static uint32_t esp_mem_readb(void *opaque, target_phys_addr_t addr) { ESPState *s = opaque; uint32_t saddr; saddr = addr >> s->it_shift; DPRINTF("read reg[%d]: 0x%2.2x\n", saddr, s->rregs[saddr]); switch (saddr) { case ESP_FIFO: if (s->ti_size > 0) { s->ti_size--; if ((s->rregs[ESP_RSTAT] & STAT_PIO_MASK) == 0) { /* Data out. */ ESP_ERROR("PIO data read not implemented\n"); s->rregs[ESP_FIFO] = 0; } else { s->rregs[ESP_FIFO] = s->ti_buf[s->ti_rptr++]; } esp_raise_irq(s); } if (s->ti_size == 0) { s->ti_rptr = 0; s->ti_wptr = 0; } break; case ESP_RINTR: // Clear interrupt/error status bits s->rregs[ESP_RSTAT] &= ~(STAT_GE | STAT_PE); esp_lower_irq(s); break; default: break; } return s->rregs[saddr]; }
static uint64_t esp_mem_read(void *opaque, target_phys_addr_t addr, unsigned size) { ESPState *s = opaque; uint32_t saddr, old_val; saddr = addr >> s->it_shift; trace_esp_mem_readb(saddr, s->rregs[saddr]); switch (saddr) { case ESP_FIFO: if (s->ti_size > 0) { s->ti_size--; if ((s->rregs[ESP_RSTAT] & STAT_PIO_MASK) == 0) { /* Data out. */ ESP_ERROR("PIO data read not implemented\n"); s->rregs[ESP_FIFO] = 0; } else { s->rregs[ESP_FIFO] = s->ti_buf[s->ti_rptr++]; } esp_raise_irq(s); } if (s->ti_size == 0) { s->ti_rptr = 0; s->ti_wptr = 0; } break; case ESP_RINTR: /* Clear sequence step, interrupt register and all status bits except TC */ old_val = s->rregs[ESP_RINTR]; s->rregs[ESP_RINTR] = 0; s->rregs[ESP_RSTAT] &= ~STAT_TC; s->rregs[ESP_RSEQ] = SEQ_CD; esp_lower_irq(s); return old_val; default: break; } return s->rregs[saddr]; }
static void esp_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) { ESPState *s = opaque; uint32_t saddr; saddr = addr >> s->it_shift; DPRINTF("write reg[%d]: 0x%2.2x -> 0x%2.2x\n", saddr, s->wregs[saddr], val); switch (saddr) { case ESP_TCLO: case ESP_TCMID: s->rregs[ESP_RSTAT] &= ~STAT_TC; break; case ESP_FIFO: if (s->do_cmd) { s->cmdbuf[s->cmdlen++] = val & 0xff; } else if (s->ti_size == TI_BUFSZ - 1) { ESP_ERROR("fifo overrun\n"); } else { s->ti_size++; s->ti_buf[s->ti_wptr++] = val & 0xff; } break; case ESP_CMD: s->rregs[saddr] = val; if (val & CMD_DMA) { s->dma = 1; /* Reload DMA counter. */ s->rregs[ESP_TCLO] = s->wregs[ESP_TCLO]; s->rregs[ESP_TCMID] = s->wregs[ESP_TCMID]; } else { s->dma = 0; } switch(val & CMD_CMD) { case CMD_NOP: DPRINTF("NOP (%2.2x)\n", val); break; case CMD_FLUSH: DPRINTF("Flush FIFO (%2.2x)\n", val); //s->ti_size = 0; s->rregs[ESP_RINTR] = INTR_FC; s->rregs[ESP_RSEQ] = 0; s->rregs[ESP_RFLAGS] = 0; break; case CMD_RESET: DPRINTF("Chip reset (%2.2x)\n", val); esp_soft_reset(&s->busdev.qdev); break; case CMD_BUSRESET: DPRINTF("Bus reset (%2.2x)\n", val); s->rregs[ESP_RINTR] = INTR_RST; if (!(s->wregs[ESP_CFG1] & CFG1_RESREPT)) { esp_raise_irq(s); } break; case CMD_TI: handle_ti(s); break; case CMD_ICCS: DPRINTF("Initiator Command Complete Sequence (%2.2x)\n", val); write_response(s); s->rregs[ESP_RINTR] = INTR_FC; s->rregs[ESP_RSTAT] |= STAT_MI; break; case CMD_MSGACC: DPRINTF("Message Accepted (%2.2x)\n", val); s->rregs[ESP_RINTR] = INTR_DC; s->rregs[ESP_RSEQ] = 0; s->rregs[ESP_RFLAGS] = 0; esp_raise_irq(s); break; case CMD_PAD: DPRINTF("Transfer padding (%2.2x)\n", val); s->rregs[ESP_RSTAT] = STAT_TC; s->rregs[ESP_RINTR] = INTR_FC; s->rregs[ESP_RSEQ] = 