示例#1
0
//-------------------------------------------------------------------
// Musicplayer_Init
//-------------------------------------------------------------------
void vInitMusicplayer (void)
{
  // Initialize Audio interface
  EVAL_AUDIO_SetAudioInterface( AUDIO_INTERFACE_I2S );
  EVAL_AUDIO_Init( OUTPUT_DEVICE_BOTH, 60, I2S_AudioFreq_48k );    // Volume 80%, 44Khz samplefrequentie
  Audio_MAL_Play((uint32_t)AUDIO_SAMPLE, sizeof(AUDIO_SAMPLE) );  // Speel stilte, waarover de toongenerator de toon speelt
  EVAL_AUDIO_PauseResume(AUDIO_RESUME);                            // Start met spelen
  
  // Motor init
  motor_init();
  
  // User button init
  GPIO_InitTypeDef GPIO_InitStructure;
  
#if 0
  EXTI_InitTypeDef EXTI_InitStructure;
  NVIC_InitTypeDef NVIC_InitStructure;
#endif 
  
  /* Enable the BUTTON Clock */
  RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_SYSCFG, ENABLE);

  /* Configure Button pin as input */
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN;
  GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
  GPIO_Init(GPIOA, &GPIO_InitStructure);

#if 0
    /* Connect Button EXTI Line to Button GPIO Pin */
    SYSCFG_EXTILineConfig(EXTI_PortSourceGPIOA, EXTI_PinSource0);

    /* Configure Button EXTI line */
    EXTI_InitStructure.EXTI_Line = EXTI_Line2;
    EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;
    EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising;  
    EXTI_InitStructure.EXTI_LineCmd = ENABLE;
    EXTI_Init(&EXTI_InitStructure);

    /* Enable and set Button EXTI Interrupt to the lowest priority */
    NVIC_InitStructure.NVIC_IRQChannel = EXTI2_IRQn;
    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x0F;
    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x0F;
    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;

    NVIC_Init(&NVIC_InitStructure); 
#endif
  
  
  // Motor test
  // Dit staat hier omdat een van de andere init's niet werkt zonder evdk
  //motor_init();
  //setLedBlink();
  //{int i; for(i=0;i<1000000;i++);}  // Small delay for the motor control board to accept the previous command
  //// Motor ייn rondje
  //SMC_step(1600,1,1000,1);

  
}
/**
  * @brief  AudioCmd 
  *         Play, Stop, Pause or Resume current file.
  * @param  pbuf: address from which file shoud be played.
  * @param  size: size of the current buffer/file.
  * @param  cmd: command to be executed, can be AUDIO_CMD_PLAY , AUDIO_CMD_PAUSE, 
  *              AUDIO_CMD_RESUME or AUDIO_CMD_STOP.
  * @retval AUDIO_OK if all operations succeed, AUDIO_FAIL else.
  */
static uint8_t  AudioCmd(uint8_t* pbuf, 
                         uint32_t size,
                         uint8_t cmd)
{
  /* Check the current state */
  if ((AudioState == AUDIO_STATE_INACTIVE) || (AudioState == AUDIO_STATE_ERROR))
  {
    AudioState = AUDIO_STATE_ERROR;
    return AUDIO_FAIL;
  }
  
  switch (cmd)
  {
    /* Process the PLAY command ----------------------------*/
  case AUDIO_CMD_PLAY:
    /* If current state is Active or Stopped */
    if ((AudioState == AUDIO_STATE_ACTIVE) || \
       (AudioState == AUDIO_STATE_STOPPED) || \
       (AudioState == AUDIO_STATE_PLAYING))
    {
      Audio_MAL_Play((uint32_t)pbuf, (size/2));
      AudioState = AUDIO_STATE_PLAYING;
      return AUDIO_OK;
    }
    /* If current state is Paused */
    else if (AudioState == AUDIO_STATE_PAUSED)
    {
      if (EVAL_AUDIO_PauseResume(AUDIO_RESUME /*, (uint32_t)pbuf, (size/2)*/) != 0)
      {
        AudioState = AUDIO_STATE_ERROR;
        return AUDIO_FAIL;
      }
      else
      {
        AudioState = AUDIO_STATE_PLAYING;
        return AUDIO_OK;
      } 
    } 
    else /* Not allowed command */
    {
      return AUDIO_FAIL;
    }
    
