static void ath9k_ani_restart(struct ath_hw *ah) { struct ar5416AniState *aniState; struct ath_common *common = ath9k_hw_common(ah); u32 ofdm_base = 0, cck_base = 0; if (!DO_ANI(ah)) return; aniState = &ah->curchan->ani; aniState->listenTime = 0; if (!use_new_ani(ah)) { ofdm_base = AR_PHY_COUNTMAX - ah->config.ofdm_trig_high; cck_base = AR_PHY_COUNTMAX - ah->config.cck_trig_high; } ath_dbg(common, ATH_DBG_ANI, "Writing ofdmbase=%u cckbase=%u\n", ofdm_base, cck_base); ENABLE_REGWRITE_BUFFER(ah); REG_WRITE(ah, AR_PHY_ERR_1, ofdm_base); REG_WRITE(ah, AR_PHY_ERR_2, cck_base); REG_WRITE(ah, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING); REG_WRITE(ah, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING); REGWRITE_BUFFER_FLUSH(ah); ath9k_hw_update_mibstats(ah, &ah->ah_mibStats); aniState->ofdmPhyErrCount = 0; aniState->cckPhyErrCount = 0; }
void ath9k_hw_ani_init(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); int i; ath_print(common, ATH_DBG_ANI, "Initialize ANI\n"); memset(ah->ani, 0, sizeof(ah->ani)); for (i = 0; i < ARRAY_SIZE(ah->ani); i++) { ah->ani[i].ofdmTrigHigh = ATH9K_ANI_OFDM_TRIG_HIGH; ah->ani[i].ofdmTrigLow = ATH9K_ANI_OFDM_TRIG_LOW; ah->ani[i].cckTrigHigh = ATH9K_ANI_CCK_TRIG_HIGH; ah->ani[i].cckTrigLow = ATH9K_ANI_CCK_TRIG_LOW; ah->ani[i].rssiThrHigh = ATH9K_ANI_RSSI_THR_HIGH; ah->ani[i].rssiThrLow = ATH9K_ANI_RSSI_THR_LOW; ah->ani[i].ofdmWeakSigDetectOff = !ATH9K_ANI_USE_OFDM_WEAK_SIG; ah->ani[i].cckWeakSigThreshold = ATH9K_ANI_CCK_WEAK_SIG_THR; ah->ani[i].spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL; ah->ani[i].firstepLevel = ATH9K_ANI_FIRSTEP_LVL; ah->ani[i].ofdmPhyErrBase = AR_PHY_COUNTMAX - ATH9K_ANI_OFDM_TRIG_HIGH; ah->ani[i].cckPhyErrBase = AR_PHY_COUNTMAX - ATH9K_ANI_CCK_TRIG_HIGH; } ath_print(common, ATH_DBG_ANI, "Setting OfdmErrBase = 0x%08x\n", ah->ani[0].ofdmPhyErrBase); ath_print(common, ATH_DBG_ANI, "Setting cckErrBase = 0x%08x\n", ah->ani[0].cckPhyErrBase); ENABLE_REGWRITE_BUFFER(ah); REG_WRITE(ah, AR_PHY_ERR_1, ah->ani[0].ofdmPhyErrBase); REG_WRITE(ah, AR_PHY_ERR_2, ah->ani[0].cckPhyErrBase); REGWRITE_BUFFER_FLUSH(ah); DISABLE_REGWRITE_BUFFER(ah); ath9k_enable_mib_counters(ah); ah->aniperiod = ATH9K_ANI_PERIOD; if (ah->config.enable_ani) ah->proc_phyerr |= HAL_PROCESS_ANI; }
static void ath9k_ani_restart(struct ath_hw *ah) { struct ar5416AniState *aniState; struct ath_common *common = ath9k_hw_common(ah); if (!DO_ANI(ah)) return; aniState = ah->curani; aniState->listenTime = 0; if (aniState->ofdmTrigHigh > AR_PHY_COUNTMAX) { aniState->ofdmPhyErrBase = 0; ath_print(common, ATH_DBG_ANI, "OFDM Trigger is too high for hw counters\n"); } else { aniState->ofdmPhyErrBase = AR_PHY_COUNTMAX - aniState->ofdmTrigHigh; } if (aniState->cckTrigHigh > AR_PHY_COUNTMAX) { aniState->cckPhyErrBase = 0; ath_print(common, ATH_DBG_ANI, "CCK Trigger is too high for hw counters\n"); } else { aniState->cckPhyErrBase = AR_PHY_COUNTMAX - aniState->cckTrigHigh; } ath_print(common, ATH_DBG_ANI, "Writing ofdmbase=%u cckbase=%u\n", aniState->ofdmPhyErrBase, aniState->cckPhyErrBase); ENABLE_REGWRITE_BUFFER(ah); REG_WRITE(ah, AR_PHY_ERR_1, aniState->ofdmPhyErrBase); REG_WRITE(ah, AR_PHY_ERR_2, aniState->cckPhyErrBase); REG_WRITE(ah, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING); REG_WRITE(ah, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING); REGWRITE_BUFFER_FLUSH(ah); DISABLE_REGWRITE_BUFFER(ah); ath9k_hw_update_mibstats(ah, &ah->ah_mibStats); aniState->ofdmPhyErrCount = 0; aniState->cckPhyErrCount = 0; }
