static void acpi_lid_notify_status_changed(void *arg) { struct acpi_lid_softc *sc; struct acpi_softc *acpi_sc; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); sc = (struct acpi_lid_softc *)arg; /* * Evaluate _LID and check the return value, update lid status. * Zero: The lid is closed * Non-zero: The lid is open */ if (ACPI_FAILURE(acpi_EvaluateInteger(sc->lid_handle, "_LID", &sc->lid_status))) return_VOID; acpi_sc = acpi_device_get_parent_softc(sc->lid_dev); if (acpi_sc == NULL) { return_VOID; } ACPI_VPRINT(sc->lid_dev, acpi_sc, "Lid %s\n", sc->lid_status ? "opened" : "closed"); if (sc->lid_status == 0) { EVENTHANDLER_INVOKE(acpi_sleep_event, acpi_sc->acpi_lid_switch_sx); } else { EVENTHANDLER_INVOKE(acpi_wakeup_event, acpi_sc->acpi_lid_switch_sx); } return_VOID; }
/* * Shutdown the system cleanly to prepare for reboot, halt, or power off. */ void kern_reboot(int howto) { static int once = 0; #if defined(SMP) /* * Bind us to CPU 0 so that all shutdown code runs there. Some * systems don't shutdown properly (i.e., ACPI power off) if we * run on another processor. */ if (!SCHEDULER_STOPPED()) { thread_lock(curthread); sched_bind(curthread, 0); thread_unlock(curthread); KASSERT(PCPU_GET(cpuid) == 0, ("boot: not running on cpu 0")); } #endif /* We're in the process of rebooting. */ rebooting = 1; /* We are out of the debugger now. */ kdb_active = 0; /* * Do any callouts that should be done BEFORE syncing the filesystems. */ EVENTHANDLER_INVOKE(shutdown_pre_sync, howto); /* * Now sync filesystems */ if (!cold && (howto & RB_NOSYNC) == 0 && once == 0) { once = 1; bufshutdown(show_busybufs); } print_uptime(); cngrab(); /* * Ok, now do things that assume all filesystem activity has * been completed. */ EVENTHANDLER_INVOKE(shutdown_post_sync, howto); if ((howto & (RB_HALT|RB_DUMP)) == RB_DUMP && !cold && !dumping) doadump(TRUE); /* Now that we're going to really halt the system... */ EVENTHANDLER_INVOKE(shutdown_final, howto); for(;;) ; /* safety against shutdown_reset not working */ /* NOTREACHED */ }
static void set_rootvnode(void) { struct proc *p; if (VFS_ROOT(TAILQ_FIRST(&mountlist), LK_EXCLUSIVE, &rootvnode)) panic("Cannot find root vnode"); VOP_UNLOCK(rootvnode, 0); p = curthread->td_proc; FILEDESC_XLOCK(p->p_fd); if (p->p_fd->fd_cdir != NULL) vrele(p->p_fd->fd_cdir); p->p_fd->fd_cdir = rootvnode; VREF(rootvnode); if (p->p_fd->fd_rdir != NULL) vrele(p->p_fd->fd_rdir); p->p_fd->fd_rdir = rootvnode; VREF(rootvnode); FILEDESC_XUNLOCK(p->p_fd); EVENTHANDLER_INVOKE(mountroot); }
static int kern_do_pat(u_int utim) { int error; if ((utim & WD_LASTVAL) != 0 && (utim & WD_INTERVAL) > 0) return (EINVAL); if ((utim & WD_LASTVAL) != 0) { MPASS((wd_last_u & ~WD_INTERVAL) == 0); utim &= ~WD_LASTVAL; utim |= wd_last_u; } else wd_last_u = (utim & WD_INTERVAL); if ((utim & WD_INTERVAL) == WD_TO_NEVER) { utim = 0; /* Assume all is well; watchdog signals failure. */ error = 0; } else { /* Assume no watchdog available; watchdog flags success */ error = EOPNOTSUPP; } EVENTHANDLER_INVOKE(watchdog_list, utim, &error); return (error); }
/* HVM mode suspension. */ static void xctrl_suspend() { int suspend_cancelled; EVENTHANDLER_INVOKE(power_suspend); /* * Be sure to hold Giant across DEVICE_SUSPEND/RESUME since non-MPSAFE * drivers need this. */ mtx_lock(&Giant); if (DEVICE_SUSPEND(root_bus) != 0) { mtx_unlock(&Giant); printf("%s: device_suspend failed\n", __func__); return; } mtx_unlock(&Giant); /* * Prevent any races with evtchn_interrupt() handler. */ disable_intr(); irq_suspend(); suspend_cancelled = HYPERVISOR_suspend(0); if (suspend_cancelled) irq_resume(); else xenpci_resume(); /* * Re-enable interrupts and put the scheduler back to normal. */ enable_intr(); /* * FreeBSD really needs to add DEVICE_SUSPEND_CANCEL or * similar. */ mtx_lock(&Giant); if (!suspend_cancelled) DEVICE_RESUME(root_bus); mtx_unlock(&Giant); EVENTHANDLER_INVOKE(power_resume); }
void tcp_offload_listen_start(struct tcpcb *tp) { INP_WLOCK_ASSERT(tp->t_inpcb); EVENTHANDLER_INVOKE(tcp_offload_listen_start, tp); }
void __tesla_event_function_prologue_syscallret(void **tesla_data, struct thread *td, int error, struct syscall_args *sa) { EVENTHANDLER_INVOKE(tesla_event_function_prologue_syscallret, tesla_data, td, error, sa); }
static void if_low_power_nwk_ev_callback(void *arg) { struct if_low_power_ev_args *if_low_power_ev_args = (struct if_low_power_ev_args *)arg; EVENTHANDLER_INVOKE(&if_low_power_evhdlr_ctx, if_low_power_event, if_low_power_ev_args->ifp, if_low_power_ev_args->event_code); }
/* * Prepare a proc for use. */ static int proc_ctor(void *mem, int size, void *arg, int flags) { struct proc *p; p = (struct proc *)mem; SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0); EVENTHANDLER_INVOKE(process_ctor, p); SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0); return (0); }
static void acpi_lid_notify_status_changed(void *arg) { struct acpi_lid_softc *sc; struct acpi_softc *acpi_sc; ACPI_STATUS status; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); sc = (struct acpi_lid_softc *)arg; ACPI_SERIAL_BEGIN(lid); /* * Evaluate _LID and check the return value, update lid status. * Zero: The lid is closed * Non-zero: The lid is open */ status = acpi_GetInteger(sc->lid_handle, "_LID", &sc->lid_status); if (ACPI_FAILURE(status)) goto out; acpi_sc = acpi_device_get_parent_softc(sc->lid_dev); if (acpi_sc == NULL) goto out; ACPI_VPRINT(sc->lid_dev, acpi_sc, "Lid %s\n", sc->lid_status ? "opened" : "closed"); acpi_UserNotify("Lid", sc->lid_handle, sc->lid_status); if (sc->lid_status == 0) EVENTHANDLER_INVOKE(acpi_sleep_event, acpi_sc->acpi_lid_switch_sx); else EVENTHANDLER_INVOKE(acpi_wakeup_event, acpi_sc->acpi_lid_switch_sx); out: ACPI_SERIAL_END(lid); return_VOID; }
