示例#1
0
/*
   ------------------------------------------------------------
   create and return an ETree object that holds the front tree.

   created  -- 96jun23, cca
   ------------------------------------------------------------
*/
ETree *
MSMD_frontETree (
   MSMD   *msmd
) {
ETree     *etree ;
int       front, iv, nfront, nvtx, root ;
int       *bndwghts, *fch, *nodwghts, *par, *sib, *vtxToFront ;
MSMDvtx   *v, *w ;
/*
   ---------------
   check the input
   ---------------
*/
if ( msmd == NULL ) {
   fprintf(stderr, "\n fatal error in MSMD_frontETree(%p)"
           "\n bad input\n", msmd) ;
   exit(-1) ;
}
nvtx = msmd->nvtx ;
/*
   --------------------------
   count the number of fronts
   --------------------------
*/
nfront = 0 ;
fch = IVinit(nvtx, -1) ;
sib = IVinit(nvtx, -1) ;
root = -1 ;
for ( iv = 0, v = msmd->vertices ; iv < nvtx ; iv++, v++ ) {
#if MYDEBUG > 0
   fprintf(stdout, "\n vertex %d, status %c, wght %d",
           v->id, v->status, v->wght) ;
/*
   MSMDvtx_print(v, stdout) ;
*/
   fflush(stdout) ;
#endif
   switch ( v->status ) {
   case 'L' :
   case 'E' :
      if ( (w = v->par) != NULL ) {
         sib[v->id] = fch[w->id] ;
         fch[w->id] = v->id ;
      } else {
         sib[v->id] = root ;
         root = v->id ;
      }
#if MYDEBUG > 0
   fprintf(stdout, ", new front %d", nfront) ;
   fflush(stdout) ;
#endif
      nfront++ ;
      break ;
   default :
      break ;
   }
}
#if MYDEBUG > 0
fprintf(stdout, "\n %d fronts", nfront) ;
fflush(stdout) ;
#endif
/*
   ---------------------------
   initialize the ETree object
   ---------------------------
*/
etree = ETree_new() ;
ETree_init1(etree, nfront, nvtx) ;
nodwghts   = IV_entries(etree->nodwghtsIV) ;
bndwghts   = IV_entries(etree->bndwghtsIV) ;
vtxToFront = IV_entries(etree->vtxToFrontIV) ;
/*
   ----------------------------------------------
   fill the vtxToFront[] vector so representative 
   vertices are mapped in a post-order traversal
   ----------------------------------------------
*/
nfront = 0 ;
iv = root ;
while ( iv != -1 ) {
   while ( fch[iv] != -1 ) {
       iv = fch[iv] ;
   }
   v = msmd->vertices + iv ;
   vtxToFront[iv] = nfront++ ;
#if MYDEBUG > 0
   fprintf(stdout, "\n v = %d, vwght = %d, vtxToFront[%d] = %d", 
           v->id, v->wght, iv, vtxToFront[iv]) ;
   fflush(stdout) ;
#endif
   while ( sib[iv] == -1 && v->par != NULL ) {
      v = v->par ;
      iv = v->id ;
      vtxToFront[iv] = nfront++ ;
#if MYDEBUG > 0
      fprintf(stdout, "\n v = %d, vwght = %d, vtxToFront[%d] = %d", 
              v->id, v->wght, iv, vtxToFront[iv]) ;
      fflush(stdout) ;
#endif
   }
   iv = sib[iv] ;
}
IVfree(fch) ;
IVfree(sib) ;
/*
   --------------------------------------------------------------
   fill in the vertex-to-front map for indistinguishable vertices
   --------------------------------------------------------------
*/
for ( iv = 0, v = msmd->vertices ; iv < nvtx ; iv++, v++ ) {
#if MYDEBUG > 0
   fprintf(stdout, "\n v %d, wght = %d, status %c", 
           v->id, v->wght, v->status) ;
   fflush(stdout) ;
#endif
   switch ( v->status ) {
   case 'I' :
#if MYDEBUG > 0
      fprintf(stdout, "\n I : v %d", v->id) ;
      fflush(stdout) ;
#endif
      w = v ;
      while ( w->par != NULL && w->status == 'I' ) {
         w = w->par ;
#if MYDEBUG > 0
/*
         fprintf(stdout, " --> %d", w->id) ;
*/
         fprintf(stdout, " %d", w->id) ;
         fflush(stdout) ;
#endif
      }
#if MYDEBUG > 0
      fprintf(stdout, ", w %d, status %c", w->id, w->status) ;
      fflush(stdout) ;
#endif
      switch ( w->status ) {
      case 'L' :
      case 'E' :
         vtxToFront[v->id] = vtxToFront[w->id] ;
#if MYDEBUG > 0
         fprintf(stdout, "\n I: vtxToFront[%d] = %d", 
                 iv, vtxToFront[iv]) ;
         fflush(stdout) ;
#endif
         break ;
      default :
#if MYDEBUG > 0
         fprintf(stdout, "\n wow, v->rootpar = %d, status %c",
                 w->id, w->status) ;
         fflush(stdout) ;
#endif
         break ;
      }
   }
}
/*
   ------------------------------------------------------------
   now fill in the parent Tree field, node and boundary weights 
   ------------------------------------------------------------
*/
par = etree->tree->par ;
for ( iv = 0, v = msmd->vertices ; iv < nvtx ; iv++, v++ ) {
#if MYDEBUG > 0
   fprintf(stdout, "\n v %d, status %c", v->id, v->status) ;
   fflush(stdout) ;
#endif
   switch ( v->status ) {
   case 'L' :
   case 'E' :
      front = vtxToFront[iv] ;
#if MYDEBUG > 0
      fprintf(stdout, ", front %d", front) ;
      fflush(stdout) ;
#endif
      if ( (w = v->par) != NULL ) {
         par[vtxToFront[v->id]] = vtxToFront[w->id] ;
#if MYDEBUG > 0
         fprintf(stdout, ", par[%d] = %d", front, par[front]) ;
         fflush(stdout) ;
#endif
      }
      bndwghts[front] = v->bndwght ;
      nodwghts[front] = v->wght    ;
      break ;
   default :
      break ;
   }
}
/*
   -------------------------
   set the other tree fields
   -------------------------
*/
Tree_setFchSibRoot(etree->tree) ;