bool ath_hw_keyreset(struct ath_common *common, u16 entry) { u32 keyType; void *ah = common->ah; if (entry >= common->keymax) { ath_err(common, "keycache entry %u out of range\n", entry); return false; } keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry)); ENABLE_REGWRITE_BUFFER(ah); REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0); REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0); REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0); REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0); REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0); REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR); REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0); REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0); if (keyType == AR_KEYTABLE_TYPE_TKIP) { u16 micentry = entry + 64; REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0); REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0); REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0); REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0); if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) { REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0); REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry), AR_KEYTABLE_TYPE_CLR); } } REGWRITE_BUFFER_FLUSH(ah); return true; }
void ath9k_enable_mib_counters(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); ath_dbg(common, ANI, "Enable MIB counters\n"); ath9k_hw_update_mibstats(ah, &ah->ah_mibStats); ENABLE_REGWRITE_BUFFER(ah); REG_WRITE(ah, AR_FILT_OFDM, 0); REG_WRITE(ah, AR_FILT_CCK, 0); REG_WRITE(ah, AR_MIBC, ~(AR_MIBC_COW | AR_MIBC_FMC | AR_MIBC_CMC | AR_MIBC_MCS) & 0x0f); REG_WRITE(ah, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING); REG_WRITE(ah, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING); REGWRITE_BUFFER_FLUSH(ah); }
static void ath9k_ani_restart(struct ath_hw *ah) { struct ar5416AniState *aniState = &ah->ani; aniState->listenTime = 0; ENABLE_REGWRITE_BUFFER(ah); REG_WRITE(ah, AR_PHY_ERR_1, 0); REG_WRITE(ah, AR_PHY_ERR_2, 0); REG_WRITE(ah, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING); REG_WRITE(ah, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING); REGWRITE_BUFFER_FLUSH(ah); ath9k_hw_update_mibstats(ah, &ah->ah_mibStats); aniState->ofdmPhyErrCount = 0; aniState->cckPhyErrCount = 0; }
static void ath9k_hw_set_txq_interrupts(struct ath_hw *ah, struct ath9k_tx_queue_info *qi) { ath_dbg(ath9k_hw_common(ah), INTERRUPT, "tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n", ah->txok_interrupt_mask, ah->txerr_interrupt_mask, ah->txdesc_interrupt_mask, ah->txeol_interrupt_mask, ah->txurn_interrupt_mask); ENABLE_REGWRITE_BUFFER(ah); REG_WRITE(ah, AR_IMR_S0, SM(ah->txok_interrupt_mask, AR_IMR_S0_QCU_TXOK) | SM(ah->txdesc_interrupt_mask, AR_IMR_S0_QCU_TXDESC)); REG_WRITE(ah, AR_IMR_S1, SM(ah->txerr_interrupt_mask, AR_IMR_S1_QCU_TXERR) | SM(ah->txeol_interrupt_mask, AR_IMR_S1_QCU_TXEOL)); ah->imrs2_reg &= ~AR_IMR_S2_QCU_TXURN; ah->imrs2_reg |= (ah->txurn_interrupt_mask & AR_IMR_S2_QCU_TXURN); REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg); REGWRITE_BUFFER_FLUSH(ah); }