    /* Process the STOP command ----------------------------*/
  case AUDIO_CMD_STOP:
    if (AudioState != AUDIO_STATE_PLAYING)
    {
      /* Unsupported command */
      return AUDIO_FAIL;
    }
    else if (EVAL_AUDIO_Stop(CODEC_PDWN_SW) != 0)
    {
      AudioState = AUDIO_STATE_ERROR;
      return AUDIO_FAIL;
    }
    else
    {
      AudioState = AUDIO_STATE_STOPPED;
      return AUDIO_OK;
    }
  
    /* Process the PAUSE command ---------------------------*/
  case AUDIO_CMD_PAUSE:
    if (AudioState != AUDIO_STATE_PLAYING)
    {
      /* Unsupported command */
      return AUDIO_FAIL;
    }
    else if (EVAL_AUDIO_PauseResume(AUDIO_PAUSE /*, (uint32_t)pbuf, (size/2)*/) != 0)
    {
      AudioState = AUDIO_STATE_ERROR;
      return AUDIO_FAIL;
    }
    else
    {
      AudioState = AUDIO_STATE_PAUSED;
      return AUDIO_OK;
    } 
    
    /* Unsupported command ---------------------------------*/
  default:
    return AUDIO_FAIL;
  }  
}
示例#3
0
/**
  * @brief  Main program.
  * @param  None
  * @retval None
  */
int main(void)
{ 
  /*!< At this stage the microcontroller clock setting is already configured, 
       this is done through SystemInit() function which is called from startup
       file (startup_stm32f4xx.s) before to branch to application main.
       To reconfigure the default setting of SystemInit() function, refer to
       system_stm32f4xx.c file
     */
  
  /* Initialize LEDs, Key Button, LCD available on
     STM324xG-EVAL board ******************************************************/
  STM_EVAL_LEDInit(LED1);
  STM_EVAL_LEDInit(LED2);
  STM_EVAL_LEDInit(LED3);
  STM_EVAL_LEDInit(LED4);

  /* Initialize the Push buttons */
  STM_EVAL_PBInit(BUTTON_KEY, BUTTON_MODE_GPIO);     /* Key button for Pause/Resume */
  STM_EVAL_PBInit(BUTTON_WAKEUP, BUTTON_MODE_GPIO);  /* Key button for Volume High */
  STM_EVAL_PBInit(BUTTON_TAMPER, BUTTON_MODE_GPIO);  /* Key button for Volume Low */
    
  /* Initialize the LCD */
  STM324xG_LCD_Init();
  
  /* Display message on STM324xG-EVAL LCD *************************************/
  /* Clear the LCD */ 
  LCD_Clear(LCD_COLOR_BLUE);  

  /* Set the LCD Back Color */
  LCD_SetBackColor(Blue);
  /* Set the LCD Text Color */
  LCD_SetTextColor(White);
  LCD_DisplayStringLine(Line0, MESSAGE1);
  LCD_DisplayStringLine(Line1, MESSAGE2);
  LCD_DisplayStringLine(Line2, MESSAGE3);

  /* Turn on leds available on STM324xG-EVAL **********************************/
  STM_EVAL_LEDOn(LED1);
  STM_EVAL_LEDOn(LED2);
  STM_EVAL_LEDOn(LED3);
  STM_EVAL_LEDOn(LED4);

  /* SysTick end of count event each 10ms */
  RCC_GetClocksFreq(&RCC_Clocks);
  SysTick_Config(RCC_Clocks.HCLK_Frequency / 100);

  /* Initialize the Audio codec and all related peripherals (I2S, I2C, IOExpander, IOs...) */  
  if (EVAL_AUDIO_Init(OUTPUT_DEVICE_AUTO, volume, I2S_AudioFreq_48k) == 0)
  {
    LCD_DisplayStringLine(Line3, "====================");
    LCD_DisplayStringLine(Line4, "Key   : Play/Pause ");
    LCD_DisplayStringLine(Line5, "Tamper: Vol+/Headph");
    LCD_DisplayStringLine(Line6, "Wakeup: Vol-/Spkr  ");
    LCD_DisplayStringLine(Line7, "====================");
    LCD_DisplayStringLine(Line8, "  AUDIO CODEC   OK  ");    
  }
  else
  {
    LCD_DisplayStringLine(Line4, "  AUDIO CODEC  FAIL ");
    LCD_DisplayStringLine(Line5, " Try to reset board ");
  }
  