return(etree) ; }
示例#2
0
/*
   ---------------------------------------------
   purpose -- to broadcast a front tree object 
              from one process to all the others

   created -- 98may21, cca
   ---------------------------------------------
*/
ETree *
ETree_MPI_Bcast (
   ETree      *etree,
   int        root,
   int        msglvl,
   FILE       *msgFile,
   MPI_Comm   comm
) {
int   myid, nvtx, nfront, nint ;
int   *buffer ;
/*
   -------------
   find identity
   -------------
*/
MPI_Comm_rank(comm, &myid) ;
if ( myid == root ) {
/*
   --------------------------------------------
   this process owns the front tree, allocate a
   continuous buffer and load the data into it.
   --------------------------------------------
*/
   nfront = ETree_nfront(etree) ;
   nvtx   = ETree_nvtx(etree) ;
   nint   = 3 + 5*nfront + nvtx ;
   buffer = IVinit(nint, -1) ;
   buffer[0] = nfront ;
   buffer[1] = nvtx  ;
   buffer[2] = ETree_root(etree) ;
   IVcopy(nfront, buffer + 3,            ETree_par(etree)) ;
   IVcopy(nfront, buffer + 3 +   nfront, ETree_fch(etree)) ;
   IVcopy(nfront, buffer + 3 + 2*nfront, ETree_sib(etree)) ;
   IVcopy(nfront, buffer + 3 + 3*nfront, ETree_nodwghts(etree)) ;
   IVcopy(nfront, buffer + 3 + 4*nfront, ETree_bndwghts(etree)) ;
   IVcopy(nvtx,   buffer + 3 + 5*nfront, ETree_vtxToFront(etree)) ;
/*
   ------------------------------------
   send the size of the buffer and then 
   the buffer to the other processors
   ------------------------------------
*/
   MPI_Bcast(&nint,     1, MPI_INT, root, comm) ;
   MPI_Bcast(buffer, nint, MPI_INT, root, comm) ;
} else {
/*
   --------------------------------------------
   this process will receive the front tree.
   clear its data, receive the number of int's,
   then receive the buffer
   --------------------------------------------
*/
   if ( etree != NULL ) {
      ETree_free(etree) ;
   }
   MPI_Bcast(&nint, 1, MPI_INT, root, comm) ;
   buffer = IVinit(nint, -1) ;
   MPI_Bcast(buffer, nint, MPI_INT, root, comm) ;
/*
   ----------------------------------------
   create an ETree object and fill its data
   ----------------------------------------
*/
   etree  = ETree_new() ;
   nfront = buffer[0] ;
   nvtx   = buffer[1] ;
   ETree_init1(etree, nfront, nvtx) ;
   etree->tree->n    = nfront ;
   etree->tree->root = buffer[2] ;
   IVcopy(nfront, ETree_par(etree),        buffer + 3) ;
   IVcopy(nfront, ETree_fch(etree),        buffer + 3 +   nfront) ;
   IVcopy(nfront, ETree_sib(etree),        buffer + 3 + 2*nfront) ;
   IVcopy(nfront, ETree_nodwghts(etree),   buffer + 3 + 3*nfront) ;
   IVcopy(nfront, ETree_bndwghts(etree),   buffer + 3 + 4*nfront) ;
   IVcopy(nvtx,   ETree_vtxToFront(etree), buffer + 3 + 5*nfront) ;
}
/*
   ---------------
   free the buffer
   ---------------
*/
IVfree(buffer) ;