void ath9k_hw_loadnf(struct ath_hw *ah, struct ath9k_channel *chan) { struct ath9k_nfcal_hist *h = NULL; unsigned i, j; int32_t val; u8 chainmask = (ah->rxchainmask << 3) | ah->rxchainmask; struct ath_common *common = ath9k_hw_common(ah); struct ieee80211_conf *conf = &common->hw->conf; s16 default_nf = ath9k_hw_get_default_nf(ah, chan); if (ah->caldata) h = ah->caldata->nfCalHist; for (i = 0; i < NUM_NF_READINGS; i++) { if (chainmask & (1 << i)) { s16 nfval; if ((i >= AR5416_MAX_CHAINS) && !conf_is_ht40(conf)) continue; if (h) nfval = h[i].privNF; else nfval = default_nf; val = REG_READ(ah, ah->nf_regs[i]); val &= 0xFFFFFE00; val |= (((u32) nfval << 1) & 0x1ff); REG_WRITE(ah, ah->nf_regs[i], val); } } /* * Load software filtered NF value into baseband internal minCCApwr * variable. */ REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF); REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF); REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF); /* * Wait for load to complete, should be fast, a few 10s of us. * The max delay was changed from an original 250us to 10000us * since 250us often results in NF load timeout and causes deaf * condition during stress testing 12/12/2009 */ for (j = 0; j < 10000; j++) { if ((REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) == 0) break; udelay(10); } /* * We timed out waiting for the noisefloor to load, probably due to an * in-progress rx. Simply return here and allow the load plenty of time * to complete before the next calibration interval. We need to avoid * trying to load -50 (which happens below) while the previous load is * still in progress as this can cause rx deafness. Instead by returning * here, the baseband nf cal will just be capped by our present * noisefloor until the next calibration timer. */ if (j == 10000) { ath_dbg(common, ANY, "Timeout while waiting for nf to load: AR_PHY_AGC_CONTROL=0x%x\n", REG_READ(ah, AR_PHY_AGC_CONTROL)); return; } /* * Restore maxCCAPower register parameter again so that we're not capped * by the median we just loaded. This will be initial (and max) value * of next noise floor calibration the baseband does. */ ENABLE_REGWRITE_BUFFER(ah); for (i = 0; i < NUM_NF_READINGS; i++) { if (chainmask & (1 << i)) { if ((i >= AR5416_MAX_CHAINS) && !conf_is_ht40(conf)) continue; val = REG_READ(ah, ah->nf_regs[i]); val &= 0xFFFFFE00; val |= (((u32) (-50) << 1) & 0x1ff); REG_WRITE(ah, ah->nf_regs[i], val); } } REGWRITE_BUFFER_FLUSH(ah); }
bool ath9k_hw_resettxqueue(struct ath_hw *ah, u32 q) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_tx_queue_info *qi; u32 cwMin, chanCwMin, value; qi = &ah->txq[q]; if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) { ath_dbg(common, QUEUE, "Reset TXQ, inactive queue: %u\n", q); return true; } ath_dbg(common, QUEUE, "Reset TX queue: %u\n", q); if (qi->tqi_cwmin == ATH9K_TXQ_USEDEFAULT) { chanCwMin = INIT_CWMIN; for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1); } else cwMin = qi->tqi_cwmin; ENABLE_REGWRITE_BUFFER(ah); REG_WRITE(ah, AR_DLCL_IFS(q), SM(cwMin, AR_D_LCL_IFS_CWMIN) | SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX) | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS)); REG_WRITE(ah, AR_DRETRY_LIMIT(q), SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH) | SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG) | SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH)); REG_WRITE(ah, AR_QMISC(q), AR_Q_MISC_DCU_EARLY_TERM_REQ); if (AR_SREV_9340(ah) && !AR_SREV_9340_13_OR_LATER(ah)) REG_WRITE(ah, AR_DMISC(q), AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x1); else