  
  /* 
  Normal mode description:
      Start playing the audio file (using DMA stream) .
      Using this mode, the application can run other tasks in parallel since 
      the DMA is handling the Audio Transfer instead of the CPU.
      The only task remaining for the CPU will be the management of the DMA 
      Transfer Complete interrupt or the Half Transfer Complete interrupt in 
      order to load again the buffer and to calculate the remaining data.  
  Circular mode description:
     Start playing the file from a circular buffer, once the DMA is enabled it 
     always run. User has to fill periodically the buffer with the audio data 
     using Transfer complete and/or half transfer complete interrupts callbacks 
     (EVAL_AUDIO_TransferComplete_CallBack() or EVAL_AUDIO_HalfTransfer_CallBack()...
     In this case the audio data file is smaller than the DMA max buffer 
     size 65535 so there is no need to load buffer continuously or manage the 
     transfer complete or Half transfer interrupts callbacks. */
  EVAL_AUDIO_Play((uint16_t*)(AUDIO_SAMPLE + AUIDO_START_ADDRESS), (AUDIO_FILE_SZE - AUIDO_START_ADDRESS));
 
  /* Display the state on the screen */
  LCD_DisplayStringLine(Line8, "       PLAYING      ");
  
  /* Infinite loop */
  while (1)
  {    
    /* Check on the Pause/Resume button */
    if (STM_EVAL_PBGetState(BUTTON_KEY) != Bit_SET)
    {
      /* wait to avoid rebound */
      while (STM_EVAL_PBGetState(BUTTON_KEY) != Bit_SET);
      
      EVAL_AUDIO_PauseResume(cmd);
      if (cmd == AUDIO_PAUSE)
      {
        /* Display the current state of the player */
        LCD_DisplayStringLine(Line8, "       PAUSED       ");
        
        /* Next time Resume command should be processed */
        cmd = AUDIO_RESUME;
        
        /* Push buttons will be used to switch between Speaker and Headphone modes */
        SpHpSwitch = 1;
      }
      else
      {
        /* Display the current state of the player */
        LCD_DisplayStringLine(Line8, "       PLAYING      ");
        
        /* Next time Pause command should be processed */
        cmd = AUDIO_PAUSE;
        
        /* Push buttons will be used to control volume level */
        SpHpSwitch = 0;
      }
    }
    
    /* Check on the Volume high button */
    if (STM_EVAL_PBGetState(BUTTON_WAKEUP) == Bit_SET)
    {
      /* Check if the current state is paused (push buttons are used for volume control or for 
         speaker/headphone mode switching) */
      if (SpHpSwitch)
      {
        /* Set output to Speaker */
        Codec_SwitchOutput(OUTPUT_DEVICE_SPEAKER);
        
        /* Display the current state of the player */
        LCD_DisplayStringLine(Line9, "       SPEAKER      ");
      }
      else
      {
        /* wait to avoid rebound */
        while (STM_EVAL_PBGetState(BUTTON_WAKEUP) == Bit_SET);
        
        /* Decrease volume by 5% */
        if (volume > 5)
          volume -= 5; 
        else
          volume = 0; 
        
        /* Apply the new volume to the codec */
        EVAL_AUDIO_VolumeCtl(volume);
        LCD_DisplayStringLine(Line9, "       VOL:   -     ");
      }
    }    
    
    /* Check on the Volume high button */
    if (STM_EVAL_PBGetState(BUTTON_TAMPER) != Bit_SET)
    {
      /* Check if the current state is paused (push buttons are used for volume control or for 
         speaker/headphone mode switching) */
      if (SpHpSwitch)
      {
        /* Set output to Headphone */
        Codec_SwitchOutput(OUTPUT_DEVICE_HEADPHONE);
        
        /* Display the current state of the player */
        LCD_DisplayStringLine(Line9, "      HEADPHONE     ");
      }
      else
      {
        /* wait to avoid rebound */
        while (STM_EVAL_PBGetState(BUTTON_TAMPER) != Bit_SET);
        
        /* Increase volume by 5% */
        if (volume < 95)
          volume += 5; 
        else
          volume = 100; 
        
        /* Apply the new volume to the codec */
        EVAL_AUDIO_VolumeCtl(volume);
        LCD_DisplayStringLine(Line9, "       VOL:   +     ");  
      }
    }  
    