return(etree) ; }
示例#3
0
文件: IO.c 项目: damiannz/spooles
/*
   --------------------------------------------------------
   purpose -- to read an ETree object from a formatted file

   return value -- 1 if success, 0 if failure

   created -- 95nov15, cca
   --------------------------------------------------------
*/
int
ETree_readFromFormattedFile ( 
   ETree   *etree, 
   FILE    *fp 
) {
int    rc ;
int    itemp[2] ;
/*
   ---------------
   check the input
   ---------------
*/
if ( etree == NULL || fp == NULL ) {
   fprintf(stderr, "\n error in ETree_readFromFormattedFile(%p,%p)"
           "\n bad input\n", etree, fp) ;
   return(0) ;
}
/*
   ---------------------
   clear the data fields
   ---------------------
*/
ETree_clearData(etree) ;
/*
   ---------------------------
   initialize the ETree object
   ---------------------------
*/
ETree_init1(etree, 0, 0) ;
/*
   -----------------------------
   read in the two scalar fields
   -----------------------------
*/
if ( (rc = IVfscanf(fp, 2, itemp)) != 2 ) {
   fprintf(stderr, "\n error in ETree_readFromFormattedFile(%p,%p)"
           "\n %d items of %d read\n", etree, fp, rc, 2) ;
   return(0) ;
}
etree->nfront = itemp[0] ;
etree->nvtx   = itemp[1] ;
/*
   -----------------------
   read in the Tree object
   -----------------------
*/
Tree_readFromFormattedFile(etree->tree, fp) ;
/*
   ------------------------------
   read in the nodwghts IV object
   ------------------------------
*/
IV_readFromFormattedFile(etree->nodwghtsIV, fp) ;
/*
   ------------------------------
   read in the bndwghts IV object
   ------------------------------
*/
IV_readFromFormattedFile(etree->bndwghtsIV, fp) ;
/*
   --------------------------------
   read in the vtxToFront IV object
   --------------------------------
*/
IV_readFromFormattedFile(etree->vtxToFrontIV, fp) ;

return(1) ; }
示例#4
0
/*
   -----------------------------------------------------------
   purpose -- to initialize subtree with the subtree 
              of the front tree using nodes in nodeidsIV.
              vtxIV is filled with the vertices in the subtree
 
   return values ---
      1 -- normal return
     -1 -- subtree is NULL
     -2 -- nodeidsIV is NULL
     -3 -- etree is NULL
     -4 -- nodeidsIV is invalid
     -5 -- vtxIV is NULL
 