REG_WRITE(ah, AR_DMISC(q), AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x2); if (qi->tqi_cbrPeriod) { REG_WRITE(ah, AR_QCBRCFG(q), SM(qi->tqi_cbrPeriod, AR_Q_CBRCFG_INTERVAL) | SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_OVF_THRESH)); REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_FSP_CBR | (qi->tqi_cbrOverflowLimit ? AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN : 0)); } if (qi->tqi_readyTime && (qi->tqi_type != ATH9K_TX_QUEUE_CAB)) { REG_WRITE(ah, AR_QRDYTIMECFG(q), SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_DURATION) | AR_Q_RDYTIMECFG_EN); } REG_WRITE(ah, AR_DCHNTIME(q), SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) | (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0)); if (qi->tqi_burstTime && (qi->tqi_qflags & TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE)) REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_RDYTIME_EXP_POLICY); if (qi->tqi_qflags & TXQ_FLAG_BACKOFF_DISABLE) REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS); REGWRITE_BUFFER_FLUSH(ah); if (qi->tqi_qflags & TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE) REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_FRAG_BKOFF_EN); switch (qi->tqi_type) { case ATH9K_TX_QUEUE_BEACON: ENABLE_REGWRITE_BUFFER(ah); REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_BEACON_USE | AR_Q_MISC_CBR_INCR_DIS1); REG_SET_BIT(ah, AR_DMISC(q), (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL << AR_D_MISC_ARB_LOCKOUT_CNTRL_S) | AR_D_MISC_BEACON_USE | AR_D_MISC_POST_FR_BKOFF_DIS); REGWRITE_BUFFER_FLUSH(ah); /* * cwmin and cwmax should be 0 for beacon queue * but not for IBSS as we would create an imbalance * on beaconing fairness for participating nodes. */ if (AR_SREV_9300_20_OR_LATER(ah) && ah->opmode != NL80211_IFTYPE_ADHOC) { REG_WRITE(ah, AR_DLCL_IFS(q), SM(0, AR_D_LCL_IFS_CWMIN) | SM(0, AR_D_LCL_IFS_CWMAX) | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS)); } break; case ATH9K_TX_QUEUE_CAB: ENABLE_REGWRITE_BUFFER(ah); REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_CBR_INCR_DIS1 | AR_Q_MISC_CBR_INCR_DIS0); value = (qi->tqi_readyTime - (ah->config.sw_beacon_response_time - ah->config.dma_beacon_response_time)) * 1024; REG_WRITE(ah, AR_QRDYTIMECFG(q), value | AR_Q_RDYTIMECFG_EN); REG_SET_BIT(ah, AR_DMISC(q), (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL << AR_D_MISC_ARB_LOCKOUT_CNTRL_S)); REGWRITE_BUFFER_FLUSH(ah); break; case ATH9K_TX_QUEUE_PSPOLL: REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_CBR_INCR_DIS1); break; case ATH9K_TX_QUEUE_UAPSD: REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS); break; default: break; } if (qi->tqi_intFlags & ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS) { REG_SET_BIT(ah, AR_DMISC(q), SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL, AR_D_MISC_ARB_LOCKOUT_CNTRL) | AR_D_MISC_POST_FR_BKOFF_DIS); } if (AR_SREV_9300_20_OR_LATER(ah)) REG_WRITE(ah, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN); ath9k_hw_clear_queue_interrupts(ah, q); if (qi->tqi_qflags & TXQ_FLAG_TXINT_ENABLE) { ah->txok_interrupt_mask |= 1 << q; ah->txerr_interrupt_mask |= 1 << q; } if (qi->tqi_qflags & TXQ_FLAG_TXDESCINT_ENABLE) ah->txdesc_interrupt_mask |= 1 << q; if (qi->tqi_qflags & TXQ_FLAG_TXEOLINT_ENABLE) ah->txeol_interrupt_mask |= 1 << q; if (qi->tqi_qflags & TXQ_FLAG_TXURNINT_ENABLE) ah->txurn_interrupt_mask |= 1 << q; ath9k_hw_set_txq_interrupts(ah, qi); return true; }