    /* Toggle LD4 */
    STM_EVAL_LEDToggle(LED3);

    /* Insert 50 ms delay */
    Delay(5);

    /* Toggle LD2 */
    STM_EVAL_LEDToggle(LED2);

    /* Insert 50 ms delay */
    Delay(5);
  }
}
void AudioTask ( void * pvParameters )
{
	struct AAudioCommandMessage CmdMsg;
	uint8_t rc = 0;
	FRESULT res;
	uint8_t pausing = 0;

	xAudioQueue = xQueueCreate ( 8, sizeof ( char ) );

	res = f_mount ( &FatFs, "", 1 ); // mount the drive
	if ( res )
	{
		led_state[0] = LED_STATE_BLINK_FAST;
		while ( 1 );
	}

	while ( 1 )
	{
		if ( xQueueReceive ( xAudioQueue, &CmdMsg, portMAX_DELAY ) )
		{
			switch ( CmdMsg.Command )
			{
			case 'h': // half transfer complete
				break;
			case 't': // transfer complete
				if ( audioContext.lastFrame )
				{
					EVAL_AUDIO_Stop ( CODEC_PDWN_SW );
				}
				else
				{
					AudioProvideSamplesFromFile ( );
				}
				break;
			case 'p': // play file
				rc = AudioStartPlayFile ( CmdMsg.sFilename );
				switch ( rc )
				{
					case 0:
						led_state[1] = LED_STATE_OFF;
						led_state[2] = LED_STATE_OFF;
						break;

					case 1:
						led_state[1] = LED_STATE_BLINK_FAST;
						break;

					case 2:
						led_state[2] = LED_STATE_BLINK_FAST;
						break;
				}
				break;
			case 'r': // pause/resume
				EVAL_AUDIO_PauseResume ( pausing ? AUDIO_RESUME : AUDIO_PAUSE );
				pausing ^= pausing;
				break;
			case 's': // stop playback
				EVAL_AUDIO_Stop ( CODEC_PDWN_SW );
				break;
			case 'v': // set volume
				break;
			case '+': // volume up
				break;
			case '-': // volume down
				break;
			case 'n': // next file
				break;
			case 'l': // last file
				break;
			};
		};
	};
};
/**
 * @brief  Pause or Resume a played wave
 * @param  state: if it is equal to 0 pause Playing else resume playing
 * @retval None
 */
void WavePlayerPauseResume(uint8_t state)
{ 
  EVAL_AUDIO_PauseResume(state);
}
示例#6
0
/**
  * @brief  Main program.
  * @param  None
  * @retval None
*/
int main(void)
{
  /* Initialize LEDS */
  /* Red Led On: buffer overflow */
  STM_EVAL_LEDInit(LED3);
  /* Green Led On: fdmdv+codec2 enabled */
  STM_EVAL_LEDInit(LED4);
  STM_EVAL_LEDInit(LED5);
  /* Blue Led On: start of application */
  STM_EVAL_LEDInit(LED6);

  STM_EVAL_LEDOn(LED6);

  /* transparent mode switcher */
  STM_EVAL_PBInit(BUTTON_USER, BUTTON_MODE_EXTI);

  if(Transparent_mode)
	  STM_EVAL_LEDOff(LED4);
  else
	  STM_EVAL_LEDOn(LED4);

  /* SysTick end of count event each 10ms */
  RCC_GetClocksFreq(&RCC_Clocks);
  SysTick_Config(RCC_Clocks.HCLK_Frequency / 100);

  USART_InitTypeDef USART_InitStructure;
  USART_InitStructure.USART_BaudRate = 115200;
  USART_InitStructure.USART_WordLength = USART_WordLength_8b;
  USART_InitStructure.USART_StopBits = USART_StopBits_1;
  USART_InitStructure.USART_Parity = USART_Parity_No;
  USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
  USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
  STM_EVAL_USART2Init(&USART_InitStructure);

  // turn off buffers, so IO occurs immediately
  setvbuf(stdin, NULL, _IONBF, 0);
  setvbuf(stdout, NULL, _IONBF, 0);
  setvbuf(stderr, NULL, _IONBF, 0);

  /* Output a message on Hyperterminal using printf function */
  printf("\r\nFloating-Point Based Codec2 encoder for Cortex-M4F\r\n");
  /* Configure TIM4 Peripheral to manage LEDs lighting */

  unsigned int idx = 0;
  Time_Rec_Base=0;
  int i, buffId;

  codec2_initialize_all(SPEAKER_FREQ == 48000 ? 1 : 0);