   created -- 98oct15, cca
   -----------------------------------------------------------
*/
int
ETree_initFromSubtree (
   ETree   *subtree,
   IV      *nodeidsIV,
   ETree   *etree,
   IV      *vtxIV
) {
int   J, Jsub, nfrontInETree, nfrontInSubtree, 
      nvtxInETree, nvtxInSubtree, v, vSub ;
int   *bndwghts, *bndwghtsSub, *localmap, *nodwghts, *nodwghtsSub,
      *subtreeNodes, *vtxInSubtree, *vtxToFront, *vtxToFrontSub ;
/*
   ---------------
   check the input
   ---------------
*/
if ( subtree == NULL ) {
   fprintf(stderr, "\n\n error in ETree_initFromSubtree()"
           "\n subtree is NULL\n") ;
   return(-1) ;
}
if ( nodeidsIV == NULL ) {
   fprintf(stderr, "\n\n error in ETree_initFromSubtree()"
           "\n nodeidsIV is NULL\n") ;
   return(-2) ;
}
if ( etree == NULL ) {
   fprintf(stderr, "\n\n error in ETree_initFromSubtree()"
           "\n etree is NULL\n") ;
   return(-3) ;
}
nfrontInETree = ETree_nfront(etree) ;
IV_sizeAndEntries(nodeidsIV, &nfrontInSubtree, &subtreeNodes) ;
if ( nfrontInSubtree < 0 || nfrontInSubtree >= nfrontInETree ) {
   fprintf(stderr, "\n\n error in ETree_initFromSubtree()"
           "\n nfrontInETree = %d, nfrontInSubtree = %d\n",
           nfrontInETree, nfrontInSubtree) ;
   return(-4) ;
}
for ( Jsub = 0 ; Jsub < nfrontInSubtree ; Jsub++ ) {
   J = subtreeNodes[Jsub] ;
   if ( J < 0 || J >= nfrontInETree ) {
      fprintf(stderr, "\n\n error in ETree_initFromSubtree()"
              "\n nfrontInETree = %d, subtreeNodes[%d] = %d\n",
              nfrontInETree, Jsub, subtreeNodes[Jsub]) ;
      return(-4) ;
   }
}
if ( vtxIV == NULL ) {
   fprintf(stderr, "\n\n error in ETree_initFromSubtree()"
           "\n vtxIV is NULL\n") ;
   return(-5) ;
}
nvtxInETree = ETree_nvtx(etree) ;
vtxToFront  = ETree_vtxToFront(etree) ;
/*
   ----------------------------
   create a global-to-local map
   ----------------------------
*/
localmap = IVinit(nfrontInETree, -1) ;
for ( Jsub = 0 ; Jsub < nfrontInSubtree ; Jsub++ ) {
   J = subtreeNodes[Jsub] ;
   localmap[J] = Jsub ;
}
/*
   ---------------------------------------------
   compute the number of vertices in the subtree
   ---------------------------------------------
*/
nvtxInSubtree = 0 ;
for ( v = 0 ; v < nvtxInETree ; v++ ) {
   J = vtxToFront[v] ;
   if ( (Jsub = localmap[J]) != -1 ) {
      nvtxInSubtree++ ;
   }
}
/*
   ----------------------
   initialize the subtree
   ----------------------
*/
ETree_init1(subtree, nfrontInSubtree, nvtxInSubtree) ;
/*
   -----------------------------
   initialize the subtree's tree
   -----------------------------
*/
Tree_initFromSubtree(subtree->tree, nodeidsIV, etree->tree) ;
/*
   -----------------------------------
   set the nodwght and bndwght vectors
   -----------------------------------
*/
nodwghts    = ETree_nodwghts(etree) ;
bndwghts    = ETree_bndwghts(etree) ;
nodwghtsSub = ETree_nodwghts(subtree) ;
bndwghtsSub = ETree_bndwghts(subtree) ;
for ( Jsub = 0 ; Jsub < nfrontInSubtree ; Jsub++ ) {
   J = subtreeNodes[Jsub] ;
   nodwghtsSub[Jsub] = nodwghts[J] ;
   bndwghtsSub[Jsub] = bndwghts[J] ;
}
/*
   -------------------------------------
   set the subtree's vtxToFront[] vector
   and fill vtxIV with the vertices
   -------------------------------------
*/
IV_init(vtxIV, nvtxInSubtree, NULL) ;
vtxInSubtree  = IV_entries(vtxIV) ;
vtxToFrontSub = ETree_vtxToFront(subtree) ;
for ( v = vSub = 0 ; v < nvtxInETree ; v++ ) {
   J = vtxToFront[v] ;
   if ( (Jsub = localmap[J]) != -1 ) {
      vtxInSubtree[vSub] = v ;
      vtxToFrontSub[vSub] = Jsub ;
      vSub++ ;
   }
}
/*
   ------------------------
   free the working storage
   ------------------------
*/
IVfree(localmap) ;