void ath9k_hw_loadnf(struct ath_hw *ah, struct ath9k_channel *chan) { struct ath9k_nfcal_hist *h = NULL; unsigned i, j; int32_t val; u8 chainmask = (ah->rxchainmask << 3) | ah->rxchainmask; struct ath_common *common = ath9k_hw_common(ah); struct ieee80211_conf *conf = &common->hw->conf; s16 default_nf = ath9k_hw_get_default_nf(ah, chan); if (ah->caldata) h = ah->caldata->nfCalHist; for (i = 0; i < NUM_NF_READINGS; i++) { if (chainmask & (1 << i)) { s16 nfval; if ((i >= AR5416_MAX_CHAINS) && !conf_is_ht40(conf)) continue; if (h) nfval = h[i].privNF; else nfval = default_nf; val = REG_READ(ah, ah->nf_regs[i]); val &= 0xFFFFFE00; val |= (((u32) nfval << 1) & 0x1ff); REG_WRITE(ah, ah->nf_regs[i], val); } } REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF); REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF); REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF); for (j = 0; j < 10000; j++) { if ((REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) == 0) break; udelay(10); } if (j == 10000) { ath_dbg(common, ANY, "Timeout while waiting for nf to load: AR_PHY_AGC_CONTROL=0x%x\n", REG_READ(ah, AR_PHY_AGC_CONTROL)); return; } ENABLE_REGWRITE_BUFFER(ah); for (i = 0; i < NUM_NF_READINGS; i++) { if (chainmask & (1 << i)) { if ((i >= AR5416_MAX_CHAINS) && !conf_is_ht40(conf)) continue; val = REG_READ(ah, ah->nf_regs[i]); val &= 0xFFFFFE00; val |= (((u32) (-50) << 1) & 0x1ff); REG_WRITE(ah, ah->nf_regs[i], val); } } REGWRITE_BUFFER_FLUSH(ah); }
/* * Restore the ANI parameters in the HAL and reset the statistics. * This routine should be called for every hardware reset and for * every channel change. */ void ath9k_ani_reset(struct ath_hw *ah, bool is_scanning) { struct ar5416AniState *aniState = &ah->curchan->ani; struct ath9k_channel *chan = ah->curchan; struct ath_common *common = ath9k_hw_common(ah); if (!DO_ANI(ah)) return; if (!use_new_ani(ah)) return ath9k_ani_reset_old(ah, is_scanning); BUG_ON(aniState == NULL); ah->stats.ast_ani_reset++; /* only allow a subset of functions in AP mode */ if (ah->opmode == NL80211_IFTYPE_AP) { if (IS_CHAN_2GHZ(chan)) { ah->ani_function = (ATH9K_ANI_SPUR_IMMUNITY_LEVEL | ATH9K_ANI_FIRSTEP_LEVEL); if (AR_SREV_9300_20_OR_LATER(ah)) ah->ani_function |= ATH9K_ANI_MRC_CCK; } else ah->ani_function = 0; } /* always allow mode (on/off) to be controlled */ ah->ani_function |= ATH9K_ANI_MODE; if (is_scanning || (ah->opmode != NL80211_IFTYPE_STATION && ah->opmode != NL80211_IFTYPE_ADHOC)) { /* * If we're scanning or in AP mode, the defaults (ini) * should be in place. For an AP we assume the historical * levels for this channel are probably outdated so start * from defaults instead. */ if (aniState->ofdmNoiseImmunityLevel != ATH9K_ANI_OFDM_DEF_LEVEL || aniState->cckNoiseImmunityLevel != ATH9K_ANI_CCK_DEF_LEVEL) { ath_dbg(common, ATH_DBG_ANI, "Restore defaults: opmode %u chan %d Mhz/0x%x is_scanning=%d ofdm:%d cck:%d\n", ah->opmode, chan->channel, chan->channelFlags, is_scanning, aniState->ofdmNoiseImmunityLevel, aniState->cckNoiseImmunityLevel); aniState->update_ani = false; ath9k_hw_set_ofdm_nil(ah, ATH9K_ANI_OFDM_DEF_LEVEL); ath9k_hw_set_cck_nil(ah, ATH9K_ANI_CCK_DEF_LEVEL); } } else { /* * restore historical levels for this channel */ ath_dbg(common, ATH_DBG_ANI, "Restore history: opmode %u chan %d Mhz/0x%x is_scanning=%d ofdm:%d