/* * Allow userspace to directly trigger the VM drain routine for testing * purposes. */ static int debug_vm_lowmem(SYSCTL_HANDLER_ARGS) { int error, i; i = 0; error = sysctl_handle_int(oidp, &i, 0, req); if (error) return (error); if ((i & ~(VM_LOW_KMEM | VM_LOW_PAGES)) != 0) return (EINVAL); if (i != 0) EVENTHANDLER_INVOKE(vm_lowmem, i); return (0); }
/* * UMA should ensure that this function is never called. * Freeing a proc structure would violate type stability. */ static void proc_fini(void *mem, int size) { #ifdef notnow struct proc *p; p = (struct proc *)mem; EVENTHANDLER_INVOKE(process_fini, p); pstats_free(p->p_stats); thread_free(FIRST_THREAD_IN_PROC(p)); mtx_destroy(&p->p_mtx); if (p->p_ksi != NULL) ksiginfo_free(p->p_ksi); #else panic("proc reclaimed"); #endif }
void power_profile_set_state(int state) { int changed; if (state != power_profile_state) { power_profile_state = state; changed = 1; kprintf("system power profile changed to '%s'\n", (state == POWER_PROFILE_PERFORMANCE) ? "performance" : "economy"); } else { changed = 0; } if (changed) EVENTHANDLER_INVOKE(power_profile_change, 0); }
static int sysctl_nmbufs(SYSCTL_HANDLER_ARGS) { int error, newnmbufs; newnmbufs = nmbufs; error = sysctl_handle_int(oidp, &newnmbufs, 0, req); if (error == 0 && req->newptr && newnmbufs != nmbufs) { if (newnmbufs > nmbufs) { nmbufs = newnmbufs; nmbufs = uma_zone_set_max(zone_mbuf, nmbufs); EVENTHANDLER_INVOKE(nmbufs_change); } else error = EINVAL; } return (error); }
static int sysctl_nmbclusters(SYSCTL_HANDLER_ARGS) { int error, newnmbclusters; newnmbclusters = nmbclusters; error = sysctl_handle_int(oidp, &newnmbclusters, 0, req); if (error == 0 && req->newptr) { if (newnmbclusters > nmbclusters) { nmbclusters = newnmbclusters; uma_zone_set_max(zone_clust, nmbclusters); EVENTHANDLER_INVOKE(nmbclusters_change); } else error = EINVAL; } return (error); }
/* * Initialize type-stable parts of a proc (when newly created). */ static int proc_init(void *mem, int size, int flags) { struct proc *p; p = (struct proc *)mem; SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0); p->p_sched = (struct p_sched *)&p[1]; bzero(&p->p_mtx, sizeof(struct mtx)); mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE); cv_init(&p->p_pwait, "ppwait"); TAILQ_INIT(&p->p_threads); /* all threads in proc */ EVENTHANDLER_INVOKE(process_init, p); p->p_stats = pstats_alloc(); SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0); return (0); }
static int sysctl_nmbclusters(SYSCTL_HANDLER_ARGS) { int error, newnmbclusters; newnmbclusters = nmbclusters; error = sysctl_handle_int(oidp, &newnmbclusters, 0, req); if (error == 0 && req->newptr && newnmbclusters != nmbclusters) { if (newnmbclusters > nmbclusters && nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) { nmbclusters = newnmbclusters; nmbclusters = uma_zone_set_max(zone_clust, nmbclusters); #ifndef __rtems__ EVENTHANDLER_INVOKE(nmbclusters_change); #endif /* __rtems__ */ } else error = EINVAL; } return (error); }
/* * Reclaim a proc after use. */ static void proc_dtor(void *mem, int size, void *arg) { struct proc *p; struct thread *td; /* INVARIANTS checks go here */ p = (struct proc *)mem; td = FIRST_THREAD_IN_PROC(p); SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0); if (td != NULL) { #ifdef INVARIANTS KASSERT((p->p_numthreads == 1), ("bad number of threads in exiting process")); KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); #endif /* Free all OSD associated to this thread. */ osd_thread_exit(td); } EVENTHANDLER_INVOKE(process_dtor, p); if (p->p_ksi != NULL) KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0); }
/* * Go through the rigmarole of shutting down.. * this used to be in machdep.c but I'll be dammned if I could see * anything machine dependant in it. */ static void boot(int howto) { /* * Get rid of any user scheduler baggage and then give * us a high priority. */ if (curthread->td_release) curthread->td_release(curthread); lwkt_setpri_self(TDPRI_MAX); /* collect extra flags that shutdown_nice might have set */ howto |= shutdown_howto; #ifdef SMP /* * We really want to shutdown on the BSP. Subsystems such as ACPI * can't power-down the box otherwise. */ if (smp_active_mask > 1) { kprintf("boot() called on cpu#%d\n", mycpu->gd_cpuid); } if (panicstr == NULL && mycpu->gd_cpuid != 0) { kprintf("Switching to cpu #0 for shutdown\n"); lwkt_setcpu_self(globaldata_find(0)); } #endif /* * Do any callouts that should be done BEFORE syncing the filesystems. */ EVENTHANDLER_INVOKE(shutdown_pre_sync, howto); /* * Try to get rid of any remaining FS references. The calling * process, proc0, and init may still hold references. The * VFS cache subsystem may still hold a root reference to root. * * XXX this needs work. We really need to SIGSTOP all remaining * processes in order to avoid blowups due to proc0's filesystem * references going away. For now just make sure that the init * process is stopped. */ if (panicstr == NULL) { shutdown_cleanup_proc(curproc); shutdown_cleanup_proc(&proc0); if (initproc) { if (initproc != curproc) { ksignal(initproc, SIGSTOP); tsleep(boot, 0, "shutdn", hz / 20); } shutdown_cleanup_proc(initproc); } vfs_cache_setroot(NULL, NULL); } /* * Now sync filesystems */ if (!cold && (howto & RB_NOSYNC) == 0 && waittime < 0) { int iter, nbusy, pbusy; waittime = 0; kprintf("\nsyncing disks... "); sys_sync(NULL); /* YYY