return(1) ; }
示例#5
0
/*
   -------------------------------------------------
   expand an ETree object by splitting a large front 
   into a chain of smaller fronts.

   created -- 96jun27, cca
   -------------------------------------------------
*/
ETree *
ETree_splitFronts (
   ETree   *etree,
   int     vwghts[],
   int     maxfrontsize,
   int     seed
) {
ETree   *etree2 ;
int     count, front, ii, I, Inew, J, Jnew, nbnd, newsize, nint, nfront,
        nfront2, nsplit, nvtx, prev, size, sizeJ, v, vwght ;
int     *bndwghts, *fch, *head, *indices, *link, *newbndwghts, *newmap, 
        *newnodwghts, *newpar, *nodwghts, *roots, *sib, *vtxToFront ;
Tree    *tree ;
/*
   ---------------
   check the input
   ---------------
*/
if ( etree == NULL
   || (nfront = etree->nfront) <= 0
   || (nvtx = etree->nvtx) <= 0
   || maxfrontsize <= 0 ) {
   fprintf(stderr, "\n fatal error in ETree_splitFronts(%p,%p,%d,%d)"
           "\n bad input\n", etree, vwghts, maxfrontsize, seed) ;
   spoolesFatal();
}
tree       = etree->tree ;
fch        = tree->fch ;
sib        = tree->sib ;
nodwghts   = IV_entries(etree->nodwghtsIV) ;
bndwghts   = IV_entries(etree->bndwghtsIV) ;
vtxToFront = IV_entries(etree->vtxToFrontIV) ;
/*
   --------------------------
   set up the working storage
   --------------------------
*/
newpar      = IVinit(nvtx,   -1) ;
roots       = IVinit(nfront, -1) ;
newmap      = IVinit(nvtx,   -1) ;
newnodwghts = IVinit(nvtx,   -1) ;
newbndwghts = IVinit(nvtx,   -1) ;
head        = IVinit(nfront, -1) ;
link        = IVinit(nvtx,   -1) ;
indices     = IVinit(nvtx,   -1) ;
for ( v = 0 ; v < nvtx ; v++ ) {
   front = vtxToFront[v] ;
   link[v] = head[front] ;
   head[front] = v ;
}
/*
   ------------------------------------------------
   execute a post-order traversal of the front tree
   ------------------------------------------------
*/
nfront2 = 0 ;
for ( J = Tree_postOTfirst(tree) ;
      J != -1 ;
      J = Tree_postOTnext(tree, J) ) {
   sizeJ = 0 ;
   for ( v = head[J], count = 0 ; v != -1 ; v = link[v] ) {
      indices[count++] = v ;
      vwght = (vwghts != NULL) ? vwghts[v] : 1 ;
      sizeJ += vwght ;
   }
   if ( sizeJ != nodwghts[J] ) {
      fprintf(stderr, "\n fatal error in ETree_splitFronts(%p,%p,%d,%d)"
             "\n J = %d, sizeJ = %d, nodwght = %d\n", 
             etree, vwghts, maxfrontsize, seed, J, sizeJ, nodwghts[J]) ;
      spoolesFatal();
   }
#if MYDEBUG > 0
   fprintf(stdout, "\n\n checking out front %d, size %d", J, sizeJ) ;
#endif
   if ( sizeJ <= maxfrontsize || fch[J] == -1 ) {
/*
      -------------------------------------------
      this front is small enough (or is a domain)
      -------------------------------------------
*/
      Jnew = nfront2++ ;
      for ( ii = 0 ; ii < count ; ii++ ) {
         v = indices[ii] ;
         newmap[v] = Jnew ;
#if MYDEBUG > 1
            fprintf(stdout, "\n   mapping vertex %d into new front %d",
                    v, Jnew) ;
#endif
      }
      for ( I = fch[J] ; I != -1 ; I = sib[I] ) {
         Inew = roots[I] ;