0; break; case CMD_SATN: DPRINTF("Set ATN (%2.2x)\n", val); break; case CMD_SEL: DPRINTF("Select without ATN (%2.2x)\n", val); handle_s_without_atn(s); break; case CMD_SELATN: DPRINTF("Select with ATN (%2.2x)\n", val); handle_satn(s); break; case CMD_SELATNS: DPRINTF("Select with ATN & stop (%2.2x)\n", val); handle_satn_stop(s); break; case CMD_ENSEL: DPRINTF("Enable selection (%2.2x)\n", val); s->rregs[ESP_RINTR] = 0; break; default: ESP_ERROR("Unhandled ESP command (%2.2x)\n", val); break; } break; case ESP_WBUSID ... ESP_WSYNO: break; case ESP_CFG1: s->rregs[saddr] = val; break; case ESP_WCCF ... ESP_WTEST: break; case ESP_CFG2 ... ESP_RES4: s->rregs[saddr] = val; break; default: ESP_ERROR("invalid write of 0x%02x at [0x%x]\n", val, saddr); return; } s->wregs[saddr] = val; }
static void esp_mem_write(void *opaque, target_phys_addr_t addr, uint64_t val, unsigned size) { ESPState *s = opaque; uint32_t saddr; saddr = addr >> s->it_shift; trace_esp_mem_writeb(saddr, s->wregs[saddr], val); switch (saddr) { case ESP_TCLO: case ESP_TCMID: s->rregs[ESP_RSTAT] &= ~STAT_TC; break; case ESP_FIFO: if (s->do_cmd) { s->cmdbuf[s->cmdlen++] = val & 0xff; } else if (s->ti_size == TI_BUFSZ - 1) { ESP_ERROR("fifo overrun\n"); } else { s->ti_size++; s->ti_buf[s->ti_wptr++] = val & 0xff; } break; case ESP_CMD: s->rregs[saddr] = val; if (val & CMD_DMA) { s->dma = 1; /* Reload DMA counter. */ s->rregs[ESP_TCLO] = s->wregs[ESP_TCLO]; s->rregs[ESP_TCMID] = s->wregs[ESP_TCMID]; } else { s->dma = 0; } switch(val & CMD_CMD) { case CMD_NOP: trace_esp_mem_writeb_cmd_nop(val); break; case CMD_FLUSH: trace_esp_mem_writeb_cmd_flush(val); //s->ti_size = 0; s->rregs[ESP_RINTR] = INTR_FC; s->rregs[ESP_RSEQ] = 0; s->rregs[ESP_RFLAGS] = 0; break; case CMD_RESET: trace_esp_mem_writeb_cmd_reset(val); esp_soft_reset(&s->busdev.qdev); break; case CMD_BUSRESET: trace_esp_mem_writeb_cmd_bus_reset(val); s->rregs[ESP_RINTR] = INTR_RST; if (!(s->wregs[ESP_CFG1] & CFG1_RESREPT)) { esp_raise_irq(s); } break; case CMD_TI: handle_ti(s); break; case CMD_ICCS: trace_esp_mem_writeb_cmd_iccs(val); write_response(s); s->rregs[ESP_RINTR] = INTR_FC; s->rregs[ESP_RSTAT] |= STAT_MI; break; case CMD_MSGACC: trace_esp_mem_writeb_cmd_msgacc(val); s->rregs[ESP_RINTR] = INTR_DC; s->rregs[ESP_RSEQ] = 0; s->rregs[ESP_RFLAGS] = 0; esp_raise_irq(s); break; case CMD_PAD: trace_esp_mem_writeb_cmd_pad(val); s->rregs[ESP_RSTAT] = STAT_TC; s->rregs[ESP_RINTR] = INTR_FC; s->rregs[ESP_RSEQ] = 0; break; case CMD_SATN: trace_esp_mem_writeb_cmd_satn(val); break; case CMD_SEL: trace_esp_mem_writeb_cmd_sel(val); handle_s_without_atn(s); break; case CMD_SELATN: trace_esp_mem_writeb_cmd_selatn(val); handle_satn(s); break; case CMD_SELATNS: trace_esp_mem_writeb_cmd_selatns(val); handle_satn_stop(s); break; case CMD_ENSEL: trace_esp_mem_writeb_cmd_ensel(val); s->rregs[ESP_RINTR] = 0; break; default: ESP_ERROR("Unhandled ESP command (%2.2x)\n", (unsigned)val); break; } break; case ESP_WBUSID ... ESP_WSYNO: break; case ESP_CFG1: s->rregs[saddr] = val; break; case ESP_WCCF ... ESP_WTEST: break; case ESP_CFG2 ... ESP_RES4: s->rregs[saddr] = val; break; default: ESP_ERROR("invalid write of 0x%02x at [0x%x]\n", (unsigned)val, saddr); return; } s->wregs[saddr] = val; }