was sync(&proc0, NULL). why proc0 ? */ /* * With soft updates, some buffers that are * written will be remarked as dirty until other * buffers are written. */ for (iter = pbusy = 0; iter < 20; iter++) { nbusy = scan_all_buffers(shutdown_busycount1, NULL); if (nbusy == 0) break; kprintf("%d ", nbusy); if (nbusy < pbusy) iter = 0; pbusy = nbusy; /* * XXX: * Process soft update work queue if buffers don't sync * after 6 iterations by permitting the syncer to run. */ if (iter > 5) bio_ops_sync(NULL); sys_sync(NULL); /* YYY was sync(&proc0, NULL). why proc0 ? */ tsleep(boot, 0, "shutdn", hz * iter / 20 + 1); } kprintf("\n"); /* * Count only busy local buffers to prevent forcing * a fsck if we're just a client of a wedged NFS server */ nbusy = scan_all_buffers(shutdown_busycount2, NULL); if (nbusy) { /* * Failed to sync all blocks. Indicate this and don't * unmount filesystems (thus forcing an fsck on reboot). */ kprintf("giving up on %d buffers\n", nbusy); #ifdef DDB if (debugger_on_panic) Debugger("busy buffer problem"); #endif /* DDB */ tsleep(boot, 0, "shutdn", hz * 5 + 1); } else { kprintf("done\n"); /* * Unmount filesystems */ if (panicstr == NULL) vfs_unmountall(); } tsleep(boot, 0, "shutdn", hz / 10 + 1); } print_uptime(); /* * Dump before doing post_sync shutdown ops */ crit_enter(); if ((howto & (RB_HALT|RB_DUMP)) == RB_DUMP && !cold) { dumpsys(); } /* * Ok, now do things that assume all filesystem activity has * been completed. This will also call the device shutdown * methods. */ EVENTHANDLER_INVOKE(shutdown_post_sync, howto); /* Now that we're going to really halt the system... */ EVENTHANDLER_INVOKE(shutdown_final, howto); for(;;) ; /* safety against shutdown_reset not working */ /* NOTREACHED */ }
static void xctrl_suspend() { #ifdef SMP cpuset_t cpu_suspend_map; #endif int suspend_cancelled; EVENTHANDLER_INVOKE(power_suspend); if (smp_started) { thread_lock(curthread); sched_bind(curthread, 0); thread_unlock(curthread); } KASSERT((PCPU_GET(cpuid) == 0), ("Not running on CPU#0")); /* * Clear our XenStore node so the toolstack knows we are * responding to the suspend request. */ xs_write(XST_NIL, "control", "shutdown", ""); /* * Be sure to hold Giant across DEVICE_SUSPEND/RESUME since non-MPSAFE * drivers need this. */ mtx_lock(&Giant); if (DEVICE_SUSPEND(root_bus) != 0) { mtx_unlock(&Giant); printf("%s: device_suspend failed\n", __func__); return; } mtx_unlock(&Giant); #ifdef SMP CPU_ZERO(&cpu_suspend_map); /* silence gcc */ if (smp_started) { /* * Suspend other CPUs. This prevents IPIs while we * are resuming, and will allow us to reset per-cpu * vcpu_info on resume. */ cpu_suspend_map = all_cpus; CPU_CLR(PCPU_GET(cpuid), &cpu_suspend_map); if (!CPU_EMPTY(&cpu_suspend_map)) suspend_cpus(cpu_suspend_map); } #endif /* * Prevent any races with evtchn_interrupt() handler. */ disable_intr(); intr_suspend(); xen_hvm_suspend(); suspend_cancelled = HYPERVISOR_suspend(0); xen_hvm_resume(suspend_cancelled != 0); intr_resume(suspend_cancelled != 0); enable_intr(); /* * Reset grant table info. */ gnttab_resume(NULL); #ifdef SMP /* Send an IPI_BITMAP in case there are pending bitmap IPIs. */ lapic_ipi_vectored(IPI_BITMAP_VECTOR, APIC_IPI_DEST_ALL); if (smp_started && !CPU_EMPTY(&cpu_suspend_map)) { /* * Now that event channels have been initialized, * resume CPUs. */ resume_cpus(cpu_suspend_map); } #endif /* * FreeBSD really needs to add DEVICE_SUSPEND_CANCEL or * similar. */ mtx_lock(&Giant); DEVICE_RESUME(root_bus); mtx_unlock(&Giant); if (smp_started) { thread_lock(curthread); sched_unbind(curthread); thread_unlock(curthread); } EVENTHANDLER_INVOKE(power_resume); if (bootverbose) printf("System resumed after suspension\n"); }
/* * Exit: deallocate address space and other resources, change proc state to * zombie, and unlink proc from allproc and parent's lists. Save exit status * and rusage for wait(). Check for child processes and orphan them. */ void exit1(struct thread *td, int rv) { struct proc *p, *nq, *q; struct vnode *vtmp; struct vnode *ttyvp = NULL; struct plimit *plim; mtx_assert(&Giant, MA_NOTOWNED); p = td->td_proc; /* * XXX in case we're rebooting we just let init die in order to * work around an unsolved stack overflow seen very late during * shutdown on sparc64 when the gmirror worker process exists. */ if (p == initproc && rebooting == 0) { printf("init died (signal %d, exit %d)\n", WTERMSIG(rv), WEXITSTATUS(rv)); panic("Going nowhere without my init!"); } /* * MUST abort all other threads before proceeding past here. */ PROC_LOCK(p); while (p->p_flag & P_HADTHREADS) { /* * First check if some other thread got here before us. * If so, act appropriately: exit or suspend. */ thread_suspend_check(0); /* * Kill off the other threads. This requires * some co-operation from other parts of the kernel * so it may not be instantaneous. With this state set * any thread entering the kernel from userspace will * thread_exit() in trap(). Any thread attempting to * sleep will return immediately with EINTR or EWOULDBLOCK * which will hopefully force them to back out to userland * freeing resources as they go. Any thread attempting * to return to userland will thread_exit() from userret(). * thread_exit() will unsuspend us when the last of the * other threads exits. * If there is already a thread singler after resumption, * calling thread_single will fail; in that case, we just * re-check all suspension request, the thread should * either be suspended there or exit. */ if (!thread_single(SINGLE_EXIT)) break; /* * All other activity in this process is now