  /* fill output fifo */
  fifoBufferFullness=0;
  fifoBufferCurrent=0;
  Switch = 0;

  /* modulate silence once for padding if happens */
  memset(padBuffer, 0x00, (320*(SPEAKER_FREQ/MIC_FREQ)*2)*sizeof(short));
  memset(fifoBuffer, 0x00, MODULATOR_QUEUE_SIZE * (SPEAKER_FREQ/MIC_FREQ)*320*2*sizeof(short));
  //codec2_modulate((short *) padBuffer, (short *) padBuffer, Transparent_mode);

  /* Initialize I2S interface */
  EVAL_AUDIO_SetAudioInterface(AUDIO_INTERFACE_I2S);
  /* Initialize the Audio codec and all related peripherals (I2S, I2C, IOExpander, IOs...) */
  //EVAL_AUDIO_Init(OUTPUT_DEVICE_AUTO, 0, SPEAKER_FREQ);
  EVAL_AUDIO_Init(OUTPUT_DEVICE_AUTO, 0, SPEAKER_FREQ);
  EVAL_AUDIO_PauseResume(AUDIO_PAUSE);
  Audio_MAL_Play((uint32_t) padBuffer, (320*(SPEAKER_FREQ/MIC_FREQ))*2*sizeof(short));
  EVAL_AUDIO_PauseResume(AUDIO_RESUME);

  /* Start the record */
  MicListenerInit(32000,16, 1);
  MicListenerStart(RecBuf_8Khz, PCM_OUT_SIZE);

  /* GLOBAL SCHEDULER
   * DO NOT USE LOOPS INSIDE IT!
   * */
  while(1) {
	  /* we have frame from mike */
	  if(Data_Status == 0)
		  continue;

	  /* Switch the buffers*/
	  if (Switch ==1) {
		pAudioRecBuf_8Khz = RecBuf_8Khz;
		writebuffer = RecBuf1_8Khz;
		Switch = 0;
	  } else {
		pAudioRecBuf_8Khz = RecBuf1_8Khz;
		writebuffer = RecBuf_8Khz;
		Switch = 1;
	  }

#ifdef USE_ST_FILTER
	  //Downsampling 16Khz => 8Khz (this is input for codec, it sampled with 8KHz)
	  for(i=0; i<320; i++)
	      writebuffer[i] = writebuffer[2*i];
#endif

	  //TODO: modulate, even if no data from mike!
	  if(fifoBufferFullness < MODULATOR_QUEUE_SIZE-1) {
		  /* get the next free buffer */
		  buffId = fifoBufferCurrent + fifoBufferFullness;
		  if(buffId >= MODULATOR_QUEUE_SIZE) buffId -= MODULATOR_QUEUE_SIZE;
		  assert(buffId >= 0 && buffId < MODULATOR_QUEUE_SIZE);
		  codec2_modulate((short *) writebuffer, (short *) fifoBuffer[buffId], Transparent_mode);
		  fifoBufferFullness++;
		  if(idx % 32 == 0) printf(".");
		  if(idx % (32*32) == 0) printf("\r\n");

		  /* this is hack to remove loud noise at startup */
		  if(volume_set==1) {
			  STM_EVAL_LEDOff(LED3);
			  EVAL_AUDIO_VolumeCtl(90);
			  volume_set=2;
		  }
	  } else {
		  STM_EVAL_LEDToggle(LED3);
		  printf("x");
		  if(idx % (32) == 0) printf("\r\n");
	  }

	  idx++;
      Data_Status = 0;
  }

  EVAL_AUDIO_Mute(AUDIO_MUTE_ON);
  EVAL_AUDIO_Stop(CODEC_PDWN_HW);
  MicListenerStop();

  //float samples_time = idx*samplesPerFrame/((float) WAVE_Format.NumChannels*WAVE_Format.SampleRate);
#if 0
  float samples_time = idx*mod->samplesPerFrame/((float) 1*MIC_FREQ);
  float cpu_time = Time_Rec_Base/((float ) 100);
  printf("\r\n%8.3f s audio file encoded in %8.3f s\r\n", (double) samples_time, (double) cpu_time);
#endif
  while(1) {
	STM_EVAL_LEDToggle(LED5);
    Delay(10);
  }
}