

  /* record the principal eigenvector at the seed point, which
     is needed to align the 4 intermediate steps of RK4 for the
     FIRST step of each half of the tract */
  ELL_3V_COPY(tfx->firstEvec, tfx->evec + 3*0);

  /* airMop{Error,Okay}() can safely be called on NULL */
  mop = nfiber ? airMopNew() : NULL;

  for (tfx->dir=0; tfx->dir<=1; tfx->dir++) {
    if (nfiber) {
      fptsArr[tfx->dir] = airArrayNew((void**)&(fpts[tfx->dir]), NULL, 
                                      3*sizeof(double), TEN_FIBER_INCR);
      airMopAdd(mop, fptsArr[tfx->dir], (airMopper)airArrayNuke, airMopAlways);
      buffIdx = -1;
    } else {
      fptsArr[tfx->dir] = NULL;
      fpts[tfx->dir] = NULL;
      buffIdx = halfBuffLen;
      fptsIdx = -1;
    }
    tfx->halfLen[tfx->dir] = 0;
    if (tfx->useIndexSpace) {
      ELL_3V_COPY(iPos, seed);
      gageShapeItoW(tfx->gtx->shape, tfx->wPos, iPos);
    } else {
      gageShapeWtoI(tfx->gtx->shape, iPos, seed);
      ELL_3V_COPY(tfx->wPos, seed);
    }
    ELL_3V_SET(tfx->lastDir, 0, 0, 0);
    tfx->lastDirSet = AIR_FALSE;
    for (tfx->numSteps[tfx->dir] = 0; AIR_TRUE; tfx->numSteps[tfx->dir]++) {
      if (_tenFiberProbe(tfx, tfx->wPos)) {
        /* even if gageProbe had an error OTHER than going out of bounds,
           we're not going to report it any differently here, alas */
        tfx->whyStop[tfx->dir] = tenFiberStopBounds;
        break;
      }
      if ((whyStop = _tenFiberStopCheck(tfx))) {
        if (tenFiberStopNumSteps == whyStop) {
          /* we stopped along this direction because tfx->numSteps[tfx->dir]
             exceeded tfx->maxNumSteps.  Okay.  But tfx->numSteps[tfx->dir]
             is supposed to be a record of how steps were (successfully)
             taken.  So we need to decrementing before moving on ... */
          tfx->numSteps[tfx->dir]--;
        }
        tfx->whyStop[tfx->dir] = whyStop;
        break;
      }
      if (tfx->useIndexSpace) {
        gageShapeWtoI(tfx->gtx->shape, iPos, tfx->wPos);
        ELL_3V_COPY(currPoint, iPos);
      } else {
        ELL_3V_COPY(currPoint, tfx->wPos);
      }
      if (nfiber) {
        fptsIdx = airArrayLenIncr(fptsArr[tfx->dir], 1);
        ELL_3V_COPY(fpts[tfx->dir] + 3*fptsIdx, currPoint);
      } else {
        ELL_3V_COPY(buff + 3*buffIdx, currPoint);
        /*
        fprintf(stderr, "!%s: (dir %d) saving to %d pnt %g %g %g\n", me,
                tfx->dir, buffIdx,
                currPoint[0], currPoint[1], currPoint[2]);
        */
        buffIdx += !tfx->dir ? -1 : 1;
      }
      /* forwDir is set by this to point to the next fiber point */
      if (_tenFiberIntegrate[tfx->intg](tfx, forwDir)) {
        tfx->whyStop[tfx->dir] = tenFiberStopBounds;
        break;
      }
      ELL_3V_COPY(tfx->lastDir, forwDir);
      tfx->lastDirSet = AIR_TRUE;
      ELL_3V_ADD2(tfx->wPos, tfx->wPos, forwDir);
      tfx->halfLen[tfx->dir] += ELL_3V_LEN(forwDir);
    }
  }

  if (nfiber) {
    if (nrrdMaybeAlloc_va(nfiber, nrrdTypeDouble, 2,
                          AIR_CAST(size_t, 3),
                          AIR_CAST(size_t, (fptsArr[0]->len 
                                            + fptsArr[1]->len - 1)))) {
      sprintf(err, "%s: couldn't allocate fiber nrrd", me);
      biffMove(TEN, err, NRRD); airMopError(mop); return 1;
    }
    fiber = (double*)(nfiber->data);
    outIdx = 0;
    for (i=fptsArr[0]->len-1; i>=1; i--) {
      ELL_3V_COPY(fiber + 3*outIdx, fpts[0] + 3*i);
      outIdx++;
    }
    for (i=0; i<=fptsArr[1]->len-1; i++) {
      ELL_3V_COPY(fiber + 3*outIdx, fpts[1] + 3*i);
      outIdx++;
    }
  } else {
    *startIdxP = halfBuffLen - tfx->numSteps[0];
    *endIdxP = halfBuffLen + tfx->numSteps[1];
  }

  tfx->stop = oldStop;
  airMopOkay(mop);
  return 0;
}