stopped. * Threading support has been turned off. */ } KASSERT(p->p_numthreads == 1, ("exit1: proc %p exiting with %d threads", p, p->p_numthreads)); racct_sub(p, RACCT_NTHR, 1); /* * Wakeup anyone in procfs' PIOCWAIT. They should have a hold * on our vmspace, so we should block below until they have * released their reference to us. Note that if they have * requested S_EXIT stops we will block here until they ack * via PIOCCONT. */ _STOPEVENT(p, S_EXIT, rv); /* * Ignore any pending request to stop due to a stop signal. * Once P_WEXIT is set, future requests will be ignored as * well. */ p->p_flag &= ~P_STOPPED_SIG; KASSERT(!P_SHOULDSTOP(p), ("exiting process is stopped")); /* * Note that we are exiting and do another wakeup of anyone in * PIOCWAIT in case they aren't listening for S_EXIT stops or * decided to wait again after we told them we are exiting. */ p->p_flag |= P_WEXIT; wakeup(&p->p_stype); /* * Wait for any processes that have a hold on our vmspace to * release their reference. */ while (p->p_lock > 0) msleep(&p->p_lock, &p->p_mtx, PWAIT, "exithold", 0); p->p_xstat = rv; /* Let event handler change exit status */ PROC_UNLOCK(p); /* Drain the limit callout while we don't have the proc locked */ callout_drain(&p->p_limco); #ifdef AUDIT /* * The Sun BSM exit token contains two components: an exit status as * passed to exit(), and a return value to indicate what sort of exit * it was. The exit status is WEXITSTATUS(rv), but it's not clear * what the return value is. */ AUDIT_ARG_EXIT(WEXITSTATUS(rv), 0); AUDIT_SYSCALL_EXIT(0, td); #endif /* Are we a task leader? */ if (p == p->p_leader) { mtx_lock(&ppeers_lock); q = p->p_peers; while (q != NULL) { PROC_LOCK(q); kern_psignal(q, SIGKILL); PROC_UNLOCK(q); q = q->p_peers; } while (p->p_peers != NULL) msleep(p, &ppeers_lock, PWAIT, "exit1", 0); mtx_unlock(&ppeers_lock); } /* * Check if any loadable modules need anything done at process exit. * E.g. SYSV IPC stuff * XXX what if one of these generates an error? */ EVENTHANDLER_INVOKE(process_exit, p); /* * If parent is waiting for us to exit or exec, * P_PPWAIT is set; we will wakeup the parent below. */ PROC_LOCK(p); rv = p->p_xstat; /* Event handler could change exit status */ stopprofclock(p); p->p_flag &= ~(P_TRACED | P_PPWAIT | P_PPTRACE); /* * Stop the real interval timer. If the handler is currently * executing, prevent it from rearming itself and let it finish. */ if (timevalisset(&p->p_realtimer.it_value) && callout_stop(&p->p_itcallout) == 0) { timevalclear(&p->p_realtimer.it_interval); msleep(&p->p_itcallout, &p->p_mtx, PWAIT, "ritwait", 0); KASSERT(!timevalisset(&p->p_realtimer.it_value), ("realtime timer is still armed")); } PROC_UNLOCK(p); /* * Reset any sigio structures pointing to us as a result of * F_SETOWN with our pid. */ funsetownlst(&p->p_sigiolst); /* * If this process has an nlminfo data area (for lockd), release it */ if (nlminfo_release_p != NULL && p->p_nlminfo != NULL) (*nlminfo_release_p)(p); /* * Close open files and release open-file table. * This may block! */ fdescfree(td); /* * If this thread tickled GEOM, we need to wait for the giggling to * stop before we return to userland */ if (td->td_pflags & TDP_GEOM) g_waitidle(); /* * Remove ourself from our leader's peer list and wake our leader. */ mtx_lock(&ppeers_lock); if (p->p_leader->p_peers) { q = p->p_leader; while (q->p_peers != p) q = q->p_peers; q->p_peers = p->p_peers; wakeup(p->p_leader); } mtx_unlock(&ppeers_lock); vmspace_exit(td); sx_xlock(&proctree_lock); if (SESS_LEADER(p)) { struct session *sp = p->p_session; struct tty *tp; /* * s_ttyp is not zero'd; we use this to indicate that * the session once had a controlling terminal. (for * logging and informational purposes) */ SESS_LOCK(sp); ttyvp = sp->s_ttyvp; tp = sp->s_ttyp; sp->s_ttyvp = NULL; sp->s_ttydp = NULL; sp->s_leader = NULL; SESS_UNLOCK(sp); /* * Signal foreground pgrp and revoke access to * controlling terminal if it has not been revoked * already. * * Because the TTY may have been revoked in the mean * time and could already have a new session associated * with it, make sure we don't send a SIGHUP to a * foreground process group that does not belong to this * session. */ if (tp != NULL) { tty_lock(tp); if (tp->t_session == sp) tty_signal_pgrp(tp, SIGHUP); tty_unlock(tp); } if (ttyvp != NULL) { sx_xunlock(&proctree_lock); if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) { VOP_REVOKE(ttyvp, REVOKEALL); VOP_UNLOCK(ttyvp, 0); } sx_xlock(&proctree_lock); } } fixjobc(p, p->p_pgrp, 0); sx_xunlock(&proctree_lock); (void)acct_process(td); /* Release the TTY now we've unlocked everything. */ if (ttyvp != NULL) vrele(ttyvp); #ifdef KTRACE ktrprocexit(td); #endif /* * Release reference to text vnode */ if ((vtmp = p->p_textvp) != NULL) { p->p_textvp = NULL; vrele(vtmp); } /* * Release our limits structure. */ plim = p->p_limit; p->p_limit = NULL; lim_free(plim); tidhash_remove(td); /* * Remove proc from allproc queue and pidhash chain. * Place onto zombproc. Unlink from parent's child list. */ sx_xlock(&allproc_lock); LIST_REMOVE(p, p_list); LIST_INSERT_HEAD(&zombproc, p, p_list); LIST_REMOVE(p, p_hash); sx_xunlock(&allproc_lock); /* * Call machine-dependent code to release any * machine-dependent resources other than the address space. * The address space is released by "vmspace_exitfree(p)" in * vm_waitproc(). */ cpu_exit(td); WITNESS_WARN(WARN_PANIC, NULL, "process (pid %d) exiting", p->p_pid); /* * Reparent all of our children to init. */ sx_xlock(&proctree_lock); q = LIST_FIRST(&p->p_children); if (q != NULL) /* only