         newpar[Inew] = Jnew ;
      }
      newnodwghts[Jnew] = nodwghts[J] ;
      newbndwghts[Jnew] = bndwghts[J] ;
      roots[J] = Jnew ;
#if MYDEBUG > 0
      fprintf(stdout, "\n    front is small enough, Jnew = %d", Jnew) ;
#endif
   } else {
/*
      ------------------------------------------
      this front is too large, split into pieces 
      whose size differs by one vertex
      ------------------------------------------
*/
      nsplit  = (sizeJ + maxfrontsize - 1)/maxfrontsize ;
      newsize = sizeJ / nsplit ;
      if ( sizeJ % nsplit != 0 ) {
         newsize++ ;
      }
#if MYDEBUG > 0
      fprintf(stdout, 
         "\n    front is too large, %d target fronts, target size = %d",
         nsplit, newsize) ;
#endif
      prev    = -1 ;
      nint    = nodwghts[J] ;
      nbnd    = nint + bndwghts[J] ;
      if ( seed > 0 ) {
         IVshuffle(count, indices, seed) ;
      }
      ii = 0 ;
      while ( ii < count ) {
         Jnew = nfront2++ ;
         size = 0 ;
         while ( ii < count ) {
            v = indices[ii] ;
            vwght = (vwghts != NULL) ? vwghts[v] : 1 ;
#if MYDEBUG > 0
            fprintf(stdout, 
                "\n   ii = %d, v = %d, vwght = %d, size = %d",
                ii, v, vwght, size) ;
#endif
/*
   -----------------------------------------------
   97aug28, cca
   bug fix. front is created even if it is too big
   -----------------------------------------------
*/
            if ( newsize >= size + vwght || size == 0 ) {
               newmap[v] = Jnew ;
               size += vwght ;
#if MYDEBUG > 0
               fprintf(stdout, 
                "\n   mapping vertex %d into new front %d, size = %d",
                v, Jnew, size) ;
#endif
               ii++ ;
            } else {
               break ;
            }
         }
         if ( prev == -1 ) {
            for ( I = fch[J] ; I != -1 ; I = sib[I] ) {
               Inew = roots[I] ;
               newpar[Inew] = Jnew ;
            }
         } else {
            newpar[prev] = Jnew ;
         }
         prev = Jnew ;
         newnodwghts[Jnew] = size ;
         nbnd = nbnd - size ;
         newbndwghts[Jnew] = nbnd ;
#if MYDEBUG > 0
         fprintf(stdout, "\n    new front %d, size %d, bnd %d",
                 Jnew, newnodwghts[Jnew], newbndwghts[Jnew]) ;
#endif
      }
      roots[J] = Jnew ;
   }
}
/*
   ---------------------------
   create the new ETree object
   ---------------------------
*/
etree2 = ETree_new() ;
ETree_init1(etree2, nfront2, nvtx) ;
IVcopy(nfront2, etree2->tree->par, newpar) ;
Tree_setFchSibRoot(etree2->tree) ;
IVcopy(nvtx, IV_entries(etree2->vtxToFrontIV), newmap) ;
IVcopy(nfront2, IV_entries(etree2->nodwghtsIV), newnodwghts) ;
IVcopy(nfront2, IV_entries(etree2->bndwghtsIV), newbndwghts) ;
/*
   ------------------------
   free the working storage
   ------------------------
*/
IVfree(newpar) ;
IVfree(roots)  ;
IVfree(newmap) ;
IVfree(newnodwghts) ;
IVfree(newbndwghts) ;
IVfree(head) ;
IVfree(link) ;
IVfree(indices) ;

return(etree2) ; }