cck:%d\n", ah->opmode, chan->channel, chan->channelFlags, is_scanning, aniState->ofdmNoiseImmunityLevel, aniState->cckNoiseImmunityLevel); aniState->update_ani = true; ath9k_hw_set_ofdm_nil(ah, aniState->ofdmNoiseImmunityLevel); ath9k_hw_set_cck_nil(ah, aniState->cckNoiseImmunityLevel); } /* * enable phy counters if hw supports or if not, enable phy * interrupts (so we can count each one) */ ath9k_ani_restart(ah); ENABLE_REGWRITE_BUFFER(ah); REG_WRITE(ah, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING); REG_WRITE(ah, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING); REGWRITE_BUFFER_FLUSH(ah); }
static void ath9k_ani_reset_old(struct ath_hw *ah, bool is_scanning) { struct ar5416AniState *aniState; struct ath9k_channel *chan = ah->curchan; struct ath_common *common = ath9k_hw_common(ah); if (!DO_ANI(ah)) return; aniState = &ah->curchan->ani; if (ah->opmode != NL80211_IFTYPE_STATION && ah->opmode != NL80211_IFTYPE_ADHOC) { ath_dbg(common, ATH_DBG_ANI, "Reset ANI state opmode %u\n", ah->opmode); ah->stats.ast_ani_reset++; if (ah->opmode == NL80211_IFTYPE_AP) { /* * ath9k_hw_ani_control() will only process items set on * ah->ani_function */ if (IS_CHAN_2GHZ(chan)) ah->ani_function = (ATH9K_ANI_SPUR_IMMUNITY_LEVEL | ATH9K_ANI_FIRSTEP_LEVEL); else ah->ani_function = 0; } ath9k_hw_ani_control(ah, ATH9K_ANI_NOISE_IMMUNITY_LEVEL, 0); ath9k_hw_ani_control(ah, ATH9K_ANI_SPUR_IMMUNITY_LEVEL, 0); ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL, 0); ath9k_hw_ani_control(ah, ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION, !ATH9K_ANI_USE_OFDM_WEAK_SIG); ath9k_hw_ani_control(ah, ATH9K_ANI_CCK_WEAK_SIGNAL_THR, ATH9K_ANI_CCK_WEAK_SIG_THR); ath9k_ani_restart(ah); return; } if (aniState->noiseImmunityLevel != 0) ath9k_hw_ani_control(ah, ATH9K_ANI_NOISE_IMMUNITY_LEVEL, aniState->noiseImmunityLevel); if (aniState->spurImmunityLevel != 0) ath9k_hw_ani_control(ah, ATH9K_ANI_SPUR_IMMUNITY_LEVEL, aniState->spurImmunityLevel); if (aniState->ofdmWeakSigDetectOff) ath9k_hw_ani_control(ah, ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION, !aniState->ofdmWeakSigDetectOff); if (aniState->cckWeakSigThreshold) ath9k_hw_ani_control(ah, ATH9K_ANI_CCK_WEAK_SIGNAL_THR, aniState->cckWeakSigThreshold); if (aniState->firstepLevel != 0) ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL, aniState->firstepLevel); ath9k_ani_restart(ah); ENABLE_REGWRITE_BUFFER(ah); REG_WRITE(ah, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING); REG_WRITE(ah, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING); REGWRITE_BUFFER_FLUSH(ah); }
void ath9k_ani_reset(struct ath_hw *ah) { struct ar5416AniState *aniState; struct ath9k_channel *chan = ah->curchan; struct ath_common *common = ath9k_hw_common(ah); int index; if (!DO_ANI(ah)) return; index = ath9k_hw_get_ani_channel_idx(ah, chan); aniState = &ah->ani[index]; ah->curani = aniState; if (DO_ANI(ah) && ah->opmode != NL80211_IFTYPE_STATION && ah->opmode != NL80211_IFTYPE_ADHOC) { ath_print(common, ATH_DBG_ANI, "Reset ANI state opmode %u\n", ah->opmode); ah->stats.ast_ani_reset++; if (ah->opmode == NL80211_IFTYPE_AP) { /* * ath9k_hw_ani_control() will only process items set on * ah->ani_function */ if (IS_CHAN_2GHZ(chan)) ah->ani_function = (ATH9K_ANI_SPUR_IMMUNITY_LEVEL | ATH9K_ANI_FIRSTEP_LEVEL); else ah->ani_function = 0; } ath9k_hw_ani_control(ah, ATH9K_ANI_NOISE_IMMUNITY_LEVEL, 0); ath9k_hw_ani_control(ah, ATH9K_ANI_SPUR_IMMUNITY_LEVEL, 0); ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL, 