need this if any child is S_ZOMB */ wakeup(initproc); for (; q != NULL; q = nq) { nq = LIST_NEXT(q, p_sibling); PROC_LOCK(q); proc_reparent(q, initproc); q->p_sigparent = SIGCHLD; /* * Traced processes are killed * since their existence means someone is screwing up. */ if (q->p_flag & P_TRACED) { struct thread *temp; /* * Since q was found on our children list, the * proc_reparent() call moved q to the orphan * list due to present P_TRACED flag. Clear * orphan link for q now while q is locked. */ clear_orphan(q); q->p_flag &= ~(P_TRACED | P_STOPPED_TRACE); FOREACH_THREAD_IN_PROC(q, temp) temp->td_dbgflags &= ~TDB_SUSPEND; kern_psignal(q, SIGKILL); } PROC_UNLOCK(q); } /* * Also get rid of our orphans. */ while ((q = LIST_FIRST(&p->p_orphans)) != NULL) { PROC_LOCK(q); clear_orphan(q); PROC_UNLOCK(q); } /* Save exit status. */ PROC_LOCK(p); p->p_xthread = td; /* Tell the prison that we are gone. */ prison_proc_free(p->p_ucred->cr_prison); #ifdef KDTRACE_HOOKS /* * Tell the DTrace fasttrap provider about the exit if it * has declared an interest. */ if (dtrace_fasttrap_exit) dtrace_fasttrap_exit(p); #endif /* * Notify interested parties of our demise. */ KNOTE_LOCKED(&p->p_klist, NOTE_EXIT); #ifdef KDTRACE_HOOKS int reason = CLD_EXITED; if (WCOREDUMP(rv)) reason = CLD_DUMPED; else if (WIFSIGNALED(rv)) reason = CLD_KILLED; SDT_PROBE(proc, kernel, , exit, reason, 0, 0, 0, 0); #endif /* * Just delete all entries in the p_klist. At this point we won't * report any more events, and there are nasty race conditions that * can beat us if we don't. */ knlist_clear(&p->p_klist, 1); /* * If this is a process with a descriptor, we may not need to deliver * a signal to the parent. proctree_lock is held over * procdesc_exit() to serialize concurrent calls to close() and * exit(). */ if (p->p_procdesc == NULL || procdesc_exit(p)) { /* * Notify parent that we're gone. If parent has the * PS_NOCLDWAIT flag set, or if the handler is set to SIG_IGN, * notify process 1 instead (and hope it will handle this * situation). */ PROC_LOCK(p->p_pptr); mtx_lock(&p->p_pptr->p_sigacts->ps_mtx); if (p->p_pptr->p_sigacts->ps_flag & (PS_NOCLDWAIT | PS_CLDSIGIGN)) { struct proc *pp; mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx); pp = p->p_pptr; PROC_UNLOCK(pp); proc_reparent(p, initproc); p->p_sigparent = SIGCHLD; PROC_LOCK(p->p_pptr); /* * Notify parent, so in case he was wait(2)ing or * executing waitpid(2) with our pid, he will * continue. */ wakeup(pp); } else mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx); if (p->p_pptr == initproc) kern_psignal(p->p_pptr, SIGCHLD); else if (p->p_sigparent != 0) { if (p->p_sigparent == SIGCHLD) childproc_exited(p); else /* LINUX thread */ kern_psignal(p->p_pptr, p->p_sigparent); } } else PROC_LOCK(p->p_pptr); sx_xunlock(&proctree_lock); /* * The state PRS_ZOMBIE prevents other proesses from sending * signal to the process, to avoid memory leak, we free memory * for signal queue at the time when the state is set. */ sigqueue_flush(&p->p_sigqueue); sigqueue_flush(&td->td_sigqueue); /* * We have to wait until after acquiring all locks before * changing p_state. We need to avoid all possible context * switches (including ones from blocking on a mutex) while * marked as a zombie. We also have to set the zombie state * before we release the parent process' proc lock to avoid * a lost wakeup. So, we first call wakeup, then we grab the * sched lock, update the state, and release the parent process' * proc lock. */ wakeup(p->p_pptr); cv_broadcast(&p->p_pwait); sched_exit(p->p_pptr, td); PROC_SLOCK(p); p->p_state = PRS_ZOMBIE; PROC_UNLOCK(p->p_pptr); /* * Hopefully no one will try to deliver a signal to the process this * late in the game. */ knlist_destroy(&p->p_klist); /* * Save our children's rusage information in our exit rusage. */ ruadd(&p->p_ru, &p->p_rux, &p->p_stats->p_cru, &p->p_crux); /* * Make sure the scheduler takes this thread out of its tables etc. * This will also release this thread's reference to the ucred. * Other thread parts to release include pcb bits and such. */ thread_exit(); }
void vfs_mountroot(void) { struct mount *mp; struct sbuf *sb; struct thread *td; time_t timebase; int error; td = curthread; vfs_mountroot_wait(); sb = sbuf_new_auto(); vfs_mountroot_conf0(sb); sbuf_finish(sb); error = vfs_mountroot_devfs(td, &mp); while (!error) { error = vfs_mountroot_parse(sb, mp); if (!error) { error = vfs_mountroot_shuffle(td, mp); if (!error) { sbuf_clear(sb); error = vfs_mountroot_readconf(td, sb); sbuf_finish(sb); } } } sbuf_delete(sb); /* * Iterate over all currently mounted file systems and use * the time stamp found to check and/or initialize the RTC. * Call inittodr() only once and pass it the largest of the * timestamps we encounter. */ timebase = 0; mtx_lock(&mountlist_mtx); mp = TAILQ_FIRST(&mountlist); while (mp != NULL) { if (mp->mnt_time > timebase) timebase = mp->mnt_time; mp = TAILQ_NEXT(mp, mnt_list); } mtx_unlock(&mountlist_mtx); inittodr(timebase); /* Keep prison0's root in sync with the global rootvnode. */ mtx_lock(&prison0.pr_mtx); prison0.pr_root = rootvnode; vref(prison0.pr_root); mtx_unlock(&prison0.pr_mtx); mtx_lock(&mountlist_mtx); atomic_store_rel_int(&root_mount_complete, 1); wakeup(&root_mount_complete); mtx_unlock(&mountlist_mtx); EVENTHANDLER_INVOKE(mountroot); }
/* * Shutdown the system cleanly to prepare for reboot, halt, or power off. */ void kern_reboot(int howto) { static int first_buf_printf = 1; #if defined(SMP) /* * Bind us to CPU 0 so that all shutdown code runs there. Some * systems don't shutdown properly (i.e., ACPI power off) if we * run on another processor. */ if (!SCHEDULER_STOPPED()) { thread_lock(curthread); sched_bind(curthread, 0); thread_unlock(curthread); KASSERT(PCPU_GET(cpuid) == 0, ("boot: not running on cpu 0")); } #endif /* We're in the process of rebooting. */ rebooting = 1; /* collect extra flags that shutdown_nice might have set */ howto |= shutdown_howto; /* We are out of the debugger now. */ kdb_active = 0; /* * Do any callouts that should be done BEFORE syncing the filesystems. */ EVENTHANDLER_INVOKE(shutdown_pre_sync, howto); /* * Now sync filesystems */ if (!cold && (howto & RB_NOSYNC) == 0 && waittime < 0) { register struct buf *bp; int iter, nbusy, pbusy; #ifndef PREEMPTION int subiter; #endif waittime = 0; wdog_kern_pat(WD_LASTVAL); sys_sync(curthread, NULL); /* * With soft updates, some buffers that are * written will be remarked as dirty until other * buffers are written. */ for (iter = pbusy = 0; iter < 20; iter++) { nbusy = 0; for (bp = &buf[nbuf]; --bp >= buf; ) if (isbufbusy(bp)) nbusy++; if (nbusy == 0) { if (first_buf_printf) printf("All buffers synced."); break; } if (first_buf_printf) { printf("Syncing disks, buffers remaining... "); first_buf_printf = 0; } printf("%d ", nbusy); if (nbusy < pbusy) iter = 0; pbusy = nbusy; wdog_kern_pat(WD_LASTVAL); sys_sync(curthread, NULL); #ifdef PREEMPTION /* * Drop Giant and spin for a while to allow * interrupt threads to run. */ DROP_GIANT(); DELAY(50000 * iter); PICKUP_GIANT(); #else /* * Drop Giant and context switch several times to * allow interrupt threads to run. */ DROP_GIANT(); for (subiter = 0; subiter < 50 * iter; subiter++) { thread_lock(curthread); mi_switch(SW_VOL, NULL); thread_unlock(curthread); DELAY(1000); } PICKUP_GIANT(); #endif } printf("\n"); /* * Count only busy local buffers to prevent forcing * a fsck if we're just a client of a wedged NFS server */ nbusy = 0; for (bp = &buf[nbuf]; --bp >= buf; ) { if (isbufbusy(bp)) { #if 0 /* XXX: This is bogus. We should probably have a BO_REMOTE flag instead */ if (bp->b_dev == NULL) { TAILQ_REMOVE(&mountlist, bp->b_vp->v_mount, mnt_list); continue; } #endif nbusy++; if (show_busybufs > 0) { printf( "%d: buf:%p, vnode:%p, flags:%0x, blkno:%jd, lblkno:%jd, buflock:", nbusy, bp, bp->b_vp, bp->b_flags, (intmax_t)bp->b_blkno, (intmax_t)bp->b_lblkno); BUF_LOCKPRINTINFO(bp); if (show_busybufs > 1) vn_printf(bp->b_vp, "vnode content: "); } } } if (nbusy) { /* * Failed to sync all blocks. Indicate this and don't * unmount filesystems (thus forcing an fsck on reboot). */ printf("Giving up on %d buffers\n", nbusy); DELAY(5000000); /* 5 seconds */ } else { if (!first_buf_printf) printf("Final sync complete\n"); /* * Unmount filesystems */ if (panicstr == 0) vfs_unmountall(); } swapoff_all(); DELAY(100000); /* wait for console output to finish */ } print_uptime(); cngrab(); /* * Ok, now do things that assume all filesystem activity has * been completed. */ EVENTHANDLER_INVOKE(shutdown_post_sync, howto); if ((howto & (RB_HALT|RB_DUMP)) == RB_DUMP && !cold && !dumping) doadump(TRUE); /* Now that we're going to really halt the system... */ EVENTHANDLER_INVOKE(shutdown_final, howto); for(;;) ; /* safety against shutdown_reset not working */ /* NOTREACHED */ }
/* Full PV mode suspension. */ static void xctrl_suspend() { int i, j, k, fpp, suspend_cancelled; unsigned long max_pfn, start_info_mfn; EVENTHANDLER_INVOKE(power_suspend); #ifdef SMP struct thread *td; cpuset_t map; u_int cpuid; /* * Bind us to CPU 0 and stop any other VCPUs. */ td = curthread; thread_lock(td); sched_bind(td, 0); thread_unlock(td); cpuid = PCPU_GET(cpuid); KASSERT(cpuid == 0, ("xen_suspend: not running on cpu 0")); map = all_cpus; CPU_CLR(cpuid, &map); CPU_NAND(&map, &stopped_cpus); if (!CPU_EMPTY(&map)) stop_cpus(map); #endif /* * Be sure to hold Giant across DEVICE_SUSPEND/RESUME since non-MPSAFE * drivers need this. */ mtx_lock(&Giant); if (DEVICE_SUSPEND(root_bus) != 0) { mtx_unlock(&Giant); printf("%s: device_suspend failed\n", __func__); #ifdef SMP if (!CPU_EMPTY(&map)) restart_cpus(map); #endif return; } mtx_unlock(&Giant); local_irq_disable(); xencons_suspend(); gnttab_suspend(); intr_suspend(); max_pfn = HYPERVISOR_shared_info->arch.max_pfn; void *shared_info = HYPERVISOR_shared_info; HYPERVISOR_shared_info = NULL; pmap_kremove((vm_offset_t) shared_info); PT_UPDATES_FLUSH(); xen_start_info->store_mfn = MFNTOPFN(xen_start_info->store_mfn); xen_start_info->console.domU.mfn = MFNTOPFN(xen_start_info->console.domU.mfn); /* * We'll stop somewhere inside this hypercall. When it returns, * we'll start resuming after the restore. */ start_info_mfn = VTOMFN(xen_start_info); pmap_suspend(); suspend_cancelled = HYPERVISOR_suspend(start_info_mfn); pmap_resume(); pmap_kenter_ma((vm_offset_t) shared_info, xen_start_info->shared_info); HYPERVISOR_shared_info = shared_info; HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list = VTOMFN(xen_pfn_to_mfn_frame_list_list); fpp = PAGE_SIZE/sizeof(unsigned long); for (i = 0, j = 0, k = -1; i < max_pfn; i += fpp, j++) { if ((j % fpp) == 0) { k++; xen_pfn_to_mfn_frame_list_list[k] = VTOMFN(xen_pfn_to_mfn_frame_list[k]); j = 0; } xen_pfn_to_mfn_frame_list[k][j] = VTOMFN(&xen_phys_machine[i]); } HYPERVISOR_shared_info->arch.max_pfn = max_pfn; gnttab_resume(); intr_resume(suspend_cancelled != 0); local_irq_enable(); xencons_resume(); #ifdef CONFIG_SMP for_each_cpu(i) vcpu_prepare(i); #endif /* * Only resume xenbus /after/ we've prepared our VCPUs; otherwise * the VCPU hotplug callback can race with our vcpu_prepare */ mtx_lock(&Giant); DEVICE_RESUME(root_bus); mtx_unlock(&Giant); #ifdef SMP thread_lock(curthread); sched_unbind(curthread); thread_unlock(curthread); if (!CPU_EMPTY(&map)) restart_cpus(map); #endif EVENTHANDLER_INVOKE(power_resume); }