0); ath9k_hw_ani_control(ah, ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION, !ATH9K_ANI_USE_OFDM_WEAK_SIG); ath9k_hw_ani_control(ah, ATH9K_ANI_CCK_WEAK_SIGNAL_THR, ATH9K_ANI_CCK_WEAK_SIG_THR); ath9k_hw_setrxfilter(ah, ath9k_hw_getrxfilter(ah) | ATH9K_RX_FILTER_PHYERR); if (ah->opmode == NL80211_IFTYPE_AP) { ah->curani->ofdmTrigHigh = ah->config.ofdm_trig_high; ah->curani->ofdmTrigLow = ah->config.ofdm_trig_low; ah->curani->cckTrigHigh = ah->config.cck_trig_high; ah->curani->cckTrigLow = ah->config.cck_trig_low; } ath9k_ani_restart(ah); return; } if (aniState->noiseImmunityLevel != 0) ath9k_hw_ani_control(ah, ATH9K_ANI_NOISE_IMMUNITY_LEVEL, aniState->noiseImmunityLevel); if (aniState->spurImmunityLevel != 0) ath9k_hw_ani_control(ah, ATH9K_ANI_SPUR_IMMUNITY_LEVEL, aniState->spurImmunityLevel); if (aniState->ofdmWeakSigDetectOff) ath9k_hw_ani_control(ah, ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION, !aniState->ofdmWeakSigDetectOff); if (aniState->cckWeakSigThreshold) ath9k_hw_ani_control(ah, ATH9K_ANI_CCK_WEAK_SIGNAL_THR, aniState->cckWeakSigThreshold); if (aniState->firstepLevel != 0) ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL, aniState->firstepLevel); ath9k_hw_setrxfilter(ah, ath9k_hw_getrxfilter(ah) & ~ATH9K_RX_FILTER_PHYERR); ath9k_ani_restart(ah); ENABLE_REGWRITE_BUFFER(ah); REG_WRITE(ah, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING); REG_WRITE(ah, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING); REGWRITE_BUFFER_FLUSH(ah); DISABLE_REGWRITE_BUFFER(ah); }
void ath9k_ani_reset(struct ath_hw *ah, bool is_scanning) { struct ar5416AniState *aniState = &ah->curchan->ani; struct ath9k_channel *chan = ah->curchan; struct ath_common *common = ath9k_hw_common(ah); if (!DO_ANI(ah)) return; if (!use_new_ani(ah)) return ath9k_ani_reset_old(ah, is_scanning); BUG_ON(aniState == NULL); ah->stats.ast_ani_reset++; /* */ if (ah->opmode == NL80211_IFTYPE_AP) { if (IS_CHAN_2GHZ(chan)) { ah->ani_function = (ATH9K_ANI_SPUR_IMMUNITY_LEVEL | ATH9K_ANI_FIRSTEP_LEVEL); if (AR_SREV_9300_20_OR_LATER(ah)) ah->ani_function |= ATH9K_ANI_MRC_CCK; } else ah->ani_function = 0; } /* */ ah->ani_function |= ATH9K_ANI_MODE; if (is_scanning || (ah->opmode != NL80211_IFTYPE_STATION && ah->opmode != NL80211_IFTYPE_ADHOC)) { /* */ if (aniState->ofdmNoiseImmunityLevel != ATH9K_ANI_OFDM_DEF_LEVEL || aniState->cckNoiseImmunityLevel != ATH9K_ANI_CCK_DEF_LEVEL) { ath_dbg(common, ANI, "Restore defaults: opmode %u chan %d Mhz/0x%x is_scanning=%d ofdm:%d cck:%d\n", ah->opmode, chan->channel, chan->channelFlags, is_scanning, aniState->ofdmNoiseImmunityLevel, aniState->cckNoiseImmunityLevel); aniState->update_ani = false; ath9k_hw_set_ofdm_nil(ah, ATH9K_ANI_OFDM_DEF_LEVEL); ath9k_hw_set_cck_nil(ah, ATH9K_ANI_CCK_DEF_LEVEL); } } else { /* */ ath_dbg(common, ANI, "Restore history: opmode %u chan %d Mhz/0x%x is_scanning=%d ofdm:%d cck:%d\n", ah->opmode, chan->channel, chan->channelFlags, is_scanning, aniState->ofdmNoiseImmunityLevel, aniState->cckNoiseImmunityLevel); aniState->update_ani = true; ath9k_hw_set_ofdm_nil(ah, aniState->ofdmNoiseImmunityLevel); ath9k_hw_set_cck_nil(ah, aniState->cckNoiseImmunityLevel); } /* */ ath9k_ani_restart(ah); ENABLE_REGWRITE_BUFFER(ah); REG_WRITE(ah, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING); REG_WRITE(ah, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING); REGWRITE_BUFFER_FLUSH(ah); }