int wdog_kern_pat(u_int utim) { int error; if ((utim & WD_LASTVAL) != 0 && (utim & WD_INTERVAL) > 0) return (EINVAL); if ((utim & WD_LASTVAL) != 0) { /* * if WD_LASTVAL is set, fill in the bits for timeout * from the saved value in wd_last_u. */ MPASS((wd_last_u & ~WD_INTERVAL) == 0); utim &= ~WD_LASTVAL; utim |= wd_last_u; } else { /* * Otherwise save the new interval. * This can be zero (to disable the watchdog) */ wd_last_u = (utim & WD_INTERVAL); wd_last_u_sysctl = wd_last_u; wd_last_u_sysctl_secs = pow2ns_to_ticks(wd_last_u) / hz; } if ((utim & WD_INTERVAL) == WD_TO_NEVER) { utim = 0; /* Assume all is well; watchdog signals failure. */ error = 0; } else { /* Assume no watchdog available; watchdog flags success */ error = EOPNOTSUPP; } if (wd_softtimer) { if (utim == 0) { callout_stop(&wd_softtimeo_handle); } else { (void) callout_reset(&wd_softtimeo_handle, pow2ns_to_ticks(utim), wd_timeout_cb, "soft"); } error = 0; } else { EVENTHANDLER_INVOKE(watchdog_list, utim, &error); } wd_set_pretimeout(wd_pretimeout, true); /* * If we were able to arm/strobe the watchdog, then * update the last time it was strobed for WDIOC_GETTIMELEFT */ if (!error) { struct timespec ts; error = kern_clock_gettime(curthread /* XXX */, CLOCK_MONOTONIC_FAST, &ts); if (!error) { wd_lastpat = ts.tv_sec; wd_lastpat_valid = 1; } } return (error); }
static void do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2, struct vmspace *vm2, struct file *fp_procdesc) { struct proc *p1, *pptr; int trypid; struct filedesc *fd; struct filedesc_to_leader *fdtol; struct sigacts *newsigacts; sx_assert(&proctree_lock, SX_SLOCKED); sx_assert(&allproc_lock, SX_XLOCKED); p1 = td->td_proc; trypid = fork_findpid(fr->fr_flags); sx_sunlock(&proctree_lock); p2->p_state = PRS_NEW; /* protect against others */ p2->p_pid = trypid; AUDIT_ARG_PID(p2->p_pid); LIST_INSERT_HEAD(&allproc, p2, p_list); allproc_gen++; LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash); tidhash_add(td2); PROC_LOCK(p2); PROC_LOCK(p1); sx_xunlock(&allproc_lock); bcopy(&p1->p_startcopy, &p2->p_startcopy, __rangeof(struct proc, p_startcopy, p_endcopy)); pargs_hold(p2->p_args); PROC_UNLOCK(p1); bzero(&p2->p_startzero, __rangeof(struct proc, p_startzero, p_endzero)); /* Tell the prison that we exist. */ prison_proc_hold(p2->p_ucred->cr_prison); PROC_UNLOCK(p2); /* * Malloc things while we don't hold any locks. */ if (fr->fr_flags & RFSIGSHARE) newsigacts = NULL; else newsigacts = sigacts_alloc(); /* * Copy filedesc. */ if (fr->fr_flags & RFCFDG) { fd = fdinit(p1->p_fd, false); fdtol = NULL; } else if (fr->fr_flags & RFFDG) { fd = fdcopy(p1->p_fd); fdtol = NULL; } else { fd = fdshare(p1->p_fd); if (p1->p_fdtol == NULL) p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL, p1->p_leader); if ((fr->fr_flags & RFTHREAD) != 0) { /* * Shared file descriptor table, and shared * process leaders. */ fdtol = p1->p_fdtol; FILEDESC_XLOCK(p1->p_fd); fdtol->fdl_refcount++; FILEDESC_XUNLOCK(p1->p_fd); } else { /* * Shared file descriptor table, and different * process leaders. */ fdtol = filedesc_to_leader_alloc(p1->p_fdtol, p1->p_fd, p2); } } /* * Make a proc table entry for the new process. * Start by zeroing the section of proc that is zero-initialized, * then copy the section that is copied directly from the parent. */ PROC_LOCK(p2); PROC_LOCK(p1); bzero(&td2->td_startzero, __rangeof(struct thread, td_startzero, td_endzero)); bcopy(&td->td_startcopy, &td2->td_startcopy, __rangeof(struct thread, td_startcopy, td_endcopy)); bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name)); td2->td_sigstk = td->td_sigstk; td2->td_flags = TDF_INMEM; td2->td_lend_user_pri = PRI_MAX; #ifdef VIMAGE td2->td_vnet = NULL; td2->td_vnet_lpush = NULL; #endif /* * Allow the scheduler to initialize the child. */ thread_lock(td); sched_fork(td, td2); thread_unlock(td); /* * Duplicate sub-structures as needed. * Increase reference counts on shared objects. */ p2->p_flag = P_INMEM; p2->p_flag2 = p1->p_flag2 & (P2_NOTRACE | P2_NOTRACE_EXEC | P2_TRAPCAP); p2->p_swtick = ticks; if (p1->p_flag & P_PROFIL) startprofclock(p2); /* * Whilst the proc lock is held, copy the VM domain data out * using the VM domain method. */ vm_domain_policy_init(&p2->p_vm_dom_policy); vm_domain_policy_localcopy(&p2->p_vm_dom_policy, &p1->p_vm_dom_policy); if (fr->fr_flags & RFSIGSHARE) { p2->p_sigacts = sigacts_hold(p1->p_sigacts); } else { sigacts_copy(newsigacts, p1->p_sigacts); p2->p_sigacts = newsigacts; } if (fr->fr_flags & RFTSIGZMB) p2->p_sigparent = RFTSIGNUM(fr->fr_flags); else if (fr->fr_flags & RFLINUXTHPN) p2->p_sigparent = SIGUSR1; else p2->p_sigparent = SIGCHLD; p2->p_textvp = p1->p_textvp; p2->p_fd = fd; p2->p_fdtol = fdtol; if (p1->p_flag2 & P2_INHERIT_PROTECTED) { p2->p_flag |= P_PROTECTED; p2->p_flag2 |= P2_INHERIT_PROTECTED; } /* * p_limit is copy-on-write. Bump its refcount. */ lim_fork(p1, p2); thread_cow_get_proc(td2, p2); pstats_fork(p1->p_stats, p2->p_stats); PROC_UNLOCK(p1); PROC_UNLOCK(p2); /* Bump references to the text vnode (for procfs). */ if (p2->p_textvp) vrefact(p2->p_textvp); /* * Set up linkage for kernel based threading. */ if ((fr->fr_flags & RFTHREAD) != 0) { mtx_lock(&ppeers_lock); p2->p_peers = p1->p_peers; p1->p_peers = p2; p2->p_leader = p1->p_leader; mtx_unlock(&ppeers_lock); PROC_LOCK(p1->p_leader); if ((p1->p_leader->p_flag & P_WEXIT) != 0) { PROC_UNLOCK(p1->p_leader); /* * The task leader is exiting, so process p1 is * going to be killed shortly. Since p1 obviously * isn't dead yet, we know that the leader is either * sending SIGKILL's to all the processes in this * task or is sleeping waiting for all the peers to * exit. We let p1 complete the fork, but we need * to go ahead and kill the new process p2 since * the task leader may not get a chance to send * SIGKILL to it. We leave it on the list so that * the task leader will wait for this new process * to commit suicide. */ PROC_LOCK(p2); kern_psignal(p2, SIGKILL); PROC_UNLOCK(p2); } else PROC_UNLOCK(p1->p_leader); } else { p2->p_peers = NULL; p2->p_leader = p2; } sx_xlock(&proctree_lock); PGRP_LOCK(p1->p_pgrp); PROC_LOCK(p2); PROC_LOCK(p1); /* * Preserve some more flags in subprocess. P_PROFIL has already * been preserved. */ p2->p_flag |= p1->p_flag & P_SUGID; td2->td_pflags |= (td->td_pflags & TDP_ALTSTACK) | TDP_FORKING; SESS_LOCK(p1->p_session); if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT) p2->p_flag |= P_CONTROLT; SESS_UNLOCK(p1->p_session); if (fr->fr_flags & RFPPWAIT) p2->p_flag |= P_PPWAIT; p2->p_pgrp = p1->p_pgrp; LIST_INSERT_AFTER(p1, p2, p_pglist); PGRP_UNLOCK(p1->p_pgrp); LIST_INIT(&p2->p_children); LIST_INIT(&p2->p_orphans); callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0); /* * If PF_FORK is set, the child process inherits the * procfs ioctl flags from its parent. */ if (p1->p_pfsflags & PF_FORK) { p2->p_stops = p1->p_stops; p2->p_pfsflags = p1->p_pfsflags; } /* * This begins the section where we must prevent the parent * from being swapped. */ _PHOLD(p1); PROC_UNLOCK(p1); /* * Attach the new process to its parent. * * If RFNOWAIT is set, the newly created process becomes a child * of init. This effectively disassociates the child from the * parent. */ if ((fr->fr_flags & RFNOWAIT) != 0) { pptr = p1->p_reaper; p2->p_reaper = pptr; } else { p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ? p1 : p1->p_reaper; pptr = p1; } p2->p_pptr = pptr; LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling); LIST_INIT(&p2->p_reaplist); LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling); if (p2->p_reaper == p1) p2->p_reapsubtree = p2->p_pid; sx_xunlock(&proctree_lock); /* Inform accounting that we have forked. */ p2->p_acflag = AFORK; PROC_UNLOCK(p2); #ifdef KTRACE ktrprocfork(p1, p2); #endif /* * Finish creating the child process. It will return via a different * execution path later. (ie: directly into user mode) */ vm_forkproc(td, p2, td2, vm2, fr->fr_flags); if (fr->fr_flags == (RFFDG | RFPROC)) { VM_CNT_INC(v_forks); VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize); } else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) { VM_CNT_INC(v_vforks); VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize); } else if (p1 == &proc0) { VM_CNT_INC(v_kthreads); VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize); } else { VM_CNT_INC(v_rforks); VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize); } /* * Associate the process descriptor with the process before anything * can happen that might cause that process to need the descriptor. * However, don't do this until after fork(2) can no longer fail. */ if (fr->fr_flags & RFPROCDESC) procdesc_new(p2, fr->fr_pd_flags); /* * Both processes are set up, now check if any loadable modules want * to adjust anything. */ EVENTHANDLER_INVOKE(process_fork, p1, p2, fr->fr_flags); /* * Set the child start time and mark the process as being complete. */ PROC_LOCK(p2); PROC_LOCK(p1); microuptime(&p2->p_stats->p_start); PROC_SLOCK(p2); p2->p_state = PRS_NORMAL; PROC_SUNLOCK(p2); #ifdef KDTRACE_HOOKS /* * Tell the DTrace fasttrap provider about the new process so that any * tracepoints inherited from the parent can be removed. We have to do * this only after p_state is PRS_NORMAL since the fasttrap module will * use pfind() later on. */ if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork) dtrace_fasttrap_fork(p1, p2); #endif /* * Hold the process so that it cannot exit after we make it runnable, * but before we wait for the debugger. */ _PHOLD(p2); if (p1->p_ptevents & PTRACE_FORK) { /* * Arrange for debugger to receive the fork event. * * We can report PL_FLAG_FORKED regardless of * P_FOLLOWFORK settings, but it does not make a sense * for runaway child. */ td->td_dbgflags |= TDB_FORK; td->td_dbg_forked = p2->p_pid; td2->td_dbgflags |= TDB_STOPATFORK; } if (fr->fr_flags & RFPPWAIT) { td->td_pflags |= TDP_RFPPWAIT; td->td_rfppwait_p = p2; td->td_dbgflags |= TDB_VFORK; } PROC_UNLOCK(p2); /* * Now can be swapped. */ _PRELE(p1); PROC_UNLOCK(p1); /* * Tell any interested parties about the new process. */ knote_fork(p1->p_klist, p2->p_pid); SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags); if (fr->fr_flags & RFPROCDESC) { procdesc_finit(p2->p_procdesc, fp_procdesc); fdrop(fp_procdesc, td); } if ((fr->fr_flags & RFSTOPPED) == 0) { /* * If RFSTOPPED not requested, make child runnable and * add to run queue. */ thread_lock(td2); TD_SET_CAN_RUN(td2); sched_add(td2, SRQ_BORING); thread_unlock(td2); if (fr->fr_pidp != NULL) *fr->fr_pidp = p2->p_pid; } else { *fr->fr_procp = p2; } PROC_LOCK(p2); /* * Wait until debugger is attached to child. */ while (td2->td_proc == p2 && (td2->td_dbgflags & TDB_STOPATFORK) != 0) cv_wait(&p2->p_dbgwait, &p2->p_mtx); _PRELE(p2); racct_proc_fork_done(p2); PROC_UNLOCK(p2); }
static int dcons_os_checkc(struct dcons_softc *dc) { EVENTHANDLER_INVOKE(dcons_poll, 0); return (dcons_os_checkc_